Zur Kurzanzeige

dc.contributor.author
Foehn, Philipp
dc.contributor.author
Brescianini, Dario
dc.contributor.author
Kaufmann, Elia
dc.contributor.author
Cieslewski, Titus
dc.contributor.author
Gehrig, Mathias
dc.contributor.author
Muglikar, Manasi
dc.contributor.author
Scaramuzza, Davide
dc.date.accessioned
2022-02-14T10:10:57Z
dc.date.available
2021-11-01T03:34:57Z
dc.date.available
2021-11-02T10:34:39Z
dc.date.available
2022-02-14T10:10:57Z
dc.date.issued
2022-01
dc.identifier.issn
0929-5593
dc.identifier.issn
1573-7527
dc.identifier.other
10.1007/s10514-021-10011-y
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/512884
dc.identifier.doi
10.3929/ethz-b-000512884
dc.description.abstract
This paper presents a novel system for autonomous, vision-based drone racing combining learned data abstraction, nonlinear filtering, and time-optimal trajectory planning. The system has successfully been deployed at the first autonomous drone racing world championship: the 2019 AlphaPilot Challenge. Contrary to traditional drone racing systems, which only detect the next gate, our approach makes use of any visible gate and takes advantage of multiple, simultaneous gate detections to compensate for drift in the state estimate and build a global map of the gates. The global map and drift-compensated state estimate allow the drone to navigate through the race course even when the gates are not immediately visible and further enable to plan a near time-optimal path through the race course in real time based on approximate drone dynamics. The proposed system has been demonstrated to successfully guide the drone through tight race courses reaching speeds up to 8m/s and ranked second at the 2019 AlphaPilot Challenge.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Drone racing
en_US
dc.subject
Agile flight
en_US
dc.subject
Aerial vehicles
en_US
dc.title
AlphaPilot: autonomous drone racing
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-10-19
ethz.journal.title
Autonomous Robots
ethz.journal.volume
46
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Auton. Robots
ethz.pages.start
307
en_US
ethz.pages.end
320
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Dordrecht
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-11-01T03:35:11Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-02-14T10:11:06Z
ethz.rosetta.lastUpdated
2022-03-29T18:47:16Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=AlphaPilot:%20autonomous%20drone%20racing&rft.jtitle=Autonomous%20Robots&rft.date=2022-01&rft.volume=46&rft.issue=1&rft.spage=307&rft.epage=320&rft.issn=0929-5593&1573-7527&rft.au=Foehn,%20Philipp&Brescianini,%20Dario&Kaufmann,%20Elia&Cieslewski,%20Titus&Gehrig,%20Mathias&rft.genre=article&rft_id=info:doi/10.1007/s10514-021-10011-y&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige