Data Driven Acoustic Design
dc.contributor.author
Xydis, Achilleas
dc.contributor.supervisor
Kohler, Matthias
dc.contributor.supervisor
Rust, Romana
dc.contributor.supervisor
Gramazio, Fabio
dc.contributor.supervisor
Shtrepi, Louena
dc.date.accessioned
2023-08-21T16:18:26Z
dc.date.available
2023-08-09T09:36:49Z
dc.date.available
2023-08-21T13:15:31Z
dc.date.available
2023-08-21T16:18:26Z
dc.date.issued
2023
dc.identifier.uri
http://hdl.handle.net/20.500.11850/626106
dc.identifier.doi
10.3929/ethz-b-000626106
dc.description.abstract
Acoustics are rarely included as a design driver in the early phases of design due to the multi-faceted nature of sound and the complex and time-consuming analysis process of room acoustics software. Inevitably this results in architectural spaces with poor acoustics, where treatment is either disregarded or focuses only on noise prevention using absorbent materials. However, most commonly used construction materials have sound-reflecting properties and can be configured into sound-diffusive surfaces. These surfaces can help reduce unwanted flattered echoes, colourisation, and image shift and create a more pleasant and comfortable environment without needing additional elements (e.g. absorption panels). Faster and simpler analysis tools are required to harness the potential of diffusion in architectural design.
This dissertation presents a new data-driven approach to designing and evaluating the acoustic properties of architectural surfaces. It investigates the use of machine-learning techniques to study the mutual relationship between geometry and sound diffusion. It introduces a new acoustic dataset meant as a basis for training predictive machine-learning models. These models enable the creation of fast, less cumbersome, and reasonably accurate acoustics analysis tools. It proposes and implements a new automated multi-robotic data-acquisition method for collecting impulse responses from scale-modelled surfaces. It also develops computational tools to design and generate three-dimensional wall-like surface geometries. The geometrical characteristics of these surfaces are based on commonly used construction materials and techniques. A computational framework is developed in parallel to process the collected data and generate customisable and interactive visualisations for low- and high-dimensional data. This framework caters to both expert and non-expert users in acoustics, providing expert users with familiar descriptors and visualisations and introducing non-experts to simpler ones. Furthermore, to address users with no programming knowledge, it develops a web-based application enabling easy access to the collected dataset, the acoustic descriptors, and visualisations. It introduces a new workflow to the performance-driven acoustic design of sound-diffusing wall surfaces, allowing architects and designers to explore alternative wall designs with sound-diffusing properties, given a set of desired acoustic performance criteria.
The proposed workflow has the potential to bring acoustics closer to the early phases of architectural design and enable a more integrative acoustic and architectural design exploration. Providing architects and acousticians with comprehensive and user-friendly tools for acoustics analysis can help integrate acoustics into the design process from the beginning rather than as an afterthought.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Architectural Acoustics
en_US
dc.subject
Dataset collection
en_US
dc.subject
Dataset
en_US
dc.subject
Computational Design
en_US
dc.subject
Machine Learning
en_US
dc.title
Data Driven Acoustic Design
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
288 p.
en_US
ethz.code.ddc
DDC - DDC::7 - Arts & recreation::720 - Architecture
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.identifier.diss
29211
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::03709 - Kohler, Matthias / Kohler, Matthias
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::03708 - Gramazio, Fabio / Gramazio, Fabio
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::03709 - Kohler, Matthias / Kohler, Matthias
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02602 - Inst. f. Technologie in der Architektur / Institute for Technology in Architecture::03708 - Gramazio, Fabio / Gramazio, Fabio
en_US
ethz.relation.hasPart
handle/20.500.11850/587342
ethz.relation.references
10.3929/ethz-b-000610930
ethz.relation.references
20.500.11850/587368
ethz.relation.references
handle/20.500.11850/505872
ethz.relation.references
20.500.11850/587225
ethz.relation.references
handle/20.500.11850/587320
ethz.date.deposited
2023-08-09T09:36:49Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2023-08-21T16:18:47Z
ethz.rosetta.lastUpdated
2024-02-03T02:37:18Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Data%20Driven%20Acoustic%20Design&rft.date=2023&rft.au=Xydis,%20Achilleas&rft.genre=unknown&rft.btitle=Data%20Driven%20Acoustic%20Design
Files in this item
Publication type
-
Doctoral Thesis [30267]