Zur Kurzanzeige

dc.contributor.author
Dao, David
dc.contributor.author
Cang, Catherine
dc.contributor.author
Fung, Clement
dc.contributor.author
Zhang, Ming
dc.contributor.author
Pawlowski, Nick
dc.contributor.author
Gonzales, Reuven
dc.contributor.author
Beglinger, Nick
dc.contributor.author
Zhang, Ce
dc.date.accessioned
2020-05-20T08:23:40Z
dc.date.available
2020-01-29T11:09:11Z
dc.date.available
2020-05-20T08:23:40Z
dc.date.issued
2019
dc.identifier.uri
http://hdl.handle.net/20.500.11850/395334
dc.language.iso
en
en_US
dc.publisher
ICML 2019 Workshop
en_US
dc.title
GainForest: Scaling Climate Finance for Forest Conservation using Interpretable Machine Learning on Satellite Imagery
en_US
dc.type
Conference Paper
ethz.book.title
Proceedings of the ICML Climate Change Workshop at 36th International Conference on Machine Learning,
en_US
ethz.size
3 p.
en_US
ethz.event
ICML 2019 Workshop Climate Change: How Can AI Help?
en_US
ethz.event.location
Long Beach, CA, USA
en_US
ethz.event.date
June 14, 2019
en_US
ethz.notes
Online proceedings
en_US
ethz.publication.place
s.l.
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02663 - Institut für Computing Platforms / Institute for Computing Platforms::09588 - Zhang, Ce (ehemalig) / Zhang, Ce (former)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02663 - Institut für Computing Platforms / Institute for Computing Platforms::09588 - Zhang, Ce (ehemalig) / Zhang, Ce (former)
en_US
ethz.relation.isPartOf
https://www.climatechange.ai/ICML2019_workshop.html#Ideas-Track
ethz.date.deposited
2020-01-29T11:09:18Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Metadata only
en_US
ethz.rosetta.installDate
2020-05-20T08:23:51Z
ethz.rosetta.lastUpdated
2024-02-02T10:55:27Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=GainForest:%20Scaling%20Climate%20Finance%20for%20Forest%20Conservation%20using%20Interpretable%20Machine%20Learning%20on%20Satellite%20Imagery&rft.date=2019&rft.au=Dao,%20David&Cang,%20Catherine&Fung,%20Clement&Zhang,%20Ming&Pawlowski,%20Nick&rft.genre=proceeding&rft.btitle=Proceedings%20of%20the%20ICML%20Climate%20Change%20Workshop%20at%2036th%20International%20Conference%20on%20Machine%20Learning,
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

DateienGrößeFormatIm Viewer öffnen

Zu diesem Eintrag gibt es keine Dateien.

Publikationstyp

Zur Kurzanzeige