Zur Kurzanzeige

dc.contributor.author
Beurer-Kellner, Luca
dc.contributor.author
Vechev, Martin
dc.contributor.author
Vanbever, Laurent
dc.contributor.author
Veličković, Petar
dc.contributor.editor
Koyejo, Sanmi
dc.contributor.editor
Mohamed, Shakir
dc.contributor.editor
Agarwal, Alekh
dc.contributor.editor
Belgrave, Danielle
dc.contributor.editor
Cho, Kyunghyun
dc.contributor.editor
Oh, Alice
dc.date.accessioned
2023-04-05T08:26:02Z
dc.date.available
2023-01-03T09:10:08Z
dc.date.available
2023-03-24T10:52:07Z
dc.date.available
2023-04-05T08:26:02Z
dc.date.issued
2022
dc.identifier.isbn
978-1-7138-7108-8
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/589728
dc.description.abstract
We present a new method for scaling automatic configuration of computer networks. The key idea is to relax the computationally hard search problem of finding a configuration that satisfies a given specification into an approximate objective amenable to learning-based techniques. Based on this idea, we train a neural algorithmic model which learns to generate configurations likely to (fully or partially) satisfy a given specification under existing routing protocols. By relaxing the rigid satisfaction guarantees, our approach (i) enables greater flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not depend on hardcoded rules; and (ii) finds configurations for much larger computer networks than previously possible. Our learned synthesizer is up to 490x faster than state-of-the-art SMT-based methods, while producing configurations which on average satisfy more than 93% of the provided requirements.
en_US
dc.language.iso
en
en_US
dc.publisher
Curran
en_US
dc.title
Learning to Configure Computer Networks with Neural Algorithmic Reasoning
en_US
dc.type
Conference Paper
ethz.book.title
Advances in Neural Information Processing Systems 35
en_US
ethz.pages.start
730
en_US
ethz.pages.end
742
en_US
ethz.event
36th Annual Conference on Neural Information Processing Systems (NeurIPS 2022)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
November 28 - December 9, 2022
en_US
ethz.notes
Poster presentation on December 1, 2022.
en_US
ethz.grant
Dependable and Data-Driven Intelligent Networks
en_US
ethz.publication.place
Red Hook, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02640 - Inst. f. Technische Informatik und Komm. / Computer Eng. and Networks Lab.::09477 - Vanbever, Laurent / Vanbever, Laurent
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02664 - Inst. f. Programmiersprachen u. -systeme / Inst. Programming Languages and Systems::03948 - Vechev, Martin / Vechev, Martin
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02640 - Inst. f. Technische Informatik und Komm. / Computer Eng. and Networks Lab.::09477 - Vanbever, Laurent / Vanbever, Laurent
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02664 - Inst. f. Programmiersprachen u. -systeme / Inst. Programming Languages and Systems::03948 - Vechev, Martin / Vechev, Martin
en_US
ethz.identifier.url
https://proceedings.neurips.cc/paper_files/paper/2022/hash/04cc90ec6868b97b7423dc38ced1e35c-Abstract-Conference.html
ethz.identifier.url
https://nips.cc/virtual/2022/poster/53170
ethz.grant.agreementno
ETH-03 19-2
ethz.grant.fundername
ETHZ
ethz.grant.funderDoi
10.13039/501100003006
ethz.grant.program
ETH Grants
ethz.date.deposited
2023-01-03T09:10:08Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2023-03-24T10:52:08Z
ethz.rosetta.lastUpdated
2024-02-02T21:31:21Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Learning%20to%20Configure%20Computer%20Networks%20with%20Neural%20Algorithmic%20Reasoning&rft.date=2022&rft.spage=730&rft.epage=742&rft.au=Beurer-Kellner,%20Luca&Vechev,%20Martin&Vanbever,%20Laurent&Veli%C4%8Dkovi%C4%87,%20Petar&rft.isbn=978-1-7138-7108-8&rft.genre=proceeding&rft.btitle=Advances%20in%20Neural%20Information%20Processing%20Systems%2035
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige