Contact force path in total hip arthroplasty: effect of cup medialisation in a whole-body simulation
Abstract
Background:
Cup medialisation down to the true acetabular floor in total hip arthroplasty with a compensatory femoral offset increase seems to be mechanically advantageous for the abductor muscles due to the relocation of the lever arms (body weight lever arm decreased, abductor lever arm increased). However, limited information is currently available about the effects of this reconstruction type at the head cup interface, compared to an anatomical reconstruction that maintains the natural lever arms. Through a whole-body simulation analysis, we compared medialised versus anatomical reconstruction in THA to analyse the effects on: (1) contact force magnitude at the head cup interface; (2) contact force path in the cup; and (3) abductor activity.
Methods:
Musculoskeletal simulations were performed to calculate the above-mentioned parameters using inverse dynamics analysis. The differences between the virtually implanted THAs were calculated to compare the medialised versus anatomical reconstruction.
Results:
Cup medialisation with compensatory femoral offset increase led to: (1) a reduction in contact force magnitude at the head cup interface up to 6.6%; (2) a similar contact force path in the cup in terms of sliding distance and aspect ratio; and (3) a reduction in abductor activity up to 17.2% (gluteus medius).
Conclusions:
In our opinion, these potential biomechanical gains do not generally justify a fully medialised reconstruction, especially in younger patients that are more likely to undergo revision surgery in their lifetime. Cup medialisation should be performed until sufficient press fit and bony coverage of a properly sized and oriented cup can be achieved. Mehr anzeigen
Publikationsstatus
publishedExterne Links
Zeitschrift / Serie
HIP InternationalBand
Seiten / Artikelnummer
Verlag
SAGEThema
Cup medialisation; femoral offset; hip contact force; total hip arthroplasty; total hip replacementOrganisationseinheit
03915 - Ferguson, Stephen / Ferguson, Stephen