Zur Kurzanzeige

dc.contributor.author
Pearson, Natalie J.
dc.contributor.supervisor
Troyer, Matthias
dc.contributor.supervisor
Marcus, Charles M.
dc.contributor.supervisor
Renner, Renato
dc.date.accessioned
2021-03-02T08:28:24Z
dc.date.available
2021-03-01T19:20:58Z
dc.date.available
2021-03-02T08:28:24Z
dc.date.issued
2020
dc.identifier.uri
http://hdl.handle.net/20.500.11850/472313
dc.identifier.doi
10.3929/ethz-b-000472313
dc.description.abstract
The simulation of many-body quantum systems is an extensive field of research which has a large number of applications and has motivated numerous experimental, theoretical and computational studies. It hopes to answer fundamental questions about physical phenomena and aid in the development of new and exciting materials. At the frontiers of research, classical simulations grapple with increasingly large and complex systems which quantum simulators hope to alleviate. Even within quantum simulation there is great diversity as to the hardware used to perform calculations and whether simulations are implemented in an analogue or digital manner. In this thesis we explore elements from across the field. We investigate the limits of classical simulation and the quantum resources that are required to outperform it. We include analysis of the behaviour of errors when the simulation is Trotterised which motivates an alternate perspective for the implications of this scheme. The execution of digital quantum simulation will be implemented on quantum hardware. Here, we present results of experiments on superconducting qubits of both the ‘traditonal’ transmon type and a novel superconductor-semiconductor implementation of the transmon called the gatemon. We explore experiments aimed at increasing the connectivity of these qubits by use of a superconducting bus. A new realisation of these qubits is reported which enables them to be fabricated scalably and Bayesian inference is employed to efficiently characterise superconducting qubits.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Simulating Many-Body Quantum Systems: Quantum Algorithms and Experimental Realisation
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-03-02
ethz.size
205 p.
en_US
ethz.code.ddc
DDC - DDC::5 - Science::530 - Physics
en_US
ethz.identifier.diss
27032
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02511 - Institut für Theoretische Physik / Institute for Theoretical Physics::03622 - Troyer, Matthias (ehemalig) / Troyer, Matthias (former)
en_US
ethz.date.deposited
2021-03-01T19:21:15Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-03-02T08:28:34Z
ethz.rosetta.lastUpdated
2022-03-29T05:32:29Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Simulating%20Many-Body%20Quantum%20Systems:%20Quantum%20Algorithms%20and%20Experimental%20Realisation&rft.date=2020&rft.au=Pearson,%20Natalie%20J.&rft.genre=unknown&rft.btitle=Simulating%20Many-Body%20Quantum%20Systems:%20Quantum%20Algorithms%20and%20Experimental%20Realisation
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige