Zur Kurzanzeige

dc.contributor.author
Ambühl, Lukas
dc.contributor.supervisor
Menendez, Monica
dc.contributor.supervisor
Axhausen, Kay W.
dc.contributor.supervisor
Mahmassani, Hani S.
dc.contributor.supervisor
Hoogendoorn, Serge P.
dc.contributor.supervisor
Leclercq, Ludovic
dc.date.accessioned
2023-08-11T05:27:22Z
dc.date.available
2020-11-19T22:39:00Z
dc.date.available
2020-11-20T07:42:01Z
dc.date.available
2021-11-22T12:35:00Z
dc.date.available
2023-08-11T05:27:22Z
dc.date.issued
2020-11
dc.identifier.uri
http://hdl.handle.net/20.500.11850/452101
dc.identifier.doi
10.3929/ethz-b-000452101
dc.description.abstract
The growing trends towards urbanization have increased the pressure on urban transportation networks. Consequently, we have seen an increase in large-scale congestion, including its negative externalities, such as increases in travel time, fuel inefficiency, and excessive emissions. Fortunately, recent studies in the transportation field have developed elegant methods to model and quantify traffic dynamics in cities. In particular, the framework of the macroscopic fundamental diagram (MFD) has recently received substantial attention. Much like its link counterpart (fundamental diagram), the MFD relates the network average flow and density of traffic. This dissertation aims to standardize urban traffic measurement and disentangle urban congestion mechanisms from a static and dynamic perspective. After discussing the introductory background in chapter 1, we investigate different methods to account for the multitude of empirical issues when estimating MFDs in chapter 2. We first focus on potential data biases (e.g., placement bias). As a result, we developed a correction method and a resampling framework that reduces the uncertainty in empirical MFDs. Based thereon, we define a practice-friendly partitioning algorithm that allows for finding homogeneous traffic regions, which is key to many applications of the MFD. In turn, this allows us to find a new versatile function for the empirically observed MFDs in chapter 3. This function lays the cornerstone for the standardization of the empirical MFD. This process allows for us in chapter 4 to cross-compare the important critical point of the MFD in over 40 cities worldwide. The critical point describes when network-level congestion is reached. We find that only four variables describing traffic conflicts (road network density, network redundancy, intersection spacing, and bus production) explain roughly 90% of the observed variance. In a more dynamic approach, chapter 5 presents empirical evidence for the long-term repeatability of the observed MFD by using a time-series method. Over a year, we find the observed MFDs can be grouped into a relatively low number of six (Zurich) or eight (Lucerne) representative repeatable MFD shapes. Moreover, we show that the evolution of the heterogeneity in flow is a good predictor of the expected MFD's shape. Using only five roads, we can accurately predict the expected MFD shape early in the day. Chapter 6 provides evidence from a multi-city simulation study that shows how urban traffic networks follow the laws of a percolating system. Non-smooth transitions characterize such a phenomenon. We find that (shortly) after reaching the critical point of the MFD, some urban traffic networks also exceed a hypercritical point, where the whole network is heavily congested. This point characterizes the moment when congestion becomes truly widespread (i.e., the size of the largest cluster is on the order of the network). We conclude that this is a point not to exceed because the congestion recovery becomes much harder afterward. These findings have implications from an academic and from a practical point of view, which are discussed in chapter 7. First, our empirical investigation of the observed MFD defines a standardized way to monitor, predict, and model urban neighborhoods, simplifying, and unifying current approaches. Second, our analysis allows for assessing the first-order impact that changes to the network topology have on traffic performance. Third, understanding urban traffic as a percolating system provides new modeling perspectives.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Traffic flow
en_US
dc.subject
Macroscopic Fundamental Diagram (MFD)
en_US
dc.subject
urban traffic congestion
en_US
dc.subject
Percolation
en_US
dc.subject
Cluster analysis
en_US
dc.subject
Flow data
en_US
dc.subject
Empirical analysis
en_US
dc.title
Estimating and Understanding Urban Congestion
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-11-20
ethz.size
203 p.
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::624 - Civil engineering
en_US
ethz.identifier.diss
26933
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02100 - Dep. Architektur / Dep. of Architecture::02655 - Netzwerk Stadt u. Landschaft ARCH u BAUG / Network City and Landscape ARCH and BAUG
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::03521 - Axhausen, Kay W. (emeritus) / Axhausen, Kay W. (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02610 - Inst. f. Verkehrspl. u. Transportsyst. / Inst. Transport Planning and Systems::08686 - Gruppe Strassenverkehrstechnik
ethz.relation.cites
10.3929/ethz-b-000437802
ethz.date.deposited
2020-11-19T22:39:10Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.date.embargoend
2021-11-20
ethz.rosetta.installDate
2020-11-20T07:42:57Z
ethz.rosetta.lastUpdated
2024-02-03T02:27:26Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Estimating%20and%20Understanding%20Urban%20Congestion&rft.date=2020-11&rft.au=Amb%C3%BChl,%20Lukas&rft.genre=unknown&rft.btitle=Estimating%20and%20Understanding%20Urban%20Congestion
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail
Thumbnail

Publikationstyp

Zur Kurzanzeige