Show simple item record

dc.contributor.author
Schoenenberger, Angelina D.
dc.contributor.author
Tempfer, Herbert
dc.contributor.author
Lehner, Christine
dc.contributor.author
Egloff, Jasmin
dc.contributor.author
Mauracher, Marita
dc.contributor.author
Bird, Anna
dc.contributor.author
Widmer, Jonas
dc.contributor.author
Maniura-Weber, Katharina
dc.contributor.author
Fucentese, Sandro F.
dc.contributor.author
Traweger, Andreas
dc.contributor.author
Silvan, Unai
dc.contributor.author
Snedeker, Jess Gerrit
dc.date.accessioned
2020-04-24T06:51:24Z
dc.date.available
2020-04-24T03:59:30Z
dc.date.available
2020-04-24T06:51:24Z
dc.date.issued
2020-08
dc.identifier.issn
1878-5905
dc.identifier.issn
0142-9612
dc.identifier.other
10.1016/j.biomaterials.2020.120034
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/411494
dc.identifier.doi
10.3929/ethz-b-000411494
dc.description.abstract
Appropriate macrophage response to an implanted biomaterial is crucial for successful tissue healing outcomes. In this work we investigated how intrinsic topological cues from electrospun biomaterials and extrinsic mechanical loads cooperate to guide macrophage activation and macrophage-tendon fibroblast cross-talk. We performed a series of in vitro and in vivo experiments using aligned or randomly oriented polycaprolactone nanofiber substrates in both mechanically loaded and unloaded conditions. Across all experiments a disorganized biomaterial fiber topography was alone sufficient to promote a pro-inflammatory signature in macrophages, tendon fibroblasts, and tendon tissue. Extrinsic mechanical loading was found to strongly regulate the character of this signature by reducing pro-inflammatory markers both in vitro and in vivo. We observed that macrophages generally displayed a stronger response to biophysical cues than tendon fibroblasts, with dominant effects of cross-talk between these cell types observed in mechanical co-culture models. Collectively our data suggest that macrophages play a potentially important role as mechanosensory cells in tendon repair, and provide insight into how biological response might be therapeutically modulated by rational biomaterial designs that address the biomechanical niche of recruited cells.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Topography
en_US
dc.subject
Nanofibers
en_US
dc.subject
Inflammation
en_US
dc.subject
Macrophage
en_US
dc.subject
Mechanobiology
en_US
dc.subject
Tendon
en_US
dc.title
Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-04-11
ethz.journal.title
Biomaterials
ethz.journal.volume
249
en_US
ethz.pages.start
120034
en_US
ethz.size
14 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Kidlington
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03822 - Snedeker, Jess G. / Snedeker, Jess G.
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02070 - Dep. Gesundheitswiss. und Technologie / Dep. of Health Sciences and Technology::02518 - Institut für Biomechanik / Institute for Biomechanics::03822 - Snedeker, Jess G. / Snedeker, Jess G.
ethz.date.deposited
2020-04-24T03:59:43Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-04-24T06:51:36Z
ethz.rosetta.lastUpdated
2022-03-29T01:53:17Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Macromechanics%20and%20polycaprolactone%20fiber%20organization%20drive%20macrophage%20polarization%20and%20regulate%20inflammatory%20activation%20of%20tendon%20in%20vitr&rft.jtitle=Biomaterials&rft.date=2020-08&rft.volume=249&rft.spage=120034&rft.issn=1878-5905&0142-9612&rft.au=Schoenenberger,%20Angelina%20D.&Tempfer,%20Herbert&Lehner,%20Christine&Egloff,%20Jasmin&Mauracher,%20Marita&rft.genre=article&rft_id=info:doi/10.1016/j.biomaterials.2020.120034&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record