Zur Kurzanzeige

dc.contributor.author
Hirschberg, Jacob
dc.contributor.author
Badoux, Alexandre
dc.contributor.author
McArdell, Brian W.
dc.contributor.author
Leonarduzzi, Elena
dc.contributor.author
Molnar, Peter
dc.date.accessioned
2021-10-12T08:42:58Z
dc.date.available
2021-09-19T02:57:22Z
dc.date.available
2021-10-12T08:42:58Z
dc.date.issued
2021
dc.identifier.issn
1561-8633
dc.identifier.issn
1684-9981
dc.identifier.other
10.5194/nhess-21-2773-2021
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/505960
dc.identifier.doi
10.3929/ethz-b-000505960
dc.description.abstract
The prediction of debris flows is relevant because this type of natural hazard can pose a threat to humans and infrastructure. Debris-flow (and landslide) early warning systems often rely on rainfall intensity–duration (ID) thresholds. Multiple competing methods exist for the determination of such ID thresholds but have not been objectively and thoroughly compared at multiple scales, and a validation and uncertainty assessment is often missing in their formulation. As a consequence, updating, interpreting, generalizing and comparing rainfall thresholds is challenging. Using a 17-year record of rainfall and 67 debris flows in a Swiss Alpine catchment (Illgraben), we determined ID thresholds and associated uncertainties as a function of record duration. Furthermore, we compared two methods for rainfall definition based on linear regression and/or true-skill-statistic maximization. The main difference between these approaches and the well-known frequentist method is that non-triggering rainfall events were also considered for obtaining ID-threshold parameters. Depending on the method applied, the ID-threshold parameters and their uncertainties differed significantly. We found that 25 debris flows are sufficient to constrain uncertainties in ID-threshold parameters to ±30 % for our study site. We further demonstrated the change in predictive performance of the two methods if a regional landslide data set with a regional rainfall product was used instead of a local one with local rainfall measurements. Hence, an important finding is that the ideal method for ID-threshold determination depends on the available landslide and rainfall data sets. Furthermore, for the local data set we tested if the ID-threshold performance can be increased by considering other rainfall properties (e.g. antecedent rainfall, maximum intensity) in a multivariate statistical learning algorithm based on decision trees (random forest). The highest predictive power was reached when the peak 30 min rainfall intensity was added to the ID variables, while no improvement was achieved by considering antecedent rainfall for debris-flow predictions in Illgraben. Although the increase in predictive performance with the random forest model over the classical ID threshold was small, such a framework could be valuable for future studies if more predictors are available from measured or modelled data.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Copernicus
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-09-10
ethz.journal.title
Natural Hazards and Earth System Sciences
ethz.journal.volume
21
en_US
ethz.journal.issue
9
en_US
ethz.journal.abbreviated
Nat. Hazards Earth Syst. Sci.
ethz.pages.start
2773
en_US
ethz.pages.end
2789
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Forecast and warning concept for landslides in Switzerland based on rainfall triggering thresholds and multiscale hydrological modelling
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Göttingen
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02608 - Institut für Umweltingenieurwiss. / Institute of Environmental Engineering::03473 - Burlando, Paolo / Burlando, Paolo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02608 - Institut für Umweltingenieurwiss. / Institute of Environmental Engineering::03473 - Burlando, Paolo / Burlando, Paolo
ethz.grant.agreementno
165979
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.relation.isSourceOf
10.3929/ethz-b-000530404
ethz.date.deposited
2021-09-19T02:57:31Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-10-12T08:43:11Z
ethz.rosetta.lastUpdated
2024-02-02T15:04:57Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Evaluating%20methods%20for%20debris-flow%20prediction%20based%20on%20rainfall%20in%20an%20Alpine%20catchment&rft.jtitle=Natural%20Hazards%20and%20Earth%20System%20Sciences&rft.date=2021&rft.volume=21&rft.issue=9&rft.spage=2773&rft.epage=2789&rft.issn=1561-8633&1684-9981&rft.au=Hirschberg,%20Jacob&Badoux,%20Alexandre&McArdell,%20Brian%20W.&Leonarduzzi,%20Elena&Molnar,%20Peter&rft.genre=article&rft_id=info:doi/10.5194/nhess-21-2773-2021&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige