A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
dc.contributor.author
Yin, Junbo
dc.contributor.author
Wang, Wenguan
dc.contributor.author
Meng, Qinghao
dc.contributor.author
Yang, Ruigang
dc.contributor.author
Shen, Jianbing
dc.date.accessioned
2021-07-21T11:31:28Z
dc.date.available
2021-07-15T10:55:51Z
dc.date.available
2021-07-21T11:31:28Z
dc.date.issued
2020
dc.identifier.isbn
978-1-7281-7168-5
en_US
dc.identifier.isbn
978-1-7281-7169-2
en_US
dc.identifier.other
10.1109/CVPR42600.2020.00680
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/495230
dc.description.abstract
Current popular online multi-object tracking (MOT) solutions apply single object trackers (SOTs) to capture object motions, while often requiring an extra affinity network to associate objects, especially for the occluded ones. This brings extra computational overhead due to repetitive feature extraction for SOT and affinity computation. Meanwhile, the model size of the sophisticated affinity network is usually non-trivial. In this paper, we propose a novel MOT framework that unifies object motion and affinity model into a single network, named UMA, in order to learn a compact feature that is discriminative for both object motion and affinity measure. In particular, UMA integrates single object tracking and metric learning into a unified triplet network by means of multi-task learning. Such design brings advantages of unproved computation efficiency, low memory requirement and simplified training procedure. In addition, we equip our model with a task-specific attention module, which is used to boost task-aware feature learning. The proposed UMA can be easily trained end-to-end, and is elegant - requiring only one training stage. Experimental results show that it achieves promising performance on several MOT Challenge benchmarks.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.title
A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
en_US
dc.type
Conference Paper
dc.date.published
2020-08-05
ethz.book.title
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
en_US
ethz.pages.start
6767
en_US
ethz.pages.end
6776
en_US
ethz.event
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020) (virtual)
en_US
ethz.event.location
Seattle, WA, USA
en_US
ethz.event.date
June 14-19, 2020
en_US
ethz.notes
Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-07-15T10:56:35Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-07-21T11:31:34Z
ethz.rosetta.lastUpdated
2021-07-21T11:31:34Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=A%20Unified%20Object%20Motion%20and%20Affinity%20Model%20for%20Online%20Multi-Object%20Tracking&rft.date=2020&rft.spage=6767&rft.epage=6776&rft.au=Yin,%20Junbo&Wang,%20Wenguan&Meng,%20Qinghao&Yang,%20Ruigang&Shen,%20Jianbing&rft.isbn=978-1-7281-7168-5&978-1-7281-7169-2&rft.genre=proceeding&rft_id=info:doi/10.1109/CVPR42600.2020.00680&rft.btitle=2020%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20(CVPR)
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Conference Paper [35646]