Zur Kurzanzeige

dc.contributor.author
Chen, Runze
dc.contributor.author
Li, Chen
dc.contributor.author
Li, Yu
dc.contributor.author
Miles, James J.
dc.contributor.author
Indiveri, Giacomo
dc.contributor.author
Furber, Steve
dc.contributor.author
Pavlidis, Vasilis F.
dc.contributor.author
Moutafis, Christoforos
dc.date.accessioned
2020-09-03T13:02:22Z
dc.date.available
2020-08-20T09:40:10Z
dc.date.available
2020-09-03T13:02:22Z
dc.date.issued
2020-07-30
dc.identifier.issn
2331-7019
dc.identifier.other
10.1103/PhysRevApplied.14.014096
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/432096
dc.description.abstract
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size, and nonvolatility of skyrmions have triggered a substantial amount of research on skyrmion-based low-power, ultradense nanocomputing and neuromorphic systems such as artificial synapses. Room-temperature operation is required to integrate skyrmionic synapses in practical future devices. Here, we numerically propose a nanoscale skyrmionic synapse composed of magnetic multilayers that enables room-temperature device operation tailored for optimal synaptic resolution. We demonstrate that, when embedding such multilayer skyrmionic synapses in a simple spiking neural network (SNN) with unsupervised learning via the spike-timing-dependent plasticity rule, we can achieve only approximately a 78% classification accuracy in the Modified National Institute of Standards and Technology handwritten data set under realistic conditions. We propose that this performance can be significantly improved to approximately 98.61% by using a deep SNN with supervised learning. Our results illustrate that the proposed skyrmionic synapse can be a potential candidate for future energy-efficient neuromorphic edge computing.
en_US
dc.language.iso
en
en_US
dc.publisher
American Physical Society
en_US
dc.title
Nanoscale Room-Temperature Multilayer Skyrmionic Synapse for Deep Spiking Neural Networks
en_US
dc.type
Journal Article
ethz.journal.title
Physical Review Applied
ethz.journal.volume
14
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Phys. Rev. Applied
ethz.pages.start
014096
en_US
ethz.size
14 p.
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
College Park, MD
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02140 - Dep. Inf.technologie und Elektrotechnik / Dep. of Inform.Technol. Electrical Eng.::02533 - Institut für Neuroinformatik / Institute of Neuroinformatics::09699 - Indiveri, Giacomo / Indiveri, Giacomo
ethz.date.deposited
2020-08-20T09:40:15Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-09-03T13:02:32Z
ethz.rosetta.lastUpdated
2022-03-29T03:03:04Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Nanoscale%20Room-Temperature%20Multilayer%20Skyrmionic%20Synapse%20for%20Deep%20Spiking%20Neural%20Networks&rft.jtitle=Physical%20Review%20Applied&rft.date=2020-07-30&rft.volume=14&rft.issue=1&rft.spage=014096&rft.issn=2331-7019&rft.au=Chen,%20Runze&Li,%20Chen&Li,%20Yu&Miles,%20James%20J.&Indiveri,%20Giacomo&rft.genre=article&rft_id=info:doi/10.1103/PhysRevApplied.14.014096&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige