Zur Kurzanzeige

dc.contributor.author
Föll, Simon
dc.contributor.author
Maritsch, Martin
dc.contributor.author
Spinola, Federica
dc.contributor.author
Mishra, Varun
dc.contributor.author
Barata, Filipe
dc.contributor.author
Kowatsch, Tobias
dc.contributor.author
Fleisch, Elgar
dc.contributor.author
Wortmann, Felix
dc.date.accessioned
2021-11-15T08:07:04Z
dc.date.available
2021-10-23T10:56:56Z
dc.date.available
2021-10-26T06:28:12Z
dc.date.available
2021-11-13T13:08:26Z
dc.date.available
2021-11-15T08:07:04Z
dc.date.issued
2021-11
dc.identifier.issn
0169-2607
dc.identifier.issn
1872-7565
dc.identifier.other
10.1016/j.cmpb.2021.106461
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/511363
dc.identifier.doi
10.3929/ethz-b-000511363
dc.description.abstract
Background and Objective: Researchers use wearable sensing data and machine learning (ML) models to predict various health and behavioral outcomes. However, sensor data from commercial wearables are prone to noise, missing, or artifacts. Even with the recent interest in deploying commercial wearables for long-term studies, there does not exist a standardized way to process the raw sensor data and researchers often use highly specific functions to preprocess, clean, normalize, and compute features. This leads to a lack of uniformity and reproducibility across different studies, making it difficult to compare results. To overcome these issues, we present FLIRT: A Feature Generation Toolkit for Wearable Data; it is an open-source Python package that focuses on processing physiological data specifically from commercial wearables with all its challenges from data cleaning to feature extraction. Methods: FLIRT leverages a variety of state-of-the-art algorithms (e.g., particle filters, ML-based artifact detection) to ensure a robust preprocessing of physiological data from wearables. In a subsequent step, FLIRT utilizes a sliding-window approach and calculates a feature vector of more than 100 dimensions – a basis for a wide variety of ML algorithms. Results: We evaluated FLIRT on the publicly available WESAD dataset, which focuses on stress detection with an Empatica E4 wearable. Preprocessing the data with FLIRT ensures that unintended noise and artifacts are appropriately filtered. In the classification task, FLIRT outperforms the preprocessing baseline of the original WESAD paper. Conclusion: FLIRT provides functionalities beyond existing packages that can address unmet needs in physiological data processing and feature generation: (a) integrated handling of common wearable file formats (e.g., Empatica E4 archives), (b) robust preprocessing, and (c) standardized feature generation that ensures reproducibility of results. Nevertheless, while FLIRT comes with a default configuration to accommodate most situations, it offers a highly configurable interface for all of its implemented algorithms to account for specific needs.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Physiological Signal Processing
en_US
dc.subject
Wearable Sensors
en_US
dc.subject
Artifact Detection
en_US
dc.subject
Signal Filtering
en_US
dc.subject
Machine Learning
en_US
dc.subject
Feature Engineering
en_US
dc.title
FLIRT: A Feature Generation Toolkit for Wearable Data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2021-10-20
ethz.journal.title
Computer Methods and Programs in Biomedicine
ethz.journal.volume
212
en_US
ethz.pages.start
106461
en_US
ethz.size
11 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03681 - Fleisch, Elgar / Fleisch, Elgar
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02120 - Dep. Management, Technologie und Ökon. / Dep. of Management, Technology, and Ec.::03681 - Fleisch, Elgar / Fleisch, Elgar
en_US
ethz.tag
Feature Engineering
en_US
ethz.relation.isPartOf
10.3929/ethz-b-000635957
ethz.date.deposited
2021-10-23T10:57:01Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-11-15T08:07:11Z
ethz.rosetta.lastUpdated
2024-02-02T15:23:29Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=FLIRT:%20A%20Feature%20Generation%20Toolkit%20for%20Wearable%20Data&rft.jtitle=Computer%20Methods%20and%20Programs%20in%20Biomedicine&rft.date=2021-11&rft.volume=212&rft.spage=106461&rft.issn=0169-2607&1872-7565&rft.au=F%C3%B6ll,%20Simon&Maritsch,%20Martin&Spinola,%20Federica&Mishra,%20Varun&Barata,%20Filipe&rft.genre=article&rft_id=info:doi/10.1016/j.cmpb.2021.106461&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige