Zur Kurzanzeige

dc.contributor.author
Cao, Jingkun
dc.contributor.author
Wang, Xin
dc.contributor.author
Darrell, Trevor
dc.contributor.author
Yu, Fisher
dc.date.accessioned
2021-10-27T07:23:29Z
dc.date.available
2021-05-19T16:17:55Z
dc.date.available
2021-05-20T05:54:04Z
dc.date.available
2021-07-05T05:30:51Z
dc.date.available
2021-10-27T07:23:29Z
dc.date.issued
2021
dc.identifier.isbn
978-1-7281-9077-8
en_US
dc.identifier.isbn
978-1-7281-9078-5
en_US
dc.identifier.other
10.1109/ICRA48506.2021.9561235
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/485027
dc.description.abstract
In this work, we aim to achieve efficient end-to-end learning of driving policies in dynamic multi-agent environments. Predicting and anticipating future events at the object level are critical for making informed driving decisions. We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures. We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view, conditioned on the selected action sequence of the ego-vehicle. To decide the action at each step, we seek the action sequence that can lead to safe future states based on the prediction module outputs by repeatedly sampling likely action sequences. We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level. Our method establishes a new state of the art in the challenging CARLA multi-agent driving simulation environments without expert demonstration, giving better explainability and sample efficiency. More info is at https://www.vis.xyz/pub/spc2.
en_US
dc.language.iso
en
en_US
dc.publisher
IEEE
en_US
dc.subject
Visual learning
en_US
dc.subject
Deep learning methods
en_US
dc.subject
Reinforcement learning
en_US
dc.title
Instance-Aware Predictive Navigation in Multi-Agent Environments
en_US
dc.type
Conference Paper
dc.date.published
2021-10-18
ethz.book.title
2021 IEEE International Conference on Robotics and Automation (ICRA)
en_US
ethz.pages.start
5096
en_US
ethz.pages.end
5102
en_US
ethz.event
2021 IEEE International Conference on Robotics and Automation (ICRA 2021)
en_US
ethz.event.location
Xi'an, China
en_US
ethz.event.date
May 30 - June 6, 2021
en_US
ethz.notes
Conference lecture on June 1, 2021.
en_US
ethz.identifier.wos
ethz.publication.place
Piscataway, NJ
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09688 - Yu, Fisher / Yu, Fisher
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02652 - Institut für Bildverarbeitung / Computer Vision Laboratory::09688 - Yu, Fisher / Yu, Fisher
ethz.date.deposited
2021-05-19T16:18:01Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-10-27T07:23:55Z
ethz.rosetta.lastUpdated
2023-02-06T22:46:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Instance-Aware%20Predictive%20Navigation%20in%20Multi-Agent%20Environments&rft.date=2021&rft.spage=5096&rft.epage=5102&rft.au=Cao,%20Jingkun&Wang,%20Xin&Darrell,%20Trevor&Yu,%20Fisher&rft.isbn=978-1-7281-9077-8&978-1-7281-9078-5&rft.genre=proceeding&rft_id=info:doi/10.1109/ICRA48506.2021.9561235&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige