Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence
dc.contributor.author
Kelestemur, Yusuf
dc.contributor.author
Shynkarenko, Yevhen
dc.contributor.author
Anni, Marco
dc.contributor.author
Yakunin, Sergii
dc.contributor.author
De Giorgi, Maria Luisa
dc.contributor.author
Kovalenko, Maksym V.
dc.date.accessioned
2022-08-02T13:00:19Z
dc.date.available
2020-01-18T03:12:54Z
dc.date.available
2020-01-20T18:17:08Z
dc.date.available
2022-08-02T13:00:19Z
dc.date.issued
2019-12-24
dc.identifier.issn
1936-0851
dc.identifier.issn
1936-086X
dc.identifier.other
10.1021/acsnano.9b05313
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/391667
dc.identifier.doi
10.3929/ethz-b-000391667
dc.description.abstract
Semiconductor nanoplatelets (NPLs) have emerged as a very promising class of colloidal nanocrystals for light-emitting devices owing to their quantum-well-like electronic and optical characteristics. However, their lower photoluminescence quantum yield (PLQY) and limited stability have hampered the realization of their outstanding luminescent properties in device applications. Here, to address these deficiencies, we present a two-step synthetic approach that enables the synthesis of core/shell NPLs with precisely controlled shell composition for engineering their excitonic properties. The proposed CdSe colloidal quantum wells possess a graded shell, which is composed of a CdS buffer layer and a CdxZn1–xS gradient layer, and exhibit bright emission (PLQY 75–89%) in the red spectral region (634–648 nm) with a narrow emission line width (21 nm). These enhanced optical properties allowed us to attain low thresholds for amplified spontaneous emission (down to ∼40 μJ/cm2) under nanosecond laser excitation. We also studied the electroluminescent performance of these NPLs by fabricating solution-processed light-emitting diodes (LEDs). In comparison to NPL-LEDs with CdSe/CdS core/shell NPLs, which exhibit an external quantum efficiency (EQE) value of only 1.80%, a significantly improved EQE value of 9.92% was obtained using graded-shell NPLs, the highest value for colloidal NPL-based-LEDs. In addition, the low efficiency roll-off characteristics of NPL-LEDs enabled a high brightness of up to ∼46 000 cd/m2 with an electroluminescence peak centered at 650 nm. These findings demonstrate the paramount role that heterostructure engineering occupies in enhancing the optoelectronic characteristics of semiconductor NPLs toward practically relevant levels.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Chemical Society
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
colloidal nanoplatelets
en_US
dc.subject
colloidal quantum wells
en_US
dc.subject
core/shell heterostructures
en_US
dc.subject
light-emitting devices
en_US
dc.subject
optical gain
en_US
dc.title
Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-11-26
ethz.journal.title
ACS Nano
ethz.journal.volume
13
en_US
ethz.journal.issue
12
en_US
ethz.journal.abbreviated
ACS Nano
ethz.pages.start
13899
en_US
ethz.pages.end
13909
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.grant
Chemical Engineering of Atomically-Flat Colloidal Quantum Wells for Next-Generation Light- Emitting Devices
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Washington, DC
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02513 - Laboratorium für Anorganische Chemie / Laboratory of Inorganic Chemistry::03934 - Kovalenko, Maksym / Kovalenko, Maksym
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02513 - Laboratorium für Anorganische Chemie / Laboratory of Inorganic Chemistry::03934 - Kovalenko, Maksym / Kovalenko, Maksym
ethz.grant.agreementno
798697
ethz.grant.fundername
EC
ethz.grant.funderDoi
10.13039/501100000780
ethz.grant.program
H2020
ethz.date.deposited
2020-01-18T03:12:58Z
ethz.source
WOS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-01-20T18:17:18Z
ethz.rosetta.lastUpdated
2023-02-07T04:59:03Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Colloidal%20CdSe%20Quantum%20Wells%20with%20Graded%20Shell%20Composition%20for%20Low-Threshold%20Amplified%20Spontaneous%20Emission%20and%20Highly%20Efficient%20Electrol&rft.jtitle=ACS%20Nano&rft.date=2019-12-24&rft.volume=13&rft.issue=12&rft.spage=13899&rft.epage=13909&rft.issn=1936-0851&1936-086X&rft.au=Kelestemur,%20Yusuf&Shynkarenko,%20Yevhen&Anni,%20Marco&Yakunin,%20Sergii&De%20Giorgi,%20Maria%20Luisa&rft.genre=article&rft_id=info:doi/10.1021/acsnano.9b05313&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [132069]