PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
dc.contributor.author
Ramos, Yusibeska
dc.contributor.author
Rocha, Jorge
dc.contributor.author
Hael, Ana L.
dc.contributor.author
Van Geste, Jordi
dc.contributor.author
Vlamakis, Hera
dc.contributor.author
Cywes-Bentley, Colette
dc.contributor.author
Cubillos-Ruiz, Juan R.
dc.contributor.author
Pier, Gerald B.
dc.contributor.author
Gilmore, Michael S.
dc.contributor.author
Kolter, Roberto
dc.contributor.author
Morales, Diana K.
dc.date.accessioned
2019-03-04T11:00:19Z
dc.date.available
2019-03-03T03:31:52Z
dc.date.available
2019-03-04T11:00:19Z
dc.date.issued
2019
dc.identifier.issn
1553-7374
dc.identifier.issn
1553-7366
dc.identifier.other
10.1371/journal.ppat.1007571
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/328692
dc.identifier.doi
10.3929/ethz-b-000328692
dc.description.abstract
Bacterial pathogens have evolved strategies that enable them to invade tissues and spread within the host. Enterococcus faecalis is a leading cause of local and disseminated multidrug-resistant hospital infections, but the molecular mechanisms used by this non-motile bacterium to penetrate surfaces and translocate through tissues remain largely unexplored. Here we present experimental evidence indicating that E. faecalis generates exopolysaccharides containing β-1,6-linked poly-N-acetylglucosamine (polyGlcNAc) as a mechanism to successfully penetrate semisolid surfaces and translocate through human epithelial cell monolayers. Genetic screening and molecular analyses of mutant strains identified glnA, rpiA and epaX as genes critically required for optimal E. faecalis penetration and translocation. Mechanistically, GlnA and RpiA cooperated to generate uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that was utilized by EpaX to synthesize polyGlcNAc-containing polymers. Notably, exogenous supplementation with polymeric N-acetylglucosamine (PNAG) restored surface penetration by E. faecalis mutants devoid of EpaX. Our study uncovers an unexpected mechanism whereby the RpiA-GlnA-EpaX metabolic axis enables production of polyGlcNAc-containing polysaccharides that endow E. faecalis with the ability to penetrate surfaces. Hence, targeting carbohydrate metabolism or inhibiting biosynthesis of polyGlcNAc-containing exopolymers may represent a new strategy to more effectively confront enterococcal infections in the clinic.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
PLOS
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
PolyGlcNAc-containing exopolymers enable surface penetration by non-motile Enterococcus faecalis
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2019-02-11
ethz.journal.title
PLoS Pathogens
ethz.journal.volume
15
en_US
ethz.journal.issue
2
en_US
ethz.journal.abbreviated
PLoS Pathog
ethz.pages.start
e1007571
en_US
ethz.size
32 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Lawrence, KS
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02721 - Inst. f. Biogeochemie u. Schadstoffdyn. / Inst. Biogeochem. and Pollutant Dynamics::03743 - Ackermann, Martin / Ackermann, Martin
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02350 - Dep. Umweltsystemwissenschaften / Dep. of Environmental Systems Science::02721 - Inst. f. Biogeochemie u. Schadstoffdyn. / Inst. Biogeochem. and Pollutant Dynamics::03743 - Ackermann, Martin / Ackermann, Martin
ethz.date.deposited
2019-03-03T03:31:55Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2019-03-04T11:00:25Z
ethz.rosetta.lastUpdated
2024-02-02T07:15:50Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=PolyGlcNAc-containing%20exopolymers%20enable%20surface%20penetration%20by%20non-motile%20Enterococcus%20faecalis&rft.jtitle=PLoS%20Pathogens&rft.date=2019&rft.volume=15&rft.issue=2&rft.spage=e1007571&rft.issn=1553-7374&1553-7366&rft.au=Ramos,%20Yusibeska&Rocha,%20Jorge&Hael,%20Ana%20L.&Van%20Geste,%20Jordi&Vlamakis,%20Hera&rft.genre=article&rft_id=info:doi/10.1371/journal.ppat.1007571&
Files in this item
Publication type
-
Journal Article [131620]