Confronting Domain Shift in Trained Neural Networks
dc.contributor.author
Martinez, Carianne
dc.contributor.author
Najera-Flores, David A.
dc.contributor.author
Brink, Adam R.
dc.contributor.author
Quinn, Dane
dc.contributor.author
Chatzi, Eleni
dc.contributor.author
Forrest, Stephanie
dc.date.accessioned
2021-04-14T09:30:01Z
dc.date.available
2021-04-06T17:10:39Z
dc.date.available
2021-04-14T09:26:19Z
dc.date.available
2021-04-14T09:30:01Z
dc.date.issued
2020-12-11
dc.identifier.uri
http://hdl.handle.net/20.500.11850/477591
dc.description.abstract
Neural networks (NNs) are known as universal function approximators and are excellent interpolators of nonlinear functions between observed data points. However, when the target domain for deployment shifts from the training domain and NNs must extrapolate, the results are notoriously poor. Prior work [1] has shown
that NN uncertainty estimates can be used to correct binary predictions in shifted domains without retraining the model. We hypothesize that this approach can be extended to correct real-valued time series predictions. As an exemplar, we consider two mechanical systems with nonlinear dynamics. The first system consists of a spring-mass system where the stiffness changes abruptly, and the second is
a real experimental system with a frictional joint that is an open challenge for structural dynamicists to model efficiently. Our experiments will test whether 1) NN uncertainty estimates can identify when the input domain has shifted from the training domain and 2) whether the information used to calculate uncertainty estimates can be used to correct the NN’s time series predictions. Success of the
proposed technique would unleash the potential of previously underutilized latent features already present in trained NNs and enable the deployment of these models in structural health monitoring systems that directly impact public safety.
en_US
dc.language.iso
en
en_US
dc.publisher
Pre-registration 2020
en_US
dc.title
Confronting Domain Shift in Trained Neural Networks
en_US
dc.type
Conference Paper
ethz.pages.start
44
en_US
ethz.size
7 p.
en_US
ethz.event
Pre-registration Workshop NeurIPS 2020 (virtual)
en_US
ethz.event.location
Vancouver, Canada
en_US
ethz.event.date
December 11, 2020
en_US
ethz.notes
Conference lecture held on December 11, 2020. Due to the Coronavirus (COVID-19) the conference was conducted virtually.
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02605 - Institut für Baustatik u. Konstruktion / Institute of Structural Engineering::03890 - Chatzi, Eleni / Chatzi, Eleni
en_US
ethz.identifier.url
https://preregister.science/
ethz.date.deposited
2021-04-06T17:10:50Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2021-04-14T09:26:30Z
ethz.rosetta.lastUpdated
2022-03-29T06:33:24Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Confronting%20Domain%20Shift%20in%20Trained%20Neural%20Networks&rft.date=2020-12-11&rft.spage=44&rft.au=Martinez,%20Carianne&Najera-Flores,%20David%20A.&Brink,%20Adam%20R.&Quinn,%20Dane&Chatzi,%20Eleni&rft.genre=proceeding&rft.btitle=Confronting%20Domain%20Shift%20in%20Trained%20Neural%20Networks
Dateien zu diesem Eintrag
Dateien | Größe | Format | Im Viewer öffnen |
---|---|---|---|
Zu diesem Eintrag gibt es keine Dateien. |
Publikationstyp
-
Conference Paper [35571]