Zur Kurzanzeige

dc.contributor.author
Kharel, Prashanta
dc.contributor.author
Chu, Yiwen
dc.contributor.author
Power, Michael P.
dc.contributor.author
Renninger, William H.
dc.contributor.author
Schoelkopf, Robert J.
dc.contributor.author
Rakich, Peter T.
dc.date.accessioned
2018-11-21T07:33:13Z
dc.date.available
2018-11-21T03:59:23Z
dc.date.available
2018-11-21T07:14:26Z
dc.date.available
2018-11-21T07:33:13Z
dc.date.issued
2018-06
dc.identifier.issn
2378-0967
dc.identifier.other
10.1063/1.5026798
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/305015
dc.identifier.doi
10.3929/ethz-b-000305015
dc.description.abstract
Long-lived, high-frequency phonons are valuable for applications ranging from optomechanics to emerging quantum systems. For scientific as well as technological impact, we seek high-performance oscillators that offer a path toward chip-scale integration. Confocal bulk acoustic wave resonators have demonstrated an immense potential to support long-lived phonon modes in crystalline media at cryogenic temperatures. So far, these devices have been macroscopic with cm-scale dimensions. However, as we push these oscillators to high frequencies, we have an opportunity to radically reduce the footprint as a basis for classical and emerging quantum technologies. In this paper, we present novel design principles and simple microfabrication techniques to create high performance chip-scale confocal bulk acoustic wave resonators in a wide array of crystalline materials. We tailor the acoustic modes of such resonators to efficiently couple to light, permitting us to perform a non-invasive laser-based phonon spectroscopy. Using this technique, we demonstrate an acoustic Q-factor of 2.8 × 107 (6.5 × 106) for chip-scale resonators operating at 12.7 GHz (37.8 GHz) in crystalline z-cut quartz (x-cut silicon) at cryogenic temperatures.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
American Institute of Physics
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.title
Ultra-high-Q phononic resonators on-chip at cryogenic temperatures
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2018-05-21
ethz.journal.title
APL Photonics
ethz.journal.volume
3
en_US
ethz.journal.issue
6
en_US
ethz.pages.start
066101
en_US
ethz.size
10 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.publication.place
Melville, NY
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02505 - Laboratorium für Festkörperphysik / Laboratory for Solid State Physics::09657 - Chu, Yiwen / Chu, Yiwen
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02010 - Dep. Physik / Dep. of Physics::02505 - Laboratorium für Festkörperphysik / Laboratory for Solid State Physics::09657 - Chu, Yiwen / Chu, Yiwen
en_US
ethz.date.deposited
2018-11-21T03:59:32Z
ethz.source
FORM
ethz.eth
no
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2018-11-21T07:14:32Z
ethz.rosetta.lastUpdated
2024-02-02T06:38:51Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Ultra-high-Q%20phononic%20resonators%20on-chip%20at%20cryogenic%20temperatures&rft.jtitle=APL%20Photonics&rft.date=2018-06&rft.volume=3&rft.issue=6&rft.spage=066101&rft.issn=2378-0967&rft.au=Kharel,%20Prashanta&Chu,%20Yiwen&Power,%20Michael%20P.&Renninger,%20William%20H.&Schoelkopf,%20Robert%20J.&rft.genre=article&rft_id=info:doi/10.1063/1.5026798&
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail

Publikationstyp

Zur Kurzanzeige