Zur Kurzanzeige

dc.contributor.author
Eggers, Jan
dc.contributor.supervisor
Mazzotti, Marco
dc.contributor.supervisor
Févotte, Gilles
dc.date.accessioned
2018-03-09T13:34:40Z
dc.date.available
2017-06-08T21:06:27Z
dc.date.available
2018-03-09T13:34:40Z
dc.date.issued
2008
dc.identifier.uri
http://hdl.handle.net/20.500.11850/13680
dc.identifier.doi
10.3929/ethz-a-005698168
dc.description.abstract
Crystallization is an important process in the chemical and pharmaceutical industry. Process performance can strongly depend on product properties like crystal size and shape. Particularly in recent years, crystal shape therefore became the topic of scientific research. The main goals of this work are to understand the mechanisms leading to specific morphologies and, more importantly, to study how the shape of crystals can be altered. The focus of this work was to investigate with simulations and experiments the evolution of particle shape in batch cooling crystallization processes. To that aim different models for the prediction of crystal morphology were studied. A simplified particle description using two independent characteristic crystal dimensions was incorporated in a process model leading to a two dimensional particle size distribution (PSD). The corresponding two dimensional population balance was analyzed with the method of characteristics. The evolution of crystal shape was then described by a time dependent ratio of growth rates. This result allowed for a detailed analysis of the parameters in the growth kinetics yielding a qualitative understanding of the relationship between operating conditions and particle shape. Another important aspect was the appropriate monitoring of crystallization processes. For the on–line measurement of the solute concentration ATR–FTIR was successfully used. In–situ monitoring tools for particle size and shape and also some ex–situ size and shape characterization tools suffer from a common problem: they have a two dimensional perspective on the particles that can float freely in front of the probe and adopt any orientation in space. Thus, the desired properties, i.e. size and shape, cannot be measured directly and the relation between the obtained measurement data and the desired ones is not straightforward. A Monte–Carlo approach was used to simulate such measurements and it allows for the computation of the expected measurements for a given particle population. An optimization algorithm is introduced to solve the inverse problem, namely the restoration of a two dimensional PSD based on the measured data. The algorithm was tested in simulations and applied in real crystallization experiments.
en_US
dc.format
application/pdf
dc.language.iso
en
en_US
dc.publisher
ETH
en_US
dc.rights.uri
http://rightsstatements.org/page/InC-NC/1.0/
dc.subject
STOCHASTIC APPROXIMATION + MONTE CARLO METHODS (STOCHASTICS)
en_US
dc.subject
STOCHASTISCHE APPROXIMATION + MONTE-CARLO-METHODEN (STOCHASTIK)
en_US
dc.subject
KRISTALLISIEREN DURCH AUSFRIEREN (VERFAHRENSTECHNIK)
en_US
dc.subject
FOURIERINFRAROTSPEKTROSKOPIE
en_US
dc.subject
TEILCHENGRÖSSENBESTIMMUNG + GRANULOMETRIE (PHYSIK VON MOLEKULARSYSTEMEN)
en_US
dc.subject
ENTSTEHUNG, WACHSTUM UND AUFLÖSUNG VON KRISTALLEN
en_US
dc.subject
FOURIER INFRARED SPECTROSCOPY
en_US
dc.subject
DISCONTINUOUS PROCESSES (CHEMICAL ENGINEERING)
en_US
dc.subject
FORMATION, GROWTH AND SOLUTION OF CRYSTALS
en_US
dc.subject
PARTICLE-SIZE DETERMINATION + GRANULOMETRY (PHYSICS OF MOLECULAR SYSTEMS)
en_US
dc.subject
CRYSTALLIZATION BY FREEZING (PROCESS ENGINEERING)
en_US
dc.subject
DISKONTINUIERLICHE VERFAHREN (CHEMISCHE VERFAHRENSTECHNIK)
en_US
dc.title
Modeling and monitoring of shape evolution of particles in batch crystallization processes
en_US
dc.type
Doctoral Thesis
dc.rights.license
In Copyright - Non-Commercial Use Permitted
ethz.size
1 Band
en_US
ethz.code.ddc
DDC - DDC::6 - Technology, medicine and applied sciences::660 - Chemical engineering
en_US
ethz.identifier.diss
17880
en_US
ethz.identifier.nebis
005698168
ethz.publication.place
Zürich
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03484 - Mazzotti, Marco / Mazzotti, Marco
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02130 - Dep. Maschinenbau und Verfahrenstechnik / Dep. of Mechanical and Process Eng.::02668 - Inst. f. Energie- und Verfahrenstechnik / Inst. Energy and Process Engineering::03484 - Mazzotti, Marco / Mazzotti, Marco
ethz.date.deposited
2017-06-08T21:06:36Z
ethz.source
ECOL
ethz.source
ECIT
ethz.identifier.importid
imp59364c2fa208712859
ethz.identifier.importid
imp59366ac764c1682566
ethz.ecolpid
eth:30915
ethz.ecitpid
pub:25158
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2017-07-19T07:16:37Z
ethz.rosetta.lastUpdated
2021-02-14T22:49:00Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Modeling%20and%20monitoring%20of%20shape%20evolution%20of%20particles%20in%20batch%20crystallization%20processes&rft.date=2008&rft.au=Eggers,%20Jan&rft.genre=unknown&rft.btitle=Modeling%20and%20monitoring%20of%20shape%20evolution%20of%20particles%20in%20batch%20crystallization%20processes
 Printexemplar via ETH-Bibliothek suchen

Dateien zu diesem Eintrag

Thumbnail
Thumbnail

Publikationstyp

Zur Kurzanzeige