Robust Atmospheric River Response to Global Warming in Idealized and Comprehensive Climate Models
dc.contributor.author
Zhang, Pengfei
dc.contributor.author
Chen, Gang
dc.contributor.author
Ma, Weiming
dc.contributor.author
Ming, Yi
dc.contributor.author
Wu, Zheng
dc.date.accessioned
2021-09-30T13:53:47Z
dc.date.available
2021-09-19T02:57:15Z
dc.date.available
2021-09-30T13:53:47Z
dc.date.issued
2021-09
dc.identifier.issn
0894-8755
dc.identifier.issn
1520-0442
dc.identifier.other
10.1175/JCLI-D-20-1005.1
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/505958
dc.description.abstract
Atmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of the model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests that the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance.
en_US
dc.language.iso
en
en_US
dc.publisher
American Meteorological Society
en_US
dc.subject
Atmospheric river
en_US
dc.subject
Climate change
en_US
dc.subject
Extratropics
en_US
dc.subject
Idealized models
en_US
dc.subject
Transport
en_US
dc.subject
Water vapor
en_US
dc.title
Robust Atmospheric River Response to Global Warming in Idealized and Comprehensive Climate Models
en_US
dc.type
Journal Article
dc.date.published
2021-08-27
ethz.journal.title
Journal of Climate
ethz.journal.volume
34
en_US
ethz.journal.issue
18
en_US
ethz.journal.abbreviated
J. Climate
ethz.pages.start
7717
en_US
ethz.pages.end
7734
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Boston, MA
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-09-19T02:57:21Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-30T13:53:55Z
ethz.rosetta.lastUpdated
2024-02-02T14:46:41Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Robust%20Atmospheric%20River%20Response%20to%20Global%20Warming%20in%20Idealized%20and%20Comprehensive%20Climate%20Models&rft.jtitle=Journal%20of%20Climate&rft.date=2021-09&rft.volume=34&rft.issue=18&rft.spage=7717&rft.epage=7734&rft.issn=0894-8755&1520-0442&rft.au=Zhang,%20Pengfei&Chen,%20Gang&Ma,%20Weiming&Ming,%20Yi&Wu,%20Zheng&rft.genre=article&rft_id=info:doi/10.1175/JCLI-D-20-1005.1&
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Journal Article [131253]