Use of molecular dynamics fingerprints (MDFPs) in SAMPL6 octanol–water log P blind challenge
dc.contributor.author
Wang, Shuzhe
dc.contributor.author
Riniker, Sereina
dc.date.accessioned
2023-05-31T05:27:03Z
dc.date.available
2020-01-07T07:43:11Z
dc.date.available
2020-01-07T08:04:27Z
dc.date.available
2020-04-17T15:07:45Z
dc.date.available
2023-05-30T11:12:47Z
dc.date.available
2023-05-31T05:27:03Z
dc.date.issued
2020-04
dc.identifier.issn
0920-654X
dc.identifier.issn
1573-4951
dc.identifier.other
10.1007/s10822-019-00252-6
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/387894
dc.identifier.doi
10.3929/ethz-b-000387894
dc.description.abstract
The in silico prediction of partition coefficients is an important task in computer-aided drug discovery. In particular the octanol–water partition coefficient is used as surrogate for lipophilicity. Various computational approaches have been proposed, ranging from simple group-contribution techniques based on the 2D topology of a molecule to rigorous methods based molecular dynamics (MD) or quantum chemistry. In order to balance accuracy and computational cost, we recently developed the MD fingerprints (MDFPs), where the information in MD simulations is encoded in a floating-point vector, which can be used as input for machine learning (ML). The MDFP-ML approach was shown to perform similarly to rigorous methods while being substantially more efficient. Here, we present the application of MDFP-ML for the prediction of octanol–water partition coefficients in the SAMPL6 blind challenge. The underlying computational pipeline is made freely available in form of the MDFPtools package.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Springer
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.title
Use of molecular dynamics fingerprints (MDFPs) in SAMPL6 octanol–water log P blind challenge
en_US
dc.type
Journal Article
dc.rights.license
In Copyright - Non-Commercial Use Permitted
dc.date.published
2019-11-19
ethz.journal.title
Journal of Computer-Aided Molecular Design
ethz.journal.volume
34
en_US
ethz.journal.issue
4
en_US
ethz.journal.abbreviated
J Comput Aided Mol Des
ethz.pages.start
393
en_US
ethz.pages.end
403
en_US
ethz.version.deposit
acceptedVersion
en_US
ethz.grant
Passive Membrane-Permeability Prediction for Peptides and Peptidomimetics Using Computational Methods
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Berlin
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::09458 - Riniker, Sereina Z. / Riniker, Sereina Z.
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02020 - Dep. Chemie und Angewandte Biowiss. / Dep. of Chemistry and Applied Biosc.::02543 - Inst. f. Molekulare Physikalische Wiss. / Institute of Molecular Physical Science::09458 - Riniker, Sereina Z. / Riniker, Sereina Z.
en_US
ethz.grant.agreementno
178762
ethz.grant.fundername
SNF
ethz.grant.funderDoi
10.13039/501100001711
ethz.grant.program
Projekte MINT
ethz.date.deposited
2020-01-07T07:43:19Z
ethz.source
FORM
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2020-04-17T15:07:55Z
ethz.rosetta.lastUpdated
2024-02-02T23:49:28Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Use%20of%20molecular%20dynamics%20fingerprints%20(MDFPs)%20in%20SAMPL6%20octanol%E2%80%93water%20log%20P%20blind%20challenge&rft.jtitle=Journal%20of%20Computer-Aided%20Molecular%20Design&rft.date=2020-04&rft.volume=34&rft.issue=4&rft.spage=393&rft.epage=403&rft.issn=0920-654X&1573-4951&rft.au=Wang,%20Shuzhe&Riniker,%20Sereina&rft.genre=article&rft_id=info:doi/10.1007/s10822-019-00252-6&
Dateien zu diesem Eintrag
Publikationstyp
-
Journal Article [131753]