Zur Kurzanzeige

dc.contributor.author
Nikitenko, Dmitry A.
dc.contributor.author
Wolf, Felix A.
dc.contributor.author
Mohr, Bernd
dc.contributor.author
Hoefler, Torsten
dc.contributor.author
Stefanov, Konstantin
dc.contributor.author
Voevodin, Vad V.
dc.contributor.author
Antonov, Alexander S.
dc.contributor.author
Calotoiu, Alexandru
dc.date.accessioned
2021-09-21T10:56:29Z
dc.date.available
2021-08-15T02:50:48Z
dc.date.available
2021-09-21T10:56:29Z
dc.date.issued
2021-07
dc.identifier.issn
1995-0802
dc.identifier.issn
1818-9962
dc.identifier.other
10.1134/S1995080221070192
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/500980
dc.description.abstract
Many contemporary HPC systems expose their jobs to substantial amounts of interference, leading to significant run-to-run variation. For example, application runtimes on Theta, a Cray XC40 system at Argonne National Laboratory, vary by up to 70%, caused by a mix of node-level and system-level effects, including network and file-system congestion in the presence of concurrently running jobs. This makes performance measurements generally irreproducible, heavily complicating performance analysis and modeling. On noisy systems, performance analysts usually have to repeat performance measurements several times and then apply statistics to capture trends. First, this is expensive and, second, extracting trends from a limited series of experiments is far from trivial, as the noise can follow quite irregular patterns. Attempts to learn from performance data how a program would perform under different execution configurations experience serious perturbation, resulting in models that reflect noise rather than intrinsic application behavior. On the other hand, although noise heavily influences execution time and energy consumption, it does not change the computational effort a program performs. Effort metrics that count how many operations a machine executes on behalf of a program, such as floating-point operations, the exchange of MPI messages, or file reads and writes, remain largely unaffected and—rare non-determinism set aside—reproducible. This paper addresses initial stage of an ExtraNoise project, which is aimed at revealing and tackling key questions of system noise influence on HPC applications.
en_US
dc.language.iso
en
en_US
dc.publisher
Pleiades Publishing
en_US
dc.subject
High-performance computing
en_US
dc.subject
Parallel computing
en_US
dc.subject
Performance analysis
en_US
dc.subject
Performance variability
en_US
dc.subject
Supercomputers
en_US
dc.title
Influence of Noisy Environments on Behavior of HPC Applications
en_US
dc.type
Journal Article
dc.date.published
2021-08-09
ethz.journal.title
Lobachevskii Journal of Mathematics
ethz.journal.volume
42
en_US
ethz.journal.issue
7
en_US
ethz.pages.start
1560
en_US
ethz.pages.end
1570
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Tortola
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-08-15T02:50:53Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-09-21T10:56:37Z
ethz.rosetta.lastUpdated
2022-03-29T13:28:07Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Influence%20of%20Noisy%20Environments%20on%20Behavior%20of%20HPC%20Applications&rft.jtitle=Lobachevskii%20Journal%20of%20Mathematics&rft.date=2021-07&rft.volume=42&rft.issue=7&rft.spage=1560&rft.epage=1570&rft.issn=1995-0802&1818-9962&rft.au=Nikitenko,%20Dmitry%20A.&Wolf,%20Felix%20A.&Mohr,%20Bernd&Hoefler,%20Torsten&Stefanov,%20Konstantin&rft.genre=article&rft_id=info:doi/10.1134/S1995080221070192&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige