Metadata only
Date
2020-08Type
- Journal Article
Abstract
The large-scale geometry of hyperbolic metric spaces exhibits many distinctive features, such as the stability of quasi-geodesics (the Morse Lemma), the visibility property, and the homeomorphism between visual boundaries induced by a quasi-isometry. We prove a number of closely analogous results for spaces of rank n≥ 2 in an asymptotic sense, under some weak assumptions reminiscent of nonpositive curvature. For this purpose we replace quasi-geodesic lines with quasi-minimizing (locally finite) n-cycles of rn volume growth; prime examples include n-cycles associated with n-quasiflats. Solving an asymptotic Plateau problem and producing unique tangent cones at infinity for such cycles, we show in particular that every quasi-isometry between two proper CAT (0) spaces of asymptotic rank n extends to a class of (n- 1) -cycles in the Tits boundaries. Show more
Publication status
publishedExternal links
Journal / series
Inventiones mathematicaeVolume
Pages / Article No.
Publisher
SpringerOrganisational unit
03500 - Lang, Urs / Lang, Urs
Related publications and datasets
Is new version of: http://hdl.handle.net/20.500.11850/315942
More
Show all metadata