Zur Kurzanzeige

dc.contributor.author
Yakneen, Sergei
dc.contributor.author
Waszak, Sebastian M.
dc.contributor.author
PCAWG Technical Working Group
dc.contributor.author
Gertz, Michael
dc.contributor.author
Korbel, Jan O.
dc.contributor.author
PCAWG Consortium
dc.contributor.author
Kahles, André
dc.contributor.author
Rätsch, Gunnar
dc.contributor.author
et al.
dc.date.accessioned
2020-03-16T17:48:28Z
dc.date.available
2020-02-19T03:36:35Z
dc.date.available
2020-02-19T08:32:10Z
dc.date.available
2020-03-16T17:48:28Z
dc.date.issued
2020-03
dc.identifier.issn
1546-1696
dc.identifier.issn
1087-0156
dc.identifier.other
10.1038/s41587-019-0360-3
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/400227
dc.identifier.doi
10.3929/ethz-b-000400227
dc.description.abstract
Cloud computing offers easy and economical access to computational capacity at a scale that had previously been available to only the largest research institutions. To take advantage, large biological datasets are increasingly analyzed on various cloud computing platforms, using public, private and hybrid clouds1 with the aid of workflow systems. When employed in global projects, such systems must be flexible in their ability to operate in different environments, including academic clouds, to allow researchers to bring their computational pipelines to the data, especially in cases where the raw data themselves cannot be moved. The recently developed cloud-based scientific workflow frameworks Nextflow2, Toil3 and GenomeVIP4 focus their support largely on individual commercial cloud computing environments—mostly Amazon Web Services—and lack complete functionality for other major providers. This limits their use in studies that require multi-cloud operation due to practical and regulatory requirements5,6. Butler, in contrast, provides full support for operation on OpenStack-based commercial and academic clouds, Amazon Web Services, Microsoft Azure and Google Compute Platform, and can thus enable international collaborations involving the analysis of hundreds of thousands of samples where distributed cloud-based computation is pursued in different jurisdictions5,6,7.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Nature
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Butler enables rapid cloud-based analysis of thousands of human genomes
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2020-02-05
ethz.journal.title
Nature Biotechnology
ethz.journal.volume
38
en_US
ethz.journal.issue
3
en_US
ethz.journal.abbreviated
Nat Biotechnol
ethz.pages.start
288
en_US
ethz.pages.end
292
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
New York, NY
ethz.publication.status
published
en_US
ethz.date.deposited
2020-02-19T03:36:39Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-03-16T17:48:41Z
ethz.rosetta.lastUpdated
2024-02-02T10:35:26Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Butler%20enables%20rapid%20cloud-based%20analysis%20of%20thousands%20of%20human%20genomes&rft.jtitle=Nature%20Biotechnology&rft.date=2020-03&rft.volume=38&rft.issue=3&rft.spage=288&rft.epage=292&rft.issn=1546-1696&1087-0156&rft.au=Yakneen,%20Sergei&Waszak,%20Sebastian%20M.&PCAWG%20Technical%20Working%20Group&Gertz,%20Michael&Korbel,%20Jan%20O.&rft.genre=article&rft_id=info:doi/10.1038/s41587-019-0360-3&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige