Zur Kurzanzeige

dc.contributor.author
Liebmann, Florentin
dc.contributor.author
Stütz, Dominik
dc.contributor.author
Suter, Daniel
dc.contributor.author
Jecklin, Sascha
dc.contributor.author
Snedeker, Jess Gerrit
dc.contributor.author
Farshad, Mazda
dc.contributor.author
Fürnstahl, Philipp
dc.contributor.author
Esfandiari, Hooman
dc.date.accessioned
2021-09-27T07:45:37Z
dc.date.available
2021-09-13T04:21:03Z
dc.date.available
2021-09-27T07:45:37Z
dc.date.issued
2021-09
dc.identifier.issn
2313-433X
dc.identifier.other
10.3390/jimaging7090164
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/505311
dc.identifier.doi
10.3929/ethz-b-000505311
dc.description.abstract
Computer aided orthopedic surgery suffers from low clinical adoption, despite increased accuracy and patient safety. This can partly be attributed to cumbersome and often radiation intensive registration methods. Emerging RGB-D sensors combined with artificial intelligence data-driven methods have the potential to streamline these procedures. However, developing such methods requires vast amount of data. To this end, a multi-modal approach that enables acquisition of large clinical data, tailored to pedicle screw placement, using RGB-D sensors and a co-calibrated high-end optical tracking system was developed. The resulting dataset comprises RGB-D recordings of pedicle screw placement along with individually tracked ground truth poses and shapes of spine levels L1–L5 from ten cadaveric specimens. Besides a detailed description of our setup, quantitative and qualitative outcome measures are provided. We found a mean target registration error of 1.5 mm. The median deviation between measured and ground truth bone surface was 2.4 mm. In addition, a surgeon rated the overall alignment based on 10% random samples as 5.8 on a scale from 1 to 6. Generation of labeled RGB-D data for orthopedic interventions with satisfactory accuracy is feasible, and its publication shall promote future development of data-driven artificial intelligence methods for fast and reliable intraoperative registration.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
MDPI
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
data generation
en_US
dc.subject
artificial intelligence
en_US
dc.subject
RGB-D
en_US
dc.subject
surgical navigation
en_US
dc.subject
spinal fusion
en_US
dc.subject
pedicle screw placement
en_US
dc.subject
registration
en_US
dc.subject
calibration
en_US
dc.title
SpineDepth: A Multi-Modal Data Collection Approach for Automatic Labelling and Intraoperative Spinal Shape Reconstruction Based on RGB-D Data
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-08-27
ethz.journal.title
Journal of Imaging
ethz.journal.volume
7
en_US
ethz.journal.issue
9
en_US
ethz.pages.start
164
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Basel
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03822 - Snedeker, Jess G. / Snedeker, Jess G.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03822 - Snedeker, Jess G. / Snedeker, Jess G.
ethz.date.deposited
2021-09-13T04:21:25Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-27T07:45:45Z
ethz.rosetta.lastUpdated
2023-02-06T22:36:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=SpineDepth:%20A%20Multi-Modal%20Data%20Collection%20Approach%20for%20Automatic%20Labelling%20and%20Intraoperative%20Spinal%20Shape%20Reconstruction%20Based%20on%20RGB-D%&rft.jtitle=Journal%20of%20Imaging&rft.date=2021-09&rft.volume=7&rft.issue=9&rft.spage=164&rft.issn=2313-433X&rft.au=Liebmann,%20Florentin&St%C3%BCtz,%20Dominik&Suter,%20Daniel&Jecklin,%20Sascha&Snedeker,%20Jess%20Gerrit&rft.genre=article&rft_id=info:doi/10.3390/jimaging7090164&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige