Show simple item record

dc.contributor.author
Baker, Lucia
dc.contributor.author
Qiao, Yiming
dc.contributor.author
Ghaemi, Sina
dc.contributor.author
Coletti, Filippo
dc.date.accessioned
2021-06-08T09:35:49Z
dc.date.available
2021-06-08T02:38:56Z
dc.date.available
2021-06-08T09:35:49Z
dc.date.issued
2021-08
dc.identifier.issn
0957-0233
dc.identifier.issn
1361-6501
dc.identifier.other
10.1088/1361-6501/abff81
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/488689
dc.description.abstract
Polymer solutions are often used to produce drag-reduced fluid flows, in which the drag reduction is achieved due to the solutions' non-Newtonian shear-thinning and viscoelastic properties. However, experiments using polymer solutions are typically challenging due to the tendency of the polymer to degrade when subjected to intense shearing. The degradation reduces the amount of drag reduction as the experiment progresses, which limits the experiment duration and the accuracy of the results. Here we introduce a method to avoid the degradation of the polymer solution by driving the flow with a paddlewheel instead of a conventional pump. The solution is shown to undergo very little degradation during the paddlewheel's operation. The method is then applied to perform novel measurements of a drag-reduced turbulent boundary layer at two different Reynolds numbers, both with and without a suspended particle phase. The effects of carrier fluid rheology and Reynolds number on the particle concentration and velocity profiles are explored, as well as the effect on total drag of the flow. For a given fluid type and Reynolds number, the drag is found to be nearly constant with the global particle volume fraction, suggesting that the particles have a limited ability to modulate the drag. Remarkably, the particle velocity fluctuations are greater in the non-Newtonian cases, possibly due to enhanced collisions in the near-wall region.
en_US
dc.language.iso
en
en_US
dc.publisher
IOP Publishing
dc.subject
non-newtonian fluids
en_US
dc.subject
turbulent boundary layers
en_US
dc.subject
particle-laden flow
en_US
dc.title
Method to minimize polymer degradation in drag-reduced non-Newtonian turbulent boundary layers
en_US
dc.type
Journal Article
dc.date.published
2021-05-21
ethz.journal.title
Measurement Science and Technology
ethz.journal.volume
32
en_US
ethz.journal.issue
8
en_US
ethz.journal.abbreviated
Meas. Sci. Technol.
ethz.pages.start
085303
en_US
ethz.size
12 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Bristol
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::09709 - Coletti, Filippo / Coletti, Filippo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02628 - Institut für Fluiddynamik / Institute of Fluid Dynamics::09709 - Coletti, Filippo / Coletti, Filippo
ethz.date.deposited
2021-06-08T02:38:59Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-06-08T09:36:08Z
ethz.rosetta.lastUpdated
2024-02-02T14:05:08Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Method%20to%20minimize%20polymer%20degradation%20in%20drag-reduced%20non-Newtonian%20turbulent%20boundary%20layers&rft.jtitle=Measurement%20Science%20and%20Technology&rft.date=2021-08&rft.volume=32&rft.issue=8&rft.spage=085303&rft.issn=0957-0233&1361-6501&rft.au=Baker,%20Lucia&Qiao,%20Yiming&Ghaemi,%20Sina&Coletti,%20Filippo&rft.genre=article&rft_id=info:doi/10.1088/1361-6501/abff81&
 Search print copy at ETH Library

Files in this item

FilesSizeFormatOpen in viewer

There are no files associated with this item.

Publication type

Show simple item record