Zur Kurzanzeige

dc.contributor.author
Malmberg, Hampus
dc.contributor.supervisor
Loeliger, Hans-Andrea
dc.contributor.supervisor
Murmann, Boris
dc.contributor.supervisor
Schmid, Hanspeter
dc.date.accessioned
2021-02-12T12:49:48Z
dc.date.available
2021-02-12T09:54:58Z
dc.date.available
2021-02-12T12:49:48Z
dc.date.issued
2020
dc.identifier.isbn
978-3-86628-697-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/469192
dc.identifier.doi
10.3929/ethz-b-000469192
dc.description.abstract
The need for A/D and D/A conversion is a ubiquitous part of many of today's practical applications. The research fields of A/D and D/A conversion are multi-disciplinary, involving topics such as discrete- and continuous-time signal processing, circuit theory, and circuit design. State-of-the-art achievements have refined the practical aspects of traditional converter architectures to a point where performance is reaching its physical limits and progress is stagnating. In this thesis, we present an alternative perspective of analog-to-digital and digital-to-analog conversion called control-bounded conversion. This new perspective utilizes standard circuit components to build up unconventional circuit architectures through a novel theoretical framework between analog and digital. Ultimately, this versatile design principle allows less constrained analog and digital circuit architectures at the expense of a digital post-processing step. We demonstrate the control-bounded conversion principle by a selection of converter examples. First we consider the chain-of-integrators and the leapfrog analog-to-digital converters, which emphasize the division of the analog and digital parts of a control-bounded analog-to-digital converter. In particular, these examples reveal the global nature of the analog design task compared to the local digital part, which can be decomposed into independently operated, sub-circuits. Next, the chain-of-oscillators analog-to-digital converter shows how the control-bounded converter can be adapted for the problem of converting non-baseband signals as is common in communication systems. Specifically, the modulation task (frequency shifting) is incorporated into the digital part of the circuit, removing the need for a pre-processing step. To suppress the influence of circuit imperfections, we introduce the Hadamard analog-to-digital converter that separates the physical and the logical signal dimensions of a control-bounded converter. This separation enables circuit architectures where the sensitivity to component mismatch and thermal noise can be distributed equally throughout the circuit architecture components, thereby minimizing its impact on conversion performance. The overcomplete digital control shows how the digital part's complexity can be increased, resulting in better conversion performance, without substantially increasing the sensitivity to circuit imperfections. This idea relates to using higher-order quantization but partitions the analog part of the circuit in a novel way. We demonstrate that the control-bounded analog-to-digital conversion concept can provide improved conversion performance when converting multiple signals jointly as opposed to independent conversion. Finally, we show how the control-bounded conversion principle can be adopted for digital-to-analog conversion.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Analog-to-digital converters (ADC)
en_US
dc.subject
Digital-to-analog converters (DAC)
en_US
dc.subject
Control-bounded conversion (CBC)
en_US
dc.subject
Delta-Sigma modulation
en_US
dc.subject
Gaussian message passing
en_US
dc.subject
Wiener filter
en_US
dc.title
Control-Bounded Converters
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2021-02-12
ethz.size
260 p.
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::621.3 - Electric engineering
en_US
ethz.identifier.diss
27025
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02639 - Inst. f. Signal- und Informationsverarb. / Signal and Information Processing Lab.::03568 - Loeliger, Hans-Andrea / Loeliger, Hans-Andrea
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02639 - Inst. f. Signal- und Informationsverarb. / Signal and Information Processing Lab.::03568 - Loeliger, Hans-Andrea / Loeliger, Hans-Andrea
en_US
ethz.date.deposited
2021-02-12T09:55:11Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-12T12:49:59Z
ethz.rosetta.lastUpdated
2022-03-29T05:11:56Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Control-Bounded%20Converters&rft.date=2020&rft.au=Malmberg,%20Hampus&rft.isbn=978-3-86628-697-9&rft.genre=unknown&rft.btitle=Control-Bounded%20Converters
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige