Zur Kurzanzeige

dc.contributor.author
McCullough, Jon W.S.
dc.contributor.author
Richardson, Robin A.
dc.contributor.author
Patronis, Alex
dc.contributor.author
Halver, Rene
dc.contributor.author
Marshall, R.
dc.contributor.author
Ruefenacht, Martin
dc.contributor.author
Wylie, Brian J.N.
dc.contributor.author
Odaker, Thomas
dc.contributor.author
Wiedemann, Markus
dc.contributor.author
Lloyd, Bryn
dc.contributor.author
Neufeld, Esra
dc.contributor.author
Sutmann, Godehard
dc.contributor.author
Skjellum, Anthony
dc.contributor.author
Kranzlmüller, Dieter
dc.contributor.author
Coveney, Peter V.
dc.date.accessioned
2021-02-10T08:06:05Z
dc.date.available
2021-01-27T06:30:01Z
dc.date.available
2021-02-10T08:06:05Z
dc.date.issued
2021-02-06
dc.identifier.issn
2042-8898
dc.identifier.issn
2042-8901
dc.identifier.other
10.1098/rsfs.2019.0119
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/465832
dc.identifier.doi
10.3929/ethz-b-000465832
dc.description.abstract
Many scientific and medical researchers are working towards the creation of a virtual human—a personalized digital copy of an individual—that will assist in a patient’s diagnosis, treatment and recovery. The complex nature of living systems means that the development of this remains a major challenge. We describe progress in enabling the HemeLB lattice Boltzmann code to simulate 3D macroscopic blood flow on a full human scale. Significant developments in memory management and load balancing allow near linear scaling performance of the code on hundreds of thousands of computer cores. Integral to the construction of a virtual human, we also outline the implementation of a self-coupling strategy for HemeLB. This allows simultaneous simulation of arterial and venous vascular trees based on human-specific geometries.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Royal Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
high-performance computing
en_US
dc.subject
blood flow modelling
en_US
dc.subject
virtual human
en_US
dc.subject
lattice Boltzmann method
en_US
dc.title
Towards blood flow in the virtual human: Efficient self-coupling of HemeLB
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-12-11
ethz.journal.title
Interface Focus
ethz.journal.volume
11
en_US
ethz.journal.issue
1
en_US
ethz.pages.start
20190119
en_US
ethz.size
12 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.scopus
ethz.publication.place
London
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2021-01-27T06:30:06Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-02-10T08:06:16Z
ethz.rosetta.lastUpdated
2023-02-06T21:25:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Towards%20blood%20flow%20in%20the%20virtual%20human:%20Efficient%20self-coupling%20of%20HemeLB&rft.jtitle=Interface%20Focus&rft.date=2021-02-06&rft.volume=11&rft.issue=1&rft.spage=20190119&rft.issn=2042-8898&2042-8901&rft.au=McCullough,%20Jon%20W.S.&Richardson,%20Robin%20A.&Patronis,%20Alex&Halver,%20Rene&Marshall,%20R.&rft.genre=article&rft_id=info:doi/10.1098/rsfs.2019.0119&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige