Enzyme Kinetics of Organic Contaminant Oxygenations
dc.contributor.author
Bopp, Charlotte E.
dc.contributor.author
Kohler, Hans-Peter E.
dc.contributor.author
Hofstetter, Thomas B.
dc.date.accessioned
2020-04-08T06:46:49Z
dc.date.available
2020-03-30T04:02:49Z
dc.date.available
2020-04-08T06:46:49Z
dc.date.issued
2020-03-25
dc.identifier.issn
0009-4293
dc.identifier.other
10.2533/chimia.2020.108
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/407109
dc.identifier.doi
10.3929/ethz-b-000407109
dc.description.abstract
Enzymatic oxygenations initiate biodegradation processes of many organic soil and water contaminants. Even though many biochemical aspects of oxygenation reactions are well-known, quantifying rates of oxidative contaminant removal as well as the extent of oxygenation remains a major challenge. Because enzymes use different strategies to activate O2, reactions leading to substrate oxygenation are not necessarily limiting the rate of contaminant removal. Moreover, oxygenases react along unproductive pathways without substrate metabolism leading to O2 uncoupling. Here, we identify the critical features of the catalytic cycles of selected oxygenases that determine rates and extents of biodegradation. We focus most specifically on Rieske dioxygenases, a subfamily of mononuclear non-heme ferrous iron oxygenases, because of their ability to hydroxylate unactivated aromatic structures and thus initiate the transformation of the most persistent organic contaminants. We illustrate that the rate-determining steps in their catalytic cycles range from O2 activation to substrate hydroxylation, depending on the extent of O–O cleavage that is required for generating the reactive Fe-oxygen species. The extent of O2 uncoupling, on the other hand, is highly substrate-specific and potentially modulated by adaptive responses to oxidative stress. Understanding the kinetic mechanisms of oxygenases will be key to assess organic contaminant biotransformation quantitatively.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Swiss Chemical Society
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.title
Enzyme Kinetics of Organic Contaminant Oxygenations
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial 4.0 International
dc.date.published
2020-03-01
ethz.journal.title
Chimia
ethz.journal.volume
74
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Chimia
ethz.pages.start
108
en_US
ethz.pages.end
114
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Bern
en_US
ethz.publication.status
published
en_US
ethz.date.deposited
2020-03-30T04:03:04Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-04-08T06:47:00Z
ethz.rosetta.lastUpdated
2022-03-29T01:47:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Enzyme%20Kinetics%20of%20Organic%20Contaminant%20Oxygenations&rft.jtitle=Chimia&rft.date=2020-03-25&rft.volume=74&rft.issue=3&rft.spage=108&rft.epage=114&rft.issn=0009-4293&rft.au=Bopp,%20Charlotte%20E.&Kohler,%20Hans-Peter%20E.&Hofstetter,%20Thomas%20B.&rft.genre=article&rft_id=info:doi/10.2533/chimia.2020.108&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [131403]