Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries
dc.contributor.author
Kravchyk, Kostiantyn V.
dc.contributor.author
Kovalenko, Maksym V.
dc.contributor.author
Bodnarchuk, Maryna I.
dc.date.accessioned
2020-02-21T10:40:55Z
dc.date.available
2020-02-21T03:20:53Z
dc.date.available
2020-02-21T10:40:55Z
dc.date.issued
2020
dc.identifier.issn
2045-2322
dc.identifier.other
10.1038/s41598-020-59512-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/400868
dc.identifier.doi
10.3929/ethz-b-000400868
dc.description.abstract
To maximize the anodic charge storage capacity of Li-ion and Na-ion batteries (LIBs and SIBs, respectively), the conversion–alloying-type Sb2S3 anode has attracted considerable interest because of its merits of a high theoretical capacity of 946 mAh g−1 and a suitable anodic lithiation/delithiation voltage window of 0.1–2 V vs. Li+/Li. Recent advances in nanostructuring of the Sb2S3 anode provide an effective way of mitigating the challenges of structure conversion and volume expansion upon lithiation/sodiation that severely hinder the Sb2S3 cycling stability. In this context, we report uniformly sized colloidal Sb2S3 nanoparticles (NPs) as a model Sb2S3 anode material for LIBs and SIBs to investigate the effect of the primary particle size on the electrochemical performance of the Sb2S3 anode. We found that compared with microcrystalline Sb2S3, smaller ca. 20–25 nm and ca. 180–200 nm Sb2S3 NPs exhibit enhanced cycling stability as anode materials in both rechargeable LIBs and SIBs. Importantly, for the ca. 20–25 nm Sb2S3 NPs, a high initial Li-ion storage capacity of 742 mAh g−1 was achieved at a current density of 2.4 A g−1. At least 55% of this capacity was retained after 1200 cycles, which is among the most stable performance Sb2S3 anodes for LIBs.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-02-13
ethz.journal.title
Scientific Reports
ethz.journal.volume
10
en_US
ethz.journal.issue
1
en_US
ethz.journal.abbreviated
Sci Rep
ethz.pages.start
2554
en_US
ethz.size
8 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
London
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02513 - Laboratorium für Anorganische Chemie / Laboratory of Inorganic Chemistry::03934 - Kovalenko, Maksym / Kovalenko, Maksym
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02513 - Laboratorium für Anorganische Chemie / Laboratory of Inorganic Chemistry::03934 - Kovalenko, Maksym / Kovalenko, Maksym
ethz.date.deposited
2020-02-21T03:21:17Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-02-21T10:41:08Z
ethz.rosetta.lastUpdated
2024-02-02T10:28:11Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Colloidal%20Antimony%20Sulfide%20Nanoparticles%20as%20a%20High-Performance%20Anode%20Material%20for%20Li-ion%20and%20Na-ion%20Batteries&rft.jtitle=Scientific%20Reports&rft.date=2020&rft.volume=10&rft.issue=1&rft.spage=2554&rft.issn=2045-2322&rft.au=Kravchyk,%20Kostiantyn%20V.&Kovalenko,%20Maksym%20V.&Bodnarchuk,%20Maryna%20I.&rft.genre=article&rft_id=info:doi/10.1038/s41598-020-59512-3&
Files in this item
Publication type
-
Journal Article [131681]