Zur Kurzanzeige

dc.contributor.author
Jelavic, Edo
dc.contributor.author
Qu, Kaixian
dc.contributor.author
Farshidian, Farbod
dc.contributor.author
Hutter, Marco
dc.date.accessioned
2024-03-06T09:27:53Z
dc.date.available
2023-08-06T09:15:26Z
dc.date.available
2023-08-07T06:34:27Z
dc.date.available
2023-09-18T09:10:13Z
dc.date.available
2024-03-06T09:27:53Z
dc.date.issued
2023-12
dc.identifier.issn
1552-3098
dc.identifier.issn
1042-296X
dc.identifier.issn
1941-0468
dc.identifier.other
10.1109/TRO.2023.3302239
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/625515
dc.identifier.doi
10.3929/ethz-b-000625515
dc.description.abstract
This article presents a hybrid motion planning and control approach applicable to various ground robot types and morphologies. Our two-step approach uses a sampling-based planner to compute an approximate motion which is then fed to numerical optimization for refinement. The sampling-based stage finds a long-term global plan consisting of a contact schedule and sequence of keyframes, i.e., stable whole-body configura- tions. Subsequently, the optimization refines the solution with a short-term planning horizon to satisfy all nonlinear dynamics constraints. The proposed hybrid planner can compute plans for scenarios that would be difficult for trajectory optimization or sampling planner alone. We present tasks of traversing challenging terrain that requires discovering a contact schedule, navigating non-convex obstacles, and coordinating many degrees of freedom. Our hybrid planner has been applied to three different robots: a quadruped, a wheeled quadruped, and a legged excavator. We validate our hybrid locomotion planner in the real world and simulation, generating behaviors we could not achieve with previous methods. The results show that computing and executing hybrid locomotion plans is possible on hardware in real-time.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Motion Planning
en_US
dc.subject
Optimization and Optimal Control
en_US
dc.subject
Random sampling
en_US
dc.subject
Autonomous Excavator
en_US
dc.subject
Wheeled-legged robots
en_US
dc.title
LSTP: Long Short-Term Motion Planning for Legged and Legged-Wheeled Systems
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2023-08-25
ethz.journal.title
IEEE Transactions on Robotics
ethz.journal.volume
39
en_US
ethz.journal.issue
6
en_US
ethz.journal.abbreviated
IEEE Trans. Robot.
ethz.pages.start
4190
en_US
ethz.pages.end
4210
en_US
ethz.size
20 p. accepted version
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.grant
Perceptive Dynamic Locomotion on Rough Terrain
en_US
ethz.grant
NCCR Digital Fabrication
en_US
ethz.grant
Learning Mobility for Real Legged Robots
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02284 - NFS Digitale Fabrikation / NCCR Digital Fabrication
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02620 - Inst. f. Robotik u. Intelligente Systeme / Inst. Robotics and Intelligent Systems::09570 - Hutter, Marco / Hutter, Marco
en_US
ethz.tag
RSL
en_US
ethz.grant.agreementno
188596
ethz.grant.agreementno
--
ethz.grant.agreementno
852044
ethz.grant.fundername
SNF
ethz.grant.fundername
SNF
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
Projekte MINT
ethz.grant.program
NCCR (NFS)
ethz.grant.program
H2020
ethz.date.deposited
2023-08-06T09:15:26Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2024-03-06T09:27:55Z
ethz.rosetta.lastUpdated
2024-03-06T09:27:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=LSTP:%20Long%20Short-Term%20Motion%20Planning%20for%20Legged%20and%20Legged-Wheeled%20Systems&rft.jtitle=IEEE%20Transactions%20on%20Robotics&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4190&rft.epage=4210&rft.issn=1552-3098&1042-296X&1941-0468&rft.au=Jelavic,%20Edo&Qu,%20Kaixian&Farshidian,%20Farbod&Hutter,%20Marco&rft.genre=article&rft_id=info:doi/10.1109/TRO.2023.3302239&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige