Zur Kurzanzeige

dc.contributor.author
Fuchs, Roman
dc.contributor.supervisor
Hiptmair, Ralf
dc.contributor.supervisor
Mishra, Siddhartha
dc.contributor.supervisor
Nordborg, Henrik
dc.date.accessioned
2021-08-12T11:32:03Z
dc.date.available
2021-06-16T10:03:39Z
dc.date.available
2021-08-11T07:37:24Z
dc.date.available
2021-08-11T08:26:44Z
dc.date.available
2021-08-12T11:32:03Z
dc.date.issued
2021
dc.identifier.uri
http://hdl.handle.net/20.500.11850/489867
dc.identifier.doi
10.3929/ethz-b-000489867
dc.description.abstract
This thesis is concerned with three aspects of numerical simulations of electric arcs: Part 1 extends a previous numerical scheme in 1D to 3D and non-constant timestepping for a plasma defined in an Euler-Maxwell framework. The main feature of the scheme is that it allows for the scaled Debye length as a modeling parameter to continuously blend between the full Maxwell system and the eddy current model; this feature is known as asymptotic preserving. The generalization to higher dimensions is involved because it requires a dual mesh strategy and interpolation of the electromagnetic field. The submodels of the newly designed scheme are validated with testcases; however, setting the scaled Debye length to zero unveiled that assuming a linear relation in Ohm's law prevents the new 3D scheme from being asymptotic preserving. Part 2 focuses on radiation modeling. It reviews the relevant modeling assumptions that reduce the radiative transfer equation to a computationally tractable model as it is found in applied numerical simulations. However, the main issue lies in the complex structure of the absorption coefficient. We consider the Elenbaas-Heller equation as the simplest model for a wall-stabilized arc and derive the linearized equation. A sensitivity analysis permits to analyze effects of uncertainties in the spectral absorption coefficient on the arc voltage and temperature profile. We also consider the line limited Planck mean and show that an appropriately chosen renormalization length permits to retrieve the correct temperature profile at minimal computational costs. Part 3 presents applied numerical simulations of electric arcs in circuit breakers. It is hard to find simulation suites that permit for a robust coupling of the numerous modeling aspects as required for applied thermal plasma simulations, which encompass gas dynamics, electromagnetism, and radiative heat transfer, rigid body motion, mesh morphing, and other modeling aspects. Our software choice enabled us to consider a low voltage circuit breaker and evaluate the contact arm motion with respect to mechanics, plasma pressure, and electromagnetic force. A second case analyzes a recent design of a high voltage direct current circuit breaker and shows results of the electric field and gas flow field complementing previous measurement. Combining a caloric estimate with the simulation results of radiative heat flux to the nozzle wall, we provide an argument for the experimental observation that wall ablation is measured only for sufficiently large currents.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
ELECTRIC ARCS (ELECTRICAL ENGINEERING)
en_US
dc.subject
Numerical modeling
en_US
dc.subject
radiative transfer
en_US
dc.subject
asymptotic preserving
en_US
dc.title
Numerical Modeling and Simulation of Electric Arcs
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-08-11
ethz.size
324 p.
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::620 - Engineering & allied operations
en_US
ethz.identifier.diss
27299
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03632 - Hiptmair, Ralf / Hiptmair, Ralf
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02000 - Dep. Mathematik / Dep. of Mathematics::02501 - Seminar für Angewandte Mathematik / Seminar for Applied Mathematics::03632 - Hiptmair, Ralf / Hiptmair, Ralf
ethz.date.deposited
2021-06-16T10:03:45Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.identifier.internal
fuchs-phd-thesis
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-08-11T08:26:50Z
ethz.rosetta.lastUpdated
2022-03-29T11:02:12Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Numerical%20Modeling%20and%20Simulation%20of%20Electric%20Arcs&rft.date=2021&rft.au=Fuchs,%20Roman&rft.genre=unknown&rft.btitle=Numerical%20Modeling%20and%20Simulation%20of%20Electric%20Arcs
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige