Affective State Prediction from Smartphone Touch and Sensor Data in the Wild
dc.contributor.author
Wampfler, Rafael
dc.contributor.author
Klingler, Severin
dc.contributor.author
Solenthaler, Barbara
dc.contributor.author
Schinazi, Victor
dc.contributor.author
Gross, Markus
dc.contributor.author
Holz, Christian
dc.contributor.editor
Barbosa, Simone
dc.contributor.editor
Lampe, Cliff
dc.contributor.editor
Appert, Caroline
dc.contributor.editor
Shamma, David A.
dc.contributor.editor
Drucker, Steven
dc.contributor.editor
Williamson, Julie
dc.contributor.editor
Yatani, Koji
dc.date.accessioned
2022-05-11T07:16:23Z
dc.date.available
2022-03-01T20:06:36Z
dc.date.available
2022-03-02T05:17:55Z
dc.date.available
2022-03-24T09:42:46Z
dc.date.available
2022-05-11T07:16:23Z
dc.date.issued
2022-04
dc.identifier.isbn
978-1-4503-9157-3
en_US
dc.identifier.other
10.1145/3491102.3501835
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/534814
dc.identifier.doi
10.3929/ethz-b-000534814
dc.description.abstract
Knowledge of users’ affective states can improve their interaction with smartphones by providing more personalized experiences (e.g., search results and news articles). We present an affective state classification model based on data gathered on smartphones in real-world environments. From touch events during keystrokes and the signals from the inertial sensors, we extracted two-dimensional heat maps as input into a convolutional neural network to predict the affective states of smartphone users. For evaluation, we conducted a data collection in the wild with 82 participants over 10 weeks. Our model accurately predicts three levels (low, medium, high) of valence (AUC up to 0.83), arousal (AUC up to 0.85), and dominance (AUC up to 0.84). We also show that using the inertial sensor data alone, our model achieves a similar performance (AUC up to 0.83), making our approach less privacy-invasive. By personalizing our model to the user, we show that performance increases by an additional 0.07 AUC.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Association for Computing Machinery
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Classification
en_US
dc.subject
Affective Computing
en_US
dc.subject
Smartphone
en_US
dc.subject
Deep Learning
en_US
dc.title
Affective State Prediction from Smartphone Touch and Sensor Data in the Wild
en_US
dc.type
Conference Paper
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2022-04-29
ethz.book.title
CHI '22: CHI Conference on Human Factors in Computing Systems
en_US
ethz.pages.start
403
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.event
CHI Conference on Human Factors in Computing Systems (CHI 2022)
en_US
ethz.event.location
New Orleans, LA, USA
en_US
ethz.event.date
April 29 - May 5, 2022
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02658 - Inst. Intelligente interaktive Systeme / Inst. Intelligent Interactive Systems::09649 - Holz, Christian / Holz, Christian
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02659 - Institut für Visual Computing / Institute for Visual Computing::03420 - Gross, Markus / Gross, Markus
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02658 - Inst. Intelligente interaktive Systeme / Inst. Intelligent Interactive Systems::09649 - Holz, Christian / Holz, Christian
ethz.date.deposited
2022-03-01T20:07:00Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-05-11T07:16:30Z
ethz.rosetta.lastUpdated
2024-02-02T16:52:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Affective%20State%20Prediction%20from%20Smartphone%20Touch%20and%20Sensor%20Data%20in%20the%20Wild&rft.date=2022-04&rft.spage=403&rft.au=Wampfler,%20Rafael&Klingler,%20Severin&Solenthaler,%20Barbara&Schinazi,%20Victor&Gross,%20Markus&rft.isbn=978-1-4503-9157-3&rft.genre=proceeding&rft_id=info:doi/10.1145/3491102.3501835&rft.btitle=CHI%20'22:%20CHI%20Conference%20on%20Human%20Factors%20in%20Computing%20Systems
Files in this item
Publication type
-
Conference Paper [35666]