Quantum computing enhanced computational catalysis
dc.contributor.author
von Burg, Vera
dc.contributor.author
Low, Guang Hao
dc.contributor.author
Häner, Thomas
dc.contributor.author
Steiger, Damian S.
dc.contributor.author
Reiher, Markus
dc.contributor.author
Roetteler, Martin
dc.contributor.author
Troyer, Matthias
dc.date.accessioned
2021-09-23T11:39:03Z
dc.date.available
2021-08-17T03:00:47Z
dc.date.available
2021-09-23T11:39:03Z
dc.date.issued
2021-07-16
dc.identifier.issn
2643-1564
dc.identifier.other
10.1103/PhysRevResearch.3.033055
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/501108
dc.identifier.doi
10.3929/ethz-b-000501108
dc.description.abstract
The quantum computation of electronic energies can break the curse of dimensionality that plagues many-particle quantum mechanics. It is for this reason that a universal quantum computer has the potential to fundamentally change computational chemistry and materials science, areas in which strong electron correlations present severe hurdles for traditional electronic structure methods. Here we present a state-of-the-art analysis of accurate energy measurements on a quantum computer for computational catalysis, using improved quantum algorithms with more than an order of magnitude improvement over the best previous algorithms. As a prototypical example of local catalytic chemical reactivity we consider the case of a ruthenium catalyst that can bind, activate, and transform carbon dioxide to the high-value chemical methanol. We aim at accurate resource estimates for the quantum computing steps required for assessing the electronic energy of key intermediates and transition states of its catalytic cycle. In particular, we present quantum algorithms for double-factorized representations of the four-index integrals that can significantly reduce the computational cost over previous algorithms, and we discuss the challenges of increasing active space sizes to accurately deal with dynamical correlations. We address the requirements for future quantum hardware in order to make a universal quantum computer a successful and reliable tool for quantum computing enhanced computational materials science and chemistry, and identify open questions for further research.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Quantum computing enhanced computational catalysis
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
ethz.journal.title
Physical Review Research
ethz.journal.volume
3
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Phys. Rev. Res.
ethz.pages.start
033055
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Exhaustive First-Principles Exploration of Chemical Reaction Networks for Catalysis Design
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::03736 - Reiher, Markus / Reiher, Markus
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::03736 - Reiher, Markus / Reiher, Markus
ethz.grant.agreementno
182400
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2021-08-17T03:01:03Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-09-23T11:39:10Z
ethz.rosetta.lastUpdated
2024-02-02T14:43:35Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Quantum%20computing%20enhanced%20computational%20catalysis&rft.jtitle=Physical%20Review%20Research&rft.date=2021-07-16&rft.volume=3&rft.issue=3&rft.spage=033055&rft.issn=2643-1564&rft.au=von%20Burg,%20Vera&Low,%20Guang%20Hao&H%C3%A4ner,%20Thomas&Steiger,%20Damian%20S.&Reiher,%20Markus&rft.genre=article&rft_id=info:doi/10.1103/PhysRevResearch.3.033055&
Files in this item
Publication type
-
Journal Article [131759]