Zur Kurzanzeige

dc.contributor.author
Moret, Michael
dc.contributor.author
Friedrich, Lukas
dc.contributor.author
Grisoni, Francesca
dc.contributor.author
Merk, Daniel
dc.contributor.author
Schneider, Gisbert
dc.date.accessioned
2020-09-10T07:34:04Z
dc.date.available
2020-07-30T07:29:07Z
dc.date.available
2020-09-10T07:34:04Z
dc.date.issued
2020-03
dc.identifier.issn
2522-5839
dc.identifier.other
10.1038/s42256-020-0160-y
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/429159
dc.description.abstract
Generative machine learning models sample molecules from chemical space without the need for explicit design rules. To enable the generative design of innovative molecular entities with limited training data, a deep learning framework for customized compound library generation is presented that aims to enrich and expand the pharmacologically relevant chemical space with drug-like molecular entities on demand. This de novo design approach combines best practices and was used to generate molecules that incorporate features of both bioactive synthetic compounds and natural products, which are a primary source of inspiration for drug discovery. The results show that the data-driven machine intelligence acquires implicit chemical knowledge and generates novel molecules with bespoke properties and structural diversity. The method is available as an open-access tool for medicinal and bioorganic chemistry.
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.title
Generative molecular design in low data regimes
en_US
dc.type
Journal Article
dc.date.published
2020-03-16
ethz.journal.title
Nature Machine Intelligence
ethz.journal.volume
2
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Nat Mach Intell
ethz.pages.start
171
en_US
ethz.pages.end
180
en_US
ethz.grant
De novo molecular design by deep learning
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03852 - Schneider, Gisbert / Schneider, Gisbert
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02060 - Dep. Biosysteme / Dep. of Biosystems Science and Eng.::03852 - Schneider, Gisbert / Schneider, Gisbert
ethz.grant.agreementno
182176
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-07-30T07:29:17Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-09-10T07:34:15Z
ethz.rosetta.lastUpdated
2022-03-29T03:05:47Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Generative%20molecular%20design%20in%20low%20data%20regimes&rft.jtitle=Nature%20Machine%20Intelligence&rft.date=2020-03&rft.volume=2&rft.issue=3&rft.spage=171&rft.epage=180&rft.issn=2522-5839&rft.au=Moret,%20Michael&Friedrich,%20Lukas&Grisoni,%20Francesca&Merk,%20Daniel&Schneider,%20Gisbert&rft.genre=article&rft_id=info:doi/10.1038/s42256-020-0160-y&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige