On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization
dc.contributor.author
Emmenegger, Nicolas
dc.contributor.author
Kyng, Rasmus
dc.contributor.author
Zehmakan, Ahad N.
dc.contributor.editor
Camps-Valls, Gustau
dc.contributor.editor
Ruiz, Francisco J.R.
dc.contributor.editor
Valera, Isabel
dc.date.accessioned
2022-10-28T07:16:51Z
dc.date.available
2022-10-28T03:15:30Z
dc.date.available
2022-10-28T07:16:51Z
dc.date.issued
2022
dc.identifier.issn
2640-3498
dc.identifier.uri
http://hdl.handle.net/20.500.11850/578165
dc.description.abstract
We prove lower bounds for higher-order methods in smooth non-convex finite-sum optimization. Our contribution is threefold: We first show that a deterministic algorithm cannot profit from the finite-sum structure of the objective, and that simulating a pth-order regularized method on the whole function by constructing exact gradient information is optimal up to constant factors. We further show lower bounds for randomized algorithms and compare them with the best known upper bounds. To address some gaps between the bounds, we propose a new second-order smoothness assumption that can be seen as an analogue of the first-order mean-squared smoothness assumption. We prove that it is sufficient to ensure state-ofthe-art convergence guarantees, while allowing for a sharper lower bound.
en_US
dc.language.iso
en
en_US
dc.publisher
PMLR
en_US
dc.title
On the Oracle Complexity of Higher-Order Smooth Non-Convex Finite-Sum Optimization
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics
en_US
ethz.journal.title
Proceedings of Machine Learning Research
ethz.journal.volume
151
en_US
ethz.pages.start
10718
en_US
ethz.pages.end
10752
en_US
ethz.event
25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022)
en_US
ethz.event.location
Online
en_US
ethz.event.date
March 28-30, 2022
en_US
ethz.identifier.wos
ethz.publication.place
Cambridge, MA
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::09687 - Kyng, Rasmus / Kyng, Rasmus
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02643 - Institut für Theoretische Informatik / Inst. Theoretical Computer Science::09687 - Kyng, Rasmus / Kyng, Rasmus
ethz.identifier.url
https://proceedings.mlr.press/v151/emmenegger22a.html
ethz.date.deposited
2022-10-28T03:15:40Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2022-10-28T07:16:52Z
ethz.rosetta.lastUpdated
2023-02-07T07:22:55Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=On%20the%20Oracle%20Complexity%20of%20Higher-Order%20Smooth%20Non-Convex%20Finite-Sum%20Optimization&rft.jtitle=Proceedings%20of%20Machine%20Learning%20Research&rft.date=2022&rft.volume=151&rft.spage=10718&rft.epage=10752&rft.issn=2640-3498&rft.au=Emmenegger,%20Nicolas&Kyng,%20Rasmus&Zehmakan,%20Ahad%20N.&rft.genre=proceeding&rft.btitle=Proceedings%20of%20The%2025th%20International%20Conference%20on%20Artificial%20Intelligence%20and%20Statistics
Files in this item
Files | Size | Format | Open in viewer |
---|---|---|---|
There are no files associated with this item. |
Publication type
-
Conference Paper [35568]