Zur Kurzanzeige

dc.contributor.author
Lasinger, Katrin
dc.contributor.supervisor
Schindler, Konrad
dc.contributor.supervisor
Pock, Thomas
dc.contributor.supervisor
Rösgen, Thomas
dc.date.accessioned
2020-10-16T07:07:18Z
dc.date.available
2020-10-15T17:33:50Z
dc.date.available
2020-10-16T07:07:18Z
dc.date.issued
2020
dc.identifier.isbn
978-3-03837-010-9
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/446201
dc.identifier.doi
10.3929/ethz-b-000446201
dc.description.abstract
High-resolution 3D velocimetry estimation of fluids is a key problem in experimental fluid mechanics. It offers important applications for aero- and hydrodynamic measurements in academia and industry and facilitates fundamental research in turbulent flows. By injecting tracer particles into a fluid and observing their displacements over time from multiple view-points, a dense velocity field can be obtained. However, with increased particle seeding densities, ambiguities in the 3D particle reconstruction arise, which, in turn, affect the reconstruction accuracy of the underlying flow field. Existing approaches are limited to low seeding densities, which limit the spatial resolution of the flow field, or require long time sequences to heuristically resolve ambiguities of large, self-occluding particle sets. This thesis focuses on novel, physically-motivated approaches for high accuracy 3D flow estimation from few time steps. Multiple contributions are presented to tackle high seeding densities and, thus, facilitate high-resolution velocity field estimation. First, a variational formulation of the 3D flow estimation problem is introduced. The coarse- to-fine optimization scheme allows incorporation of physical priors, such as the incompressible stationary Stokes equations. To counteract the high memory requirement of voxel-based representations, a sparse particle reconstruction approach is subsequently proposed, combined with a sparse descriptor for 3D correspondence matching. Finally, a joint energy formulation is presented that optimizes both the sparse 3D particle locations and the dense motion field. Taking into account all available input views and both time steps jointly results in a better disambiguation of particle reconstructions and a more detailed flow field estimation. This favorable formulation is further extended to multiple time steps, allowing to further improve the particle reconstruction. Hence, even higher particle seeding densities can be supported. The proposed approaches were quantitatively validated on synthetic fluid simulations and delivered compelling results on experiments in water and air.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
ETH Zurich
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
Computer Vision
en_US
dc.subject
Motion perception
en_US
dc.subject
Particle image velocimetry (PIV)
en_US
dc.subject
Fluid Dynamics
en_US
dc.title
3D Fluid Flow Estimation from Multi-View Particle Images using Physical Priors
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2020-10-16
ethz.size
119 p.
en_US
ethz.code.ddc
DDC - DDC::0 - Computer science, information & general works::004 - Data processing, computer science
en_US
ethz.identifier.diss
27078
en_US
ethz.publication.place
Zurich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02115 - Dep. Bau, Umwelt und Geomatik / Dep. of Civil, Env. and Geomatic Eng.::02647 - Inst. f. Geodäsie und Photogrammetrie / Institute of Geodesy and Photogrammetry::03886 - Schindler, Konrad / Schindler, Konrad
en_US
ethz.date.deposited
2020-10-15T17:34:04Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-10-16T07:07:30Z
ethz.rosetta.lastUpdated
2021-02-15T18:24:46Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=3D%20Fluid%20Flow%20Estimation%20from%20Multi-View%20Particle%20Images%20using%20Physical%20Priors&rft.date=2020&rft.au=Lasinger,%20Katrin&rft.isbn=978-3-03837-010-9&rft.genre=unknown&rft.btitle=3D%20Fluid%20Flow%20Estimation%20from%20Multi-View%20Particle%20Images%20using%20Physical%20Priors
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige