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Abstract

In the near future, tiny computers and sensors integrated into our clothes
will monitor our physical condition and activities to assist us in everyday
tasks: be it suggesting simple improvements in a recipe while we cook or
even preventing a maintenance worker from a hazardous mistake.

Typically, activities are recognized with motion sensors. In this work,
we use sound as a novel modality for activity recognition. With a micro-
phone mounted on the wrist, e.g. inside a watch, we are able to pick up
sounds that are caused by the user or occur in close proximity to the user’s
hand. Thus, we can detect hand movements which generate a sound, like
switching on an appliance or performing a noisy manual task.

Activity recognition systems are usually tuned to deliver high recogni-
tion rates. However, size and battery capacity of wearable systems impose
limitations to the type and amount of sound processing that can be done.
The challenge is to carefully select the parameters of the recognition pro-
cess to achieve on the one hand high recognition rates and on the other
hand low power consumption. Thus, our work describes advances towards
the development of a power optimized recognition system: a system that
is tuned during the training phase of the recognition process to represent
a trade-off between power consumption and recognition accuracy.

We discuss advantages and limitations of the sound-based activity
recognition approach. We show that reasonable scenarios exist where
sound is a useful means to detect activities. We present case studies in
which we recorded data with wrist worn microphones for four scenarios:
operating kitchen appliances, performing manual tasks in a wood work-
shop, operating office appliances and being outdoors/using public trans-
port. These recordings are used to benchmark various sound processing
algorithms.

To make a low-power, sound-based activity recognition system feasi-
ble, we work with a frame-based method – in contrast to a continuous
recognition. This requires segmentation procedures which partition the
data stream into potentially interesting segments. One technique proposed
here is based on the difference of the signal amplitudes of a wrist and a
chest worn microphone. Furthermore, we analyze the recognition process
and discuss how recognition accuracy is affected by various parameters
like sampling frequency, sampling duration, number of frames, choice of
features and classifiers. In addition to sound, we investigate another sensor
modality: acceleration. Different methods to fuse data from two sensors
are explored.
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To estimate power consumption, we use a hardware platform contain-
ing a microcontroller, a microphone and accelerometers. Based on power
measurements of selected operating points and a simplified model of the
hardware platform, we synthesize its power consumption for various sam-
pling frequencies, sampling durations and signal processing algorithms
running on the microcontroller.

Finally, we combine the two conflicting metrics ‘recognition rate’ and
‘power consumption’ to a pareto plot. With the data from our case studies
we demonstrate that the methods proposed in this work lead to improve-
ments in battery lifetime by a factor of 2 to 4 with only little degradation
in recognition performance. To conclude, a wrist worn sensor node recog-
nizing 5 different kitchen appliances with 94% accuracy consumes as little
as 0.55mW. This allows to power it for 42 days with a 2 cm3 lithium-ion
battery.



Zusammenfassung

In naher Zukunft werden winzige, in Kleidung integrierte, Computer und
Sensoren unseren Gesundheitszustand und unsere Aktivitäten überwa-
chen, um uns bei alltäglichen Tätigkeiten zu unterstützen: sei es um Ver-
besserungsvorschläge an einem Kochrezept, das wir gerade ausprobieren,
anzubringen oder um einen Servicetechniker vor einem gefährlichen Fehl-
griff zu warnen.

Üblicherweise werden zur Erkennung von Aktivitäten Bewegungssen-
soren verwendet. In dieser Arbeit wählen wir einen neuartigen Ansatz
und verwenden Geräusche, um Aktivitäten zu erkennen. Mit einem Mi-
krophon, das am Handgelenk befestigt ist, z.B. in einer Uhr, können wir
Geräusche erfassen, welche durch den Benutzer verursacht werden oder in
der näheren Umgebung seiner Hand auftreten. Dadurch können wir dieje-
nigen Handbewegungen detektieren, die ein Geräusch auslösen, wie zum
Beispiel das Einschalten eines Geräts oder eine laute manuelle Tätigkeit.

Systeme zur Erkennung von Aktivitäten sind üblicherweise auf eine
hohe Erkennungsrate ausgerichtet. Allerdings beschränken Grösse und
Batteriekapazität von tragbaren Computern die Art und Weise, wie Ge-
räuscherkennung durchgeführt werden kann. Deshalb ist es eine Heraus-
forderung, die Parameter des Erkennungsprozesses so zu wählen, dass
einerseits eine hohe Erkennungsrate und andererseits ein geringer Lei-
stungsverbrauch erzielt wird. In dieser Arbeit streben wir ein Aktivitäten-
Erkennungs-System an, das einen Kompromiss zwischen Leistungsver-
brauch und Erkennungsrate darstellt.

Wir diskutieren die Vorteile und Einschränkungen eines Aktivitäten-
Erkennungs-Systems, das sich auf Geräusche stützt. Wir präsentieren Fall-
studien, in welchen wir mit am Handgelenk getragenen Mikrofonen für
vier Szenarien Daten aufgenommen haben: Ein- und Ausschalten von Kü-
chengeräten, verschiedene manuelle Tätigkeiten im Bereich von Holzver-
arbeitung, Tätigkeiten im Büro und Geräusche die im Freien respektive
in öffentlichen Verkehrsmitteln vorkommen. Die Aufnahmen werden ver-
wendet, um Leistungsvergleiche zwischen verschiedenen Algorithmen, die
Geräusche verarbeiten, durchzuführen.

Um ein Aktivitäten-Erkennungs-System mit einer niedrigen Leistungs-
aufnahme zu realisieren, arbeiten wir mit einer Methode, die einzelne
‘Frames’ oder Fenster analysiert – im Gegensatz zu einer kontinuierlichen
Erkennung. Dazu werden Verfahren notwendig, die den Datenstrom in
potenziell interessante Segmente aufteilen können. Eine Technik, die hier
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vorgestellt wird, basiert auf dem Lautstärkeunterschied zwischen einem
Mikrofon am Handgelenk und an der Brust. Des Weiteren untersuchen
wir den Erkennungsprozess und diskutieren dabei, inwiefern die Erken-
nungsrate von Parametern wie der Abtastfrequenz, der Abtastdauer und
der Wahl der Erkennungsmerkmale und Klassifikatoren abhängt. Zusätz-
lich zum Mikrofon betrachten wir die Verwendung eines zweiten Sensors:
eines Beschleunigungssensors. In diesem Zusammenhang beschäftigen wir
uns mit unterschiedlichen Verfahren, um die Daten von den zwei Sensoren
zusammen zu führen.

Um den Leistungsverbrauch abzuschätzen, verwenden wir eine Hard-
ware, die einen Mikrokontroller, ein Mikrofon und Beschleunigungssenso-
ren enthält. Basierend auf Stromverbrauchsmessungen von ausgewählten
Operationsmodi und einem vereinfachten Modell der Hardware berechnen
wir deren Leistungsaufnahme für verschiedene Abtastfrequenzen, Abtast-
längen und signalverarbeitende Algorithmen.

Schlussendlich kombinieren wir die zwei Metriken ‘Erkennungsrate’
und ‘Leistungsverbrauch’ zu einer Pareto Grafik. Mit Hilfe unserer Fall-
studien zeigen wir, dass die in dieser Arbeit vorgestellten Methoden die
Batterielebensdauer um Faktor 2 bis 4 verlängern können bei beinahe
gleichbleibender Erkennungsrate. Letztendlich verbraucht ein am Hand-
gelenk getragenes System, das 5 verschiedene Küchengeräte anhand des
Geräusches mit einer Wahrscheinlichkeit von 94% erkennt, nur 0.55mW.
Dadurch kann es für 42 Tage mit einer nur 2 cm3 grossen Litium-Ionen
Batterie betrieben werden.



2 Chapter 1: Introduction

1.1. Context Recognition and Activity Recognition

1.1.1. Context-Awareness

Wearable Computing [1] envisions a future in which a mobile computer is
not just a smaller version of a desktop computer that allows us to do office
work while being en-route. Instead, a wearable computer is an integral
part of our everyday outfit, always operational and equipped to assist us
in dealing with a wide range of situations. Applications may range from
tourist guides [2], through remembrance agents [3] to health monitoring
equipment [4].

A system that can perform all these tasks needs to be context aware.
Context-awareness can be described as the ability of a system to model
and recognize what the user is doing and what is happening around him,
and to use this information to automatically adjust its configuration and
functionality. Abowd defines context-awareness as follows:

“A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends
on the user’s task” [5].

For further literature studies on context-awareness we refer to [5–7].
While some of the context information can be retrieved from sensors

not carried by the user, e.g. from beacons in the environment for location
information, many applications require sensors to be placed on the user’s
body or in his clothes, e.g. accelerometers for motion recognition or sensors
to monitor body functions like pulse and blood pressure. In this work we
concentrate on the second method of information retrieval, i.e. the one
with body-worn sensors.

1.1.2. Activity Recognition

The term User Activity can have various meanings. Very general, it is the
state or quality of being active [8]. It can involve social activity as well as
physical activity. In context recognition, activity recognition is usually as-
sociated with detecting human motion. However, the term is understood
differently by different researchers: Polana and Nelson [9] use it only for
periodic motions patterns like walking, running, cycling. Bobick [10] dis-
tinguishes between movements, activities and actions. In his terminology,
for example, the action of heating milk in the microwave includes dif-
ferent activities like rinsing the cup, opening the door of the microwave,
pressing the power button, etc. Each activity consist of a sequence of dif-
ferent movements like raising the arm, grabbing the doorknob, swinging
the door around, etc. In this work, we use Bobick’s definition of activity
but broaden it to include simple actions like ‘operating the microwave’.
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Note that this simple action does not mention the milk from the previous
example.

User Activity Recognition is the act of detecting the motion of
a user. An activity is a sequence of simple movements of the
human body and its limbs. Examples include simple activities
like ‘walking’, through more complex activities like ‘opening the
door’, to simple actions like ‘getting a coffee’. In this work, we
particularly focus on activities which require movements of the
user’s hand or arm.

Activity recognition can be regarded as a sub-category of context recog-
nition since it tries to detect the context of a user by means of his actions.
For further literature studies on human motion recognition we refer to [11].
In a wider sense, the topics activity recognition and context recognition
are part of the research field pattern recognition.

1.2. Use of Sound for User Activity Recognition

In this section, we motivate the use of sound for activity recognition. Based
on everyday observations, we list examples and scenarios where sound
could be a useful means to recognize user activity. Chapter 2 will then
outline how to prove this hypothesis. In Chapter 2, we will also discuss
the limitations of this approach as well as the circumstances under which
sound-based activity recognition is feasible.

1.2.1. Why Using Sound?

Most researcher in the field of user activity detection use motion sensors
like accelerometers or gyroscopes [12–16]. Alternatively, video analysis is
used [17]. While computer vision corresponds closest to the way humans
perceive their environment, it has many problems of its own. This includes
sensitivity to light conditions and background clutter as well as large
computational complexity.

Sound is rarely related to activity recognition. In case microphones
are used, it involves speech or location detection. The later is based on
the assumption that through an acoustic analysis of the environment the
whereabouts of the user can be narrowed down to locations like a restau-
rant, a shop, a car, etc.

In this work, we introduce sound as an alternative source of informa-
tion to detect user activity. In this case, “detecting user activity” is neither
related to detecting if the user is speaking or not, nor does it mean we
use sound to find out where the user is located. Instead, “user activity”
is related to hand movements and the therewith associated or produced
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sounds. Many tools we use everyday produce a distinct sound. Even more,
many of our actions are accompanied by a clear and distinct sound, be it
typing on a keyboard or closing a door.

The amount of information contained in a sound signal is best illus-
trated by the fact that blind people can often get around using audio
information alone, in many cases developing nearly a perfect understand-
ing of the situation. Indeed, for human beings sound is the second most
important source of information after vision. Therefore, it seems natural
to use sound to recognize user activity. We see three advantages:

• Some activities or actions are easier to detect with sound than with
other sensors. As a simple everyday example consider getting a coffee
from a machine. In general, this action is not associated with a single
characteristic gesture. Rather, it involves a series of hand movements
such as putting the cup under the outlet and pressing a switch. These
activities can be performed in a variety of ways and sequences (e.g.
the water tank can be filled before the empty cup is put under the
outlet or vice versa) and are thus difficult to recognize using both
vision and wearable motion sensors – in particular from continuous,
non-segmented data. On the other hand, most coffee machines tend
to make a very distinct sound, which can be reliably recognized.
Additionally, the duration of the sound determines the type of coffee
(espresso, regular, double) the user has chosen: something which
cannot determined with other sensors, except maybe with vision
(provided that the user does not block the view) or with sensors
integrated into the coffee machine.

• The sound produced by a machine or a tool is independent of the
user. A user can perform an activity in a variety of ways: one or two
handed, right or left handed, slow or fast, etc. An activity recognition
system based on motion sensors needs to take this into account,
while a sound analysis always yields the same result, no matter how
the user performs the action. To some level, this is even true for
sounds that do not stem from a machine.

• The third point concerns the data rates that have to be analyzed
for different sensor modalities. Consider the order of magnitude es-
timates for the data rates, given in Table 1.1. Even though the data
rates might differ if a specific application is considered, it is obvi-
ous that processing sound data is computationally less complex than
video data but more complex than motion data. However, the higher
computationally complexity compared to wearable motion sensors
is compensated by the two aforementioned advantages.
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Table 1.1. Approximate data rates for different sensor modalities.

Input Type # Sensors Sampling rate Resolution Data rate

Motion 10 100Hz 8 bit 1 kB/s

Sound 1 10 kHz 8 bit 10 kB/s

Video 1 4608 kHz a 8 bit 4608 kB/s
a assuming 15 fps and VGA resolution

For obvious reasons, using sound to detect activities will not work with
silent activities. Therefore, a user activity recognition system will always
have to rely on other sensor modalities as well. This is not necessarily a
drawback: information from motion, sound and vision sensors can be used
to complement one another and consequently used to gain a complete
understanding of the current context.

1.2.2. Relevant Application Domains

An analysis of several wearable application domains reveals that most
scenarios contain sound sources which could be used for our approach.

Household Monitoring and Assistance It has been shown, that fol-
lowing user activity to monitor the elderly and ill, and assisting them
to handle their daily chores, could improve their quality of life while
reducing healthcare costs [18]. Relevant audio sources in this type of
scenario can be found in the kitchen (kitchen appliances like mixer,
microwave, coffee machine) or in the bathroom (toilet flush, water
tap, brushing teeth, hairdryer, electric shaver). Other examples are
telephones or vacuum cleaners. Sounds generated by the user itself
by opening cupboards and doors, washing dishes, chopping vegeta-
bles, stirring something with a spoon or a fork, or rubbing on a
surface to clean it, will also work.

Assembly and Maintenance Using wearable computers to provide on-
line access to user manuals and remote experts in assembly and
maintenance task is among most successful applications of wearable
computing, e.g. [19–21]. In this scenario, the relevant sounds are
produced by tools, machines and manual actions such as drilling,
hammering or sawing.

Office Activity Understanding the activities of the user in an office en-
vironment can be important for a number of reasons including the
desire to analyze and optimize workflow and online collaboration.
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The main relevant audio events in the office scenario are the operat-
ing sounds of different equipment, ringing telephones, opening and
closing sounds of drawers and doors or typing on a keyboard.

Outdoor Guidance Location and context based wearable guidance and
assistance systems have been among the first wearable scenarios in-
vestigated, e.g. [2]. While the outdoor environment often tends to
be cluttered with different non-relevant sounds, there are a number
of things like passing cars or trains as well as weather related events
(raindrops, strong wind) that have a clear, recognizable audio sig-
nature. Although this application domain is similar to scenarios in
auditory scene recognition (see Sec. 1.4.1), the main purpose is not
recognize a scene or location, but for example to warn a hearing
impaired person of an approaching car.

Summarizing the above scenario discussion, it can be said that in all
scenarios there are many user activities that are accompanied by a sound.
The length of the sounds in questions varies from very short (e.g. the click
of a switch, closing of a door) to more or less continuous (e.g. operating
noises of an appliance).

1.3. Importance of Power Awareness

Wearable Computing encompasses a wide variety of systems ranging from
mobile computers like PDAs, through smart badges to intelligent textiles.
One important part of the wearable computing vision is that of minia-
turized sensor networks seamlessly integrated in different parts of the
user’s outfit, including clothes and accessories such as jewelry, watches,
keychains, glasses, etc.

Seamless integration in clothing and accessories invariably means that
the sensor nodes have to be small and unobtrusive. For example, placing a
sensor node inside a ring means that only a couple of cubic millimeters of
space is available. In most cases, a wired connection to an external power
source is not desirable since cables on the body are perceived as obtrusive
and uncomfortable. Thus, a sensor node has to accommodate not only the
sensors and electronics, but also the battery and/or a power generation
system.

Table 1.2 provides an overview of how much power state of the art
wearable energy-harvesting technologies can deliver. With the exception
of heel-strike harvesting in electric shoes which can produce 5 to 800mW
for walking [22] or for solar cells larger than 3 cm2 in bright light, available
powers of miniaturized generators are generally well below 1mW. Lithium-
ion batteries have a volumetric energy density of 250–500mWh/cm3 [8].



1.3. Importance of Power Awareness 7

Table 1.2. Comparison of energy-harvesting opportunities [22–24].

Energy source Power density

Ambient lighta (outdoors) 0.3–15mW/cm2

Ambient lighta (indoors) 0.01–10µW/cm2

Vibrations (piezoelectric conversion) 100–200µW/cm3

Vibrations (electrostatic conversion) 5–50µW/cm3

Thermoelectricb 60µW/cm2

Ambient airflowc 1mW/cm2

a includes solar cell efficiency, b with 5°C temperature differential, c 35 liters/min

This has to be set in contrast to the power consumption of sensors and
processors: in continuous operation accelerometers or microphones con-
sume 0.8–1.3mW (cf. Table 5.1), processors in PDAs 0.5–3W [25, 26] and
microcontrollers 0.5–10mW [27].

While a user usually accepts that he has to recharge his PDA or cell
phone once a day or week, sensor nodes integrated into clothing should
be fully autonomous – operating for months or years on a miniature bat-
tery. Thus, reducing the power consumption of the system should be a
major design objective for wearable systems. In fact, without the ability
to run sensor nodes at sub-milliwatt power levels, the concept of body
worn sensor networks is not feasible.

Therefore, we postulate that in the design process for a wearable con-
text recognition system not only the recognition rate should be considered
but also the power consumption. As a consequence, our goal is not just
to optimize recognition performance, but to gather as much useful infor-
mation as possible while keeping the overall system power consumption
to a minimum. In particular, we need to carefully consider what type
of information can be extracted from what sensor with the least power
consumption, and what algorithms are best suited for low power imple-
mentation. In addition, computation-communication trade-offs must be
considered to determine which parts of the computation are to be per-
formed locally on the sensor, and which must be outsourced to a central
unit.
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1.4. Related Work

1.4.1. Audio Recognition in Wearable Computing

Activity Recognition with sound: As mentioned in Sec. 1.2.1 sound
is rarely used to detect user activity. In fact, besides the work we have
previously published in [28–31], we are aware of only two groups that use
sound for activity recognition1. Both use stationary microphones:

Istrate et al. have published several papers that deal with medical
telemonitoring of the home by means of sound, e.g. [32, 33]. Microphones
placed in every room of the apartment are used to spot events which need
to cause an alarm (breaking of glass, falling of objects or screams) out of
everyday sounds like ringing phones, footsteps, moving chairs or slamming
doors. While their system detects the presence of a sound very accurately
and classifies them with 90% accuracy, it is paid with high computational
complexity and requires a PC to do the sound processing in real time. As
a further drawback the sounds cannot be associated with a person (e.g.
some of them could be caused by a pet) and therefore additional sensors
like location sensors are required.

Chen et al. [34] use sound to monitor activities in the bathroom such
as showering, washing hands, brushing teeth, urination and flushing the
toilet. They justify the use of a stationary microphone with the bath-
room environment, where users might take off their sensors, e.g. to take
a shower.

Auditory Scene/Context Recognition: Auditory Scene Recognition
and Auditory Context Recognition also relate audio events to activities.
However, in those areas the term ‘activity’ is used in a broader sense
than defined in Sec. 1.1.2. It includes activities which do not require any
movements like watching TV or sitting in a restaurant.

Auditory scene recognition aims at recognizing distinct sound events
through an acoustic analysis of the environment. The goal is an automatic
segmentation, indexing, and retrieval of events. Auditory scene recognition
is often used to discriminate TV programs like commercials, sports, news
reports, and weather forecasts [35, 36] or different music styles and music
instruments by classifying audio signals into categories like speech, music,
song, environmental sound, speech with music background, silence, etc.
[37–39].

1Here we use our definition of activity. Of course, one could argue that ‘speaking’
is also an activity and that there are many works on speaker recognition or speech
detection. Furthermore, in auditory scene recognition, sound is used to detect the
location the user is in. Of course, every location implicitly contains a set of activities
that can or cannot be performed in it; e.g. in a restaurant it is most likely that one
will drink or eat something, and not perform major physical exercises.
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Auditory context recognition aims at recognizing the environment or
the user’s context. One possible application is the automatic adjustment
of the noise canceling filters in hearing aids to account for different situ-
ations like clean speech, speech in noise, noise or music [40]. Kern et al.
[41] and Clarkson et al. [42] used auditory context recognition to deter-
mine the best moment or situation to interrupt the user. Kern grouped
the sounds into restaurants sounds, street noise, lecture, conversation, and
a garbage class. Substantial work in classifying a large number of envi-
ronmental sounds was done by Peltonen et al. [43]. They distinguished
between 17 different scenes: street, nature, road, construction, bus, car,
train, subway train, restaurant, supermarket, lecture, office, library, bath-
room, church, railway station and subway station. Peltonen et al. were
able to classify them with an accuracy of almost 70%. They also cat-
egorized the scenes into the higher level categories: outdoors, vehicles,
public/social places, office/meeting rooms, home and reverberant. For the
aforementioned 17 sounds, Eronen et al. [44] compared human ability to
acoustically recognize different environments to machine learning perfor-
mance. Not surprisingly, humans recognize scenes which contain a broad
range of sounds better than a computer. Examples include restaurants,
cafes or the concept of being outdoors.

Speech and speaker recognition: The most advanced research topic
in audio recognition for wearable computing is speech and speaker recog-
nition.

Speaker recognition or tracking focuses on distinguishing between dif-
ferent speakers. Research in this field varies from distinguishing between
‘user vs. rest’ [3] with a collar microphone, to attempts to separate and
track different speakers in a room in a mobile setting with microphone
arrays [45].

Speech recognition aims at identifying spoken works and phrases. Some
examples of speech recognition in a wearable environment are given in
[46, 47]. Especially earlier generations of wearable hardware outsourced
the recognition process to a desktop PC, e.g. [47, 48]. Later work in speech
recognition accounts for the limited performance of mobile processors [49]
or even trades word accuracy for power [50].

1.4.2. Trade-offs in Wearable Computing

The design of a wearable computing system needs to account for various
factors: power, performance, wearability, availability of sensors and com-
munication channels, to name just a few. An example of a system design
approach to power-aware mobile and wearable computers can be found in
[51] and [52]. A more complex systematic high level approach for designing
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distributed wearable systems is described in [53, 54]. There, the authors
focused on automated design methodologies for selecting the right set of
processor, sensors, sensor location and transceiver for a wearable sensor
system.

As for systems with a particular context recognition task, systematic
design methodologies which explore the complete design space have not
been presented so far. Usually, recognition performance is optimized while
other factors like power consumption, memory requirements or communi-
cation bandwidth are considered as a constraint and not as an additional
optimization parameter. Cakmakci et al. [55] present context recognition
with the constraint of limited resources. Features for audio classification
tasks are compared in [43] and [56], but power awareness is only mentioned
on the side. Investigations on the influence of different system parameters
(e.g. sampling rate, resolution) on context recognition accuracy have been
made in [28, 41, 57]. There, power consumption concerns came into play
by using the general assumption that ‘lower sampling frequency equals
less power’ but a detailed investigation was missing.

On the other hand, many papers deal with power saving techniques
on the hardware side without considering the complexity or performance
of context recognition algorithms. For example, energy considerations at
different hardware layers in miniaturized sensor nodes were investigated in
the Smart Dust [58] or the µAMPS [59] project. A short review of power
saving techniques will be presented at the beginning of Chapter 5.

First ideas of how to deal with the power and performance trade-off
in context recognition systems were reported in our earlier work [29, 60]
where the impact of sampling frequency and algorithmic complexity on
recognition accuracy and power consumption was examined. The need for
this trade-off is also acknowledged by others. In [61] a DSP for heartbeat
detection trades number of input bits for recognition performance. Nede-
vschi et al. [50] present simulations for an speech recognition ASIC where
they explored various trade-offs concerning recognition accuracy, energy,
computational workload and memory size. In the field of context recogni-
tion, Krause et al. [62] present a trade-off analysis for a given hardware.
They trade prediction accuracy for power consumption in a wrist-worn de-
vice that can discriminate between walking, running, sitting, standing and
climbing or descending stairs with the help of accelerometers. Basically,
Krause et al. use two parameters to achieve the trade-off: one is sampling
frequency while always sampling for the same duration, the other one is
duty cycle. In contrast to our sound-based activity recognition scenarios,
they can assume that at any given time one of the considered activities
occurs. Thus, they introduce different duty-cycling strategies like uniform
or exponential spacing and spacing by learned transition probabilities; for
example, if a person was walking for the last minute, it is most likely that
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he will continue to do so in the next second and hence the duty cycle can
be lowered.

1.5. Research Objectives and Contributions

In our work we explore the novel approach to use sound to detect user
activity. We discuss limitations and advantages of the approach. We prove
that reasonable scenarios exist where sound is a useful means to detect
activities – in some cases even superior to other sensor modalities. To
prove our point, we present a detailed analysis of the recognition chain:
from signal acquisition to classification result. To our knowledge, this has
not previously been done in such a level of detail.

Moreover, context and activity recognition systems are usually tuned
to deliver high recognition rate. However, size and battery capacity of
wearable systems impose limitations to the type and amount of sound
processing that can be done. The challenge is to carefully select the pa-
rameters of the recognition process to achieve on the one hand a high
recognition rate and on the other hand low power consumption. Thus, our
work describes advances towards the development of a power optimized
recognition system: a system that is tuned during the training phase of
the activity recognition process to represent a trade-off between power
consumption and recognition accuracy. This is the second novelty.

To demonstrate our method for achieving such a trade-off, we present
several realistic case studies. We benchmark sound processing algorithms
on a wearable platform and discuss their suitability for both user activity
recognition and low-power signal processing.

1.6. Outline

The remainder of this work is organized as follows:

• Chapter 2 explains our approach and gives an overview of the design
process. Especially, we introduce constraints which help to break
down the problem of sound-based activity recognition on a low
power platform.

• Chapter 3 describes the data collection sessions that were performed
as part of the case studies. Furthermore, we introduce our hardware
platform on which the sound classification algorithms are supposed
to run.

• Chapter 4 deals with algorithms for sound-based activity recognition
that are able to run on a platform with limited processing power.
We analyze the whole recognition chain from signal acquisition to
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classification result and show the influence various system param-
eters have on the recognition accuracy. We do this theoretically as
well as practically with the help of the data from our experiments.

• Chapter 5 introduces the power aspect. The first part of the chapter
illustrates the possibilities to reduce the power consumption of a
general purpose sensor node. The second part of Chapter 5 demon-
strates our approach to combine power consumption and recogni-
tion accuracy during the training phase of the context recognition
system. We conclude by listing several parameters which represent
the optimal trade-off for our hardware and our recognition task.
Furthermore, we show the improvements achieved with our method
compared to randomly selected parameters.

• In Chapter 6, we close the circle and discuss our results with respect
to our initial assumptions made in Chapter 2. Finally, we conclude
our work on sound-based activity recognition with a list of achieve-
ments and propositions for further research.

• Appendix A answers the question of how to deal with varying, un-
equal occurrence of individual classes. We apply different metrics
from machine learning to our case study and compare their suitabil-
ity to deal with class skew.

• Appendix B is thought as a reference and lists audio features, clas-
sifiers, classifier fusion methods and definitions in the field of acous-
tics.



2
Approach

This chapter explains our approach to sound-based activity recog-
nition. In the first part of the chapter, we discuss our basic as-
sumptions concerning the architecture of a wearable system, mi-
crophone placement, number and type of sounds to be detected
and the type of hardware to be used. In the second part of the
chapter, we argue why we favor an empirical approach to analyze
a recognition problem. We present a short overview of the method
that will be used in the subsequent chapters. This method allows to
find a trade-off between recognition rate and power consumption
during system training.
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2.1. Starting Position and Constraints

2.1.1. System Architecture and Signal Flow

We envision the audio classification system embedded in a larger frame-
work of a wearable context recognition system: A number of miniaturized
sensor nodes are integrated into the users outfit, where they can best
extract the relevant information, e.g. motion sensors on different limbs,
external light sensors on the shoulders, etc. [3, 63]. The sensors provide
context information to a central wearable computing node which is also
responsible for sensor configuration and control (cf. Fig 2.1). Anliker et al.
[53] show that the communication link determines the trade-off between
wearability and power consumption: A wired system is less wearable than
a wireless one, but consumes less power. As argued in Sec. 1.3, we chose
a wireless communication link since it offers more flexibility in terms of
placement of the sensor nodes.

Central 

Wearable 

Computer

Sensor

Node

Sensor

Node Sensor

Node

Sensor

Node Sensor

Node
Sensors

Power Supply

Processor 

or Micro-

controller

Transceiver

Figure 2.1. System architecture of sensor network (left) and schematic
of the Sensor Node (right).

Furthermore, we assume that the sensor nodes are able to perform a
limited amount of local processing. The type of processing that can be
performed locally is illustrated in Fig. 2.2. One can either transmit raw
sensor data, filtered and segmented data (e.g. only interesting segments),
features or the classification result. Each additional step increases the
average power consumption of the processor, but at the same time reduces
the amount of data to be transmitted. Local processing is justified for
several reasons:

• Wireless communication is generally more power consuming than
computation [58, 64]. Therefore, computing a classification on the
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Figure 2.2. Signal flow of the recognition process. The type of data to
transmit depends on the available bandwidth, the processing capabilities of
the processor and the available power (see text).

node is more power efficient than transmitting the raw sensor data
for off-line processing. This is particularly important for sound sen-
sors due to their high sampling rate.

• Raw sensor data occupies more bandwidth than features or the clas-
sification result, thus increasing the collision probability with pack-
ets from other sensor nodes.

• In many applications there is only one single compact device (e.g. a
watch) available for context recognition. Thus, calculations have to
be done locally.

In this work, we focus on sensor nodes which perform the whole recogni-
tion process locally – from signal acquisition to classification. Thus, the
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challenge is to prove that sound-based activity recognition is feasible on
such nodes.

Designing a sound-based user activity recognition system is a multi-
objective optimization problem [53, 54], with an almost infinitive number
of sounds to be recognized and numerous possibilities for sensor place-
ment, configurations and platforms. Therefore, we introduce reasonable
constraints and show how these constraints influence the user activity
detection process. These constraints, described in the next four sections,
involve mainly the microphone placement, the hardware and the number
and type of sounds used. At the end of our work, in Chapter 6, we will
review some of the constraints and discuss how our system would perform
if they were eased.

2.1.2. Microphone Placement

Generally, important information is contained not just in the type of sound
but also in the location of its source. In our case, the audio information
is even more valuable if we can differentiate between sounds that occur
in the immediate vicinity of the user (which are probably related to the
user’s activity), and sounds that occur farther away from the user.

Most activities involve some hand movements (e.g. switching on an ap-
pliance or performing a noisy manual task) and therefore a wrist mounted
microphone predominantly picks up sounds that are caused by the user
or occur in close proximity to the user’s hand1.

2.1.3. Number of Sounds

If local processing on the sensor node consists only of a pre-processing
stage, e.g. a filter, then such a sensor node can be used for a very broad
range of sounds since it does not require any prior knowledge of the type
of sounds to be investigated. But in general, pre-processing does not re-
duce the amount of data to be transmitted. On the other hand, to perform
high-level signal processing locally (e.g. sound classification, which is ba-
sically comparing the actual sound signature with signatures of known
sounds), some a priori knowledge of the sounds is required in order to ap-
ply the optimal algorithms. Therefore, we assume that other sensors and
background information are available and can be used to constrain the
number of sounds. In most cases, other sensors (GPS, network location,
infrared/ultrasonic beacons, RFID tags, inertial navigation, etc.) can re-
strict the user’s whereabouts to a room, part of a room, or a particular

1Some sound-based activities might not be related to hand movements and may re-
quire different microphone positions. One example is analyzing eating patterns with the
help of chewing sounds. As we have shown in [65], the optimal microphone placement
for this kind of problem is in the inner ear, directed towards the eardrum.
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outdoor location. A study of the scenarios in Sec. 1.2.2 showed that in
most locations there are just a few (between 5 and 10) frequently occur-
ring, relevant sounds. Thus, we focus on small groups of sounds in order
to reduce the available search space.

In most everyday situations, people tend to spend considerable amount
of time at a limited set of locations. When at work one would move pre-
dominantly between a few offices, the lab, and the cafeteria. Those places
can be regarded as higher level context. Thus, it is possible to organize
relevant sound groups into sets, with each set corresponding to a certain
higher level context and being relevant during a different part of the day.
As a consequence, at any given time an audio classification node contains
only the signatures for the currently relevant sound group set. Whenever
there is a change in high level context, the corresponding set is downloaded
from the central wearable computer. Since in general such a change in high
level context will happen only a few times a day, the reconfiguration of
the sensor node is not relevant for the overall power consumption.

2.1.4. Hardware Constraints

Usually, three types of hardware are differentiated:

• dedicated hardware (e.g. ASIC)

• reconfigurable hardware (e.g. FPGA)

• general purpose hardware (processors)

Dedicated hardware achieves the highest performance and the lowest
power consumption per operation of all three candidates. Its drawback,
however, is its inflexibility. A primarily study to use dedicated hard-
ware for sound-based activity recognition was performed in [28]. A good
overview over circuit techniques for dedicated hardware architectures for
sensor nodes in general is given in [59].

As the previous section has shown, the scenarios require for a certain
flexibility, e.g. to adapt to a new environment with new types of sounds.
Therefore, we prefer the last two types of hardware. A case study how re-
configurable hardware can be used in a wearable computing environment
was conducted in [66]. In this work, we investigate the most commonly
used architecture in the wearable field so far [67–73]: a miniaturized, low
power node containing a set of sensors and a processor with clock frequen-
cies in the MHz range.

Flexibility usually has to be paid with increased power consumption.
The platform investigated in this work and described in detail in Sec. 3.2
presents a trade-off between flexibility and power consumption. The use
of a Texas Instruments MSP430 microcontroller, instead of a processor
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with several hundred megahertz, lowers the power consumption, but at
the same time imposes limitations on speed and the amount of data that
can be handled: the processing capabilities of the microcontroller are not
sufficient for continuously sampling and processing the high data rates for
sound as indicated in Table 1.1. Instead, we are content with processing
data on a frame by frame basis – even allowing a gap between frames. We
also have to deal with limited power saving possibilities. Basically, the only
available options are changing the processor frequency, switching between
power saving modes of the processor, and disabling sensors and external
components. One task of this work is to show what kind of sound-based
activities can be recognized with what accuracy if only such a hardware
platform is available.

2.1.5. Type of Sounds: Quasi Stationary Sounds

With regard to the hardware restriction and power limitations, we con-
strain ourselves to sounds and algorithms that do not require continuous
operation of the microphones and can be used with a low duty cycle (ap-
prox. 5 to 20%). We call this class of sounds dominant, quasi stationary
sounds.

By dominant, we mean that the sound in question is the loudest sound
received by the system. Thus, the recognition does not have to deal with
separating the relevant signal from background noise. This can be achieved
with the right microphone placement (see Sec. 2.1.2 and 4.2.4).

Stationary refers to the temporal evolution and implies that the sound
is essentially constant over time. This means that, except for windowing
effects, the spectrum of the sound is identical in all time slots regardless of
their position and length. Sound classification is thus reduced to pattern
matching of the spectrum acquired from an arbitrary sample window.
Neither signal segmentation nor time series analysis of the different phases
of a sound (such as the phonemes of a spoken word) are required.

We speak of quasi stationary sounds because most relevant sounds
have a negligible initial and terminal phase. They have, however, a long (at
least about a second) main phase that can be described as an essentially
stationary sound with added noise. The departure from strictly stationary
sounds means that instead of having exactly identical spectra, different
time windows from the same signal will have similar, but slightly varying
spectral signatures.

The analysis of a number of scenarios in Sec. 1.2.2 has shown that
many events occurring in the environment are accompanied by a loud
sound that is clearly distinguishable from the background. In addition,
the majority of such sounds fall within our definition of quasi stationary.
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We mainly choose quasi stationary sounds since they do not require to
find the start of a sound very accurately and therefore allow a low duty
cycle of the hardware. As we have shown elsewhere [30], the algorithms
used in this work also allow us to recognize very short sounds like opening
and closing sounds of a drawer or the sound of a slamming door. However,
the drawback is that the recognition process needs to run continuously to
spot such short sounds.

2.1.6. Working with Isolated Events

At last, we assume that we apply our recognition algorithms onto isolated
events. In other words, every time the recognition process is started, we
can be sure that the user performs one of the activities from a previously
defined set of activities. While this is a very efficient way to deal with
the Null class (i.e. all irrelevant activities), since it simply avoids it, it is
certainly not a real world scenario. However, we justify this assumption for
the following reasons: Generally, the number of audio signals that can act
as noise signals (i.e. covering mouth while coughing or sneezing, touching
objects or clothes while walking, loud environmental noise, etc.) are too
large and too unpredictable. Therefore, we do not intend to model or train
a Null class based on a collection of noise signals. Instead, the approach
is to detect all the relevant sounds first and classify them in a second
step. Thus, the recognition system needs only to be tuned to classify the
relevant sounds with high accuracy.

In terms of power consumption this process is advisable: it is not ef-
ficient to run the whole recognition process all the time. Instead, a seg-
mentation of the input signal based on a low level signal analysis should
be preferred. Different methods with various complexities have been pro-
posed: In the simplest case, segmentation is realized with a threshold
detector applied to the signal energy. In our case this approach works rea-
sonably well since the hand, and hence the microphone, is so close to the
occurring sound. In the course of this work we will discuss the threshold
detector as well as an additional method based on the difference of the
signal amplitudes of two microphones. More complex approaches as pro-
posed by others are conceivable as well. A similarity search can identify
segments in which the signal is very similar to trained sounds [74]. Vacher
et al. [75] propose to cross-correlate two successive normalized windows. A
change in the signal is indicated by the maximum of the cross-correlation
falling below a threshold. Istrate et al. [32] use wavelets to detect short
audio events and only consider the segment as relevant if the energy of
selected wavelet transform coefficients exceeds a threshold. Furthermore,
high level context information like the expected duration of a sound could
be used to refine the classification result.
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2.2. Analyzing a Context Recognition System

2.2.1. Need for Empirical Analysis

Besides elaborating on the interesting fact, that we can detect user ac-
tivity based on sound analysis, our goal is also to show how a system
can be designed that delivers high recognition rates but at the same time
has a low power consumption. Obviously, most design choices favoring
good recognition rates are likely to restrict power saving options. Gener-
ally, adding sensors will improve recognition but also increase the power
consumption. Similarly, recognition rates tend to be improved by more
advanced features and classifiers. On the other hand, such features and
classifiers will be more computationally intensive and thus reducing the
opportunities for using low-power modes.

In short, a power conscious design of a context recognition system is a
complex multi-objective optimization problem. A particular difficulty in
solving this problem lies in modeling the influence of the design choices
on both recognition accuracy and power consumption. Concerning power
consumption and recognition accuracy we note the following:

Power Consumption: Today, all methods aimed at modeling the power
consumption of an algorithm rely on a detailed empirical characteri-
zation of the processor, e.g. [76]. In case an exact estimate is needed,
either simulations [25, 77, 78] or power measurements of the target
hardware running the algorithm must be performed. Methods based
on simulations usually consider only the power consumption of the
processor: sensors or related electronics are not simulated. Purely
theoretical comparisons of the power consumption of different algo-
rithms are largely an open research problem.

Recognition Accuracy: As far as recognition accuracy is concerned,
for most relevant problems the probability density functions of the
classes are not known, which is why training is required. Therefore,
there is no way to theoretically model the influence of feature se-
lection on recognition accuracy. Instead, the accepted approach is
to record a representative data set, start with a reasonable choice
of parameters (e.g. sampling rates, features, classifier settings) and
repeatedly evaluate different variants of the system until an opti-
mal configuration is found. The evaluation can either use abstract
measures such as mutual information [54] or the actual recognition
rates.

The above means that a combined power consumption and recognition
rate optimization must heavily rely on an empirical approach since accu-
rate models are lacking.
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2.2.2. Method Overview

In this work, a systematic, empirical design process to optimize a con-
text recognition system with respect to the ‘recognition rate versus power
consumption’ trade-off is described. Basically, it enhances the application
specific training already known from context recognition with a power op-
timization. This is a novel approach in the design of context recognition
systems. The process takes into account a variety of parameters such as
sensor choice, sensor operating parameters, feature choice and the use of
different classifiers. We evaluate the impact of these parameters on the
recognition accuracy as well as the power consumption.

Experiments
[3.1]

Hardware Platform
[3.2]

Parameter Selection
[4.2]

Power Measurements
(with selected Pa-

rameters) [5.2]

Recognition
Performance [4.3]

Power vs.
Recognition Rate

Trade-off [5.3]

Figure 2.3. Empirical design process in context recognition systems.
Numbers in brackets refer to the section in which each topic is discussed.

The process in depicted in Fig. 2.3. We start with two basic require-
ments: a hardware platform and high quality data from an experimental
setup (Chapter 3). The experimental data is used to calculate the recog-
nition performance (Chapter 4), whereas the hardware is used to measure
the power consumption (first part of Chapter 5). The results are combined
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to get a detailed experimental investigation of opportunities for power sav-
ings and recognition rate enhancements in a specific context recognition
problem. From this evaluation a pareto-optimal system architecture can
be derived for a given set of criteria (second part of Chapter 5). The pa-
rameters of this system will form the optimal trade-off between recognition
accuracy and power consumption. Finally, the feedback loop in Fig. 2.3
indicates that parameters do not have to be selected with a brute-force
method: non-promising variants can be discarded early in the process,
which in turn speeds up the search procedure for suitable parameters.

2.3. Summary

Designing a sound-based user activity recognition system is a multi-
objective optimization problem which requires to be analyzed with em-
pirical methods. As virtually all context recognition systems require ap-
plication specific training, it is reasonable to assume that such training
can be combined with power consumption optimizations. To illustrate our
method, we will present case studies: they consist of several experimental
data collections and a hardware platform. To make a low-power approach
feasible, we made the following assumptions:

• microphones mounted on the wrist

• use of a low-power sensor node with a microcontroller

• as far as possible, local execution of the recognition process

• only a few dominant, quasi stationary sounds present

Obviously, these assumptions reduce the complexity of the problem and
impose constraints on the type of applications and recognition tasks that
can be addressed. However, as we have argued, the assumptions still al-
low us to implement many of the scenarios from the application domains
discussed in Sec. 1.2.2.
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Case Studies

This chapter introduces the case studies conducted to support our
empirical approach. The first part deals with several experiments
carried out to collect real-world data on which we later tested the
recognition algorithms. We describe two data collection sessions
performed with high resolution equipment: one which consists of
several scenarios but is recorded with just one user and covers
only the stationary phase of the sounds, and a second one which
involves just one scenario but was conducted with eleven test sub-
jects equipped with a wrist-worn microphone and accelerometers.
In the second part of the chapter, we present the hardware of our
low-power sensor node. This sensor platform will be used in later
chapters to measure power consumption and execution time of
various recognition algorithms.
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3.1. Experiments

To evaluate our approach, we collected data in several experiments. In our
subsequent work, these data collections were used to evaluate the recogni-
tion algorithms. Since part of the design methodology includes finding the
optimal signal parameters (e.g. bit resolution or sampling frequency), the
experiments were recorded with high resolution equipment (16 bit) and
high sampling frequencies (>40 kHz).

We collected two sets of data: the first set contained four scenarios with
in total 19 different audio sources. The recordings were done by one user
in a static way, i.e. a microphone was held close to a running appliance.
In contrast, the second set consisted of only one scenario with 5 audio
sources. But this time, it included 11 users which had to turn on and off
the devices, while a wrist-worn microphone recorded the occurring sounds.
The first set was used to get preliminary input data for the the signal
processing algorithms and to prove that the algorithms work for a variety
of sounds. The second set was used to get a more accurate estimation of the
algorithms’ performance and to investigate the use of additional sensors.
Furthermore, the second set gave insight into the algorithms’ capability
to deal with non-stationary initial phases of the sounds.

All sounds belong to the class of quasi stationary sounds (cf. Sec. 2.1.5)
and it was made sure that the stationary phase lasts for at least one sec-
ond. Most sounds stem from machines, only a few sounds were produced
by using a tool (cf. Table 3.1). Thus, the considered sounds cover only a
subset of sounds that can be analyzed in the four application domains de-
scribed in Sec. 1.2.2: mainly machine produced, quasi stationary sounds.
As explained in Sec. 2.1.5, these sounds were chosen because they do not
need continuous processing and thus are suited for low-power sound-based

Table 3.1. Sounds of Data Collection I.

Sound group Sounds

Kitchen microwave, coffee grinder, coffee maker,

hot water nozzle, water from water tap

Office printer, copy machine, telephone,

typing on keyboard, desk-ventilator

Workshop sawing, drilling, hammering,

grinding, filing

Outdoor inside tram and bus, passing cars,

raindrops on umbrella
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user activity recognition. As proven elsewhere [30, 65], the recognition al-
gorithms used in our work are also suited to recognize other type of sounds,
e.g. very short sounds like closing of a drawer or chewing sounds.

3.1.1. Data Collection I

Scenarios: The sounds were chosen to represent the scenarios described
in Sec. 1.2.2, while at the same being replicable in our lab environment.
Table 3.1 lists the recorded sounds. For the Maintenance and Assembly
scenario we have taken a set of sounds from a wood workshop (Fig. 3.1).
This is a subset of the tasks used in [30, 31]. The Household scenario con-
sist of the five kitchen appliances (Fig. 3.2): a microwave, a coffee maker,
a nozzle that dispenses hot water and is integrated in the coffee machine,
a coffee beans grinder and a water tap. We have also recorded sounds of
several devices in one of our offices for the Office scenario. Finally, for the
Outdoor Guidance scenario some typical sounds encountered on the way
to our lab were used.

Recording Procedure: We were primarily interested in the quasi sta-
tionary phase of the sounds (cf. Sec. 2.1.5). Therefore, to record the sound
of the appliances, they were turned on and then the occurring sound was

1. drilling machine

2. grinding machine

3. saw

4. file

5. hammer

Figure 3.1. Illustration of the workshop scenario with the devices and
tools considered for the case study.



26 Chapter 3: Case Studies

recorded in a distance of 20 to 50 cm from the device – approximately
where a user would keep his hand after turning the device on. For manual
tasks in the workshop like filing or sawing, the microphone was mounted
on the wrist. For environmental sounds like passing cars, raindrops on an
umbrella or the noise of the desk-ventilator, a natural distance between
the source and the microphone was kept. Recordings were done with 16 bit
resolution and 48 kHz sampling frequency using a high quality microphone
(type: Sony ECM-T145) and a DAT recorder.

Data Preprocessing: The recordings were manually cut so that they
only include the relevant quasi stationary sounds (e.g. only cars passing
by but no generic street noise). This resulted in about ten 10 to 30 seconds
long segments for each sound.

3.1.2. Data Collection II

Scenario: For the second data collection set, the household scenario
from the first data collection session was repeated. It consisted of operat-
ing the same 5 kitchen appliances: a microwave, a coffee maker, a coffee

1. microwave

2. coffee maker

3. hot water nozzle

4. coffee grinder

5. water tap

Figure 3.2. Illustration of the household scenario with the appliances
considered for the case study.
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Figure 3.3. Glove used for data collection II with microphone (1) and
accelerometer (2) together with axes definition.

beans grinder, a hot water nozzle and a water tap. In contrast to the first
session, we used wrist-worn accelerometers and microphones to monitor
the movement of the hand and record the occurring sound, respectively.
Therefore, the recordings did not only include the sound of the appliance
but also the hand movement and the ambient noise before the appliance
was turned on. Furthermore, 11 test subjects were asked to participate in
the experiment.

Recording Procedure: The eleven test subjects with body height from
1.65m to 1.85m had to switch the appliances on and off (with a reason-
able time in between). Thus, we also included the initial and terminal
phase of the otherwise quasi stationary sounds. However, our experiments
were restricted to the sound of the appliance and the on/off motion. Other
tasks like putting a cup under the coffee maker or opening and closing the
microwave door were not performed. These tasks could be analyzed inde-
pendently and be regarded as additional source of information. Recordings
were done in two sessions per test subject. In total each test subject op-
erated each appliance about 25 to 30 times, so that our data set contains
over 300 repetitions for each appliance.

All test subjects wore a glove on their right hand. The glove had a
3-axis MT9 accelerometer from Xsens [79] and a electret condenser micro-
phone (type Sony ECM-C115) mounted as shown in Fig. 3.3. Accelerom-
eters were sampled at 100Hz. The signals from the microphones were
recorded at 44.1 kHz, 16 bit resolution with a commercial analog-to-digital
converter (USB-Transit from M-Audio). The gain for the audio recordings
was adjusted so that no clipping occurs.
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Bottom: Spectrogram of sound.
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Data Preprocessing: The recordings described were pre-segmented by
hand into pieces containing a complete action, e.g. doing nothing, raising
arm, turning the appliance on, turning it off and lowering arm again.
Then, both the sound and the acceleration signal were used to detect
when an appliance is turned on and off. Fig. 3.4 illustrates the process:
First, the x-axis of the accelerometer is used to spot interesting segments.
Only deflections larger than 40° from the body axis are considered to be
able to activate the appliance1. This helps to avoid confusions with loud
input signals prior to the activation of the appliances. For this purpose, the
x-axis signal was low-pass filtered with a 0.75 kHz, 2nd order butterworth
filter and compared to a threshold.

Secondly, in segments in which the arm is raised, the short term energy
of the sound signal is compared to an empirically determined threshold.
This method detects the start point of an activity accurately since the mi-
crophone is close to the appliance when the user operates it. This method
offers the advantage that it is robust to various starting positions of the
arm.

3.2. Hardware

Although a variety of sensor nodes are available [68–73], we designed our
own sensor platform in order to control all power consumption aspects.
Originating from the SoundButton [29, 80], which contained just a micro-
phone, the sensor platform – hereafter referred to as Sensor Node – was
developed in several semester theses.

The version used in this work is de-

Figure 3.5. Sensor Node

scribed in detail in [67] and [81]. In Chap-
ter 5, the Sensor Node will be used to
get power consumption estimations and
execution time measurements of various
sound processing algorithms.

Fig. 3.5 and Fig. 3.6 show a picture
of the Sensor Node and the system archi-
tecture, respectively. Overall, the system
has a size of 41.5 × 27.5mm2, a thickness
of 9mm and weights 10 grams, including
battery. It is composed of the commercially available off-the-shelf compo-
nents listed in Table 3.2.

1This is a rather conservative value. For most test subjects it was necessary to raise
the arm 90° to press the various on/off buttons. But in the case of the microwave,
which was placed on a low table, especially the taller test subject didn’t have to raise
their arm so high and therefore we chose a threshold of 40°.
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Table 3.2. Components of the Sensor Node.

Component Type Manufacturer

Accelerometers ADXL311 Analog Devices

Microphone SP0103N Knowles Acoustic

Light sensor SFH3410 Osram

Microcontroller MSP430F1611 Texas Instruments

RF transceiver nRF2401E Nordic Semiconductors

Battery LPP 402025 CE Varta Microbattery

Microcontroller: The MSP430 microcontroller with an integrated 12 bit
Analog to Digital converter and 10 kByte data RAM is used as low-
power processor. The 4.096MHz clock for the microcontroller is gen-
erated by an internal digital controlled oscillator (DCO). The DCO
is adjusted and stabilized by an external 32 kHz watch crystal2.

Sensors: The Sensor Node contains three types of sensors: a MEMS mi-
crophone, two 2-axis accelerometers (one for the x and y axis, the
second one for the z axis; cf. Fig. 3.5) and a light sensor, which was
not used for this study. The supply voltage of the sensors can be
individually toggled on and off by the microcontroller via an ana-
log switch. Sensor signals are amplified and low-pass filtered using
butterworth second order filters. Although the cut-off frequencies
of the low-pass filters imply a minimum sampling frequency, we as-
sumed that the filters could be changed in a future hardware re-
vision. Therefore, for our subsequent power consumption analysis,
we did not set a lower boundary for the sampling frequency. The
maximum sampling frequency, however, is around 16 kHz3.

Transceiver: The Sensor Node also contains a small and energy efficient
2.45GHz transceiver. Due to a special burst transmit mode it re-
quires only 57 nJ/bit for receiving and 26 nJ/bit for transmitting
with −20dBm output power [72], cf. Sec. 6.1.2.

Power Supply: The Sensor Node is powered by a lithium-ion battery
with a capacity of 150mAh and a size of 25× 20× 4mm3. The 3.7V

2The design is a trade-off between size and power consumption in active and in
low-power mode. If one wants to use a 4MHz crystal oscillator instead of the DCO,
one can either connect it to a second pair of oscillator-pins on the MSP (needs more
space) or can use it instead of the 32 kHz watch crystal (but then the low-power mode
will be clocked with 4MHz instead of 32 kHz).

3The ADC of the MSP430 is capable of sampling frequencies of up to 100 ksps
[82]. The value of 16 kHz stems from our requirement to shut down the MSP between
two consecutive samples. Since the DCO is disabled in low-power mode, the sampling
frequency is limited by the 32 kHz watch crystal which triggers the ADC.
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Figure 3.6. System architecture of the Sensor Node [67, 81].

nominal battery voltage is down-converted with a step-down con-
verter to provide the microcontroller and the sensors with 2.8V.

3.3. Summary

The empirical approach outlined in Sec. 2.2 relies on real-world data. For
one, the recognition algorithms need to be tested for their performance
on real data sets. Furthermore, power consumption and execution time
of the algorithms depend on the hardware platform being used. Thus,
we conducted several experiments to collect data sets and developed a
low-power sensor node. The experiments were carried out in two sessions:

1. For each of the 4 scenarios in Sec. 1.2.2, one user recorded 4 to 5
typically encountered quasi stationary sounds.

2. 11 users operated 5 kitchen appliances as part of the household
monitoring scenario. Audio and acceleration data was recorded in
this experiment. Especially, the initial and terminal phase of the
sounds produced by the appliances were recorded as well, since the
test subjects had to turn them on and off. Additionally, we presented
a simple procedure which allows to segment the data and find the
relevant sound pieces.

The hardware represents a standard sensor architecture and contains a
microcontroller, a microphone and accelerometers. Notably, it allows to
switch on and off individual components.





4
Algorithms for Sound

Based Activity

Recognition

This chapter presents the recognition process for a sound-based
user activity recognition system. The performance is validated
with the experimental data from Chapter 3. By varying the pa-
rameters of the recognition process, a broad range of recognition
rates is obtained. In subsequent chapters, these recognition rates
will be combined with the power consumption of the recognition
process to derive a pareto-optimal system architecture. The first
part of this chapter gives a theoretical overview of our methods
to acquire, segment and classify the sensor signals. Especially,
we discuss a method which uses two microphones to segment the
data stream. The second part of the chapter deals with the valida-
tion of our approach by means of pre-recorded data. Furthermore,
strategies to increase the recognition performance are discussed.
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4.1. Introduction

In a context recognition system, sensors typically generate a stream of
data which needs to be processed and classified. As basis of our analysis,
we use the signal flow diagram from Fig. 2.2 on page 14. The figure shows
the main stages of a recognition system – sensors, signal acquisition, seg-
mentation, feature extraction, classification and result transmission. As
described in Sec. 2.1.1, we focus on a sensor node which performs the
whole recognition process locally – from signal acquisition to classifica-
tion. Thus, Fig. 2.2 can be simplified to Fig. 4.1.

In each stage of the recognition process, a variety of parameters such
as sensor choice, sensor operating parameters, feature choice and the use
of different classifiers influence the recognition performance as well as

Data Pre-Processing 

and Segmentation

Feature Extraction

and Classification

Number of Features

Classifiers

Type of Sensor Fusion

Type of Features

Transmission

of Result Destination (in network)

TX mode (burst/continuous)

Sensors
Sensor Selection (on/off)

Sensor Location

Signal Acquisition

Sampling Frequency fs

Sampling Duration tw

Resolution (no. of bits)

Segmentation Method

Filter Selection

Figure 4.1. Signal flow of the recognition process (left) and adjustable
parameters (right) – cf. Fig. 2.2.
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the power consumption. The key design parameters considered in our
methodology are depicted Fig. 4.1 on the right side.

In Sec. 4.2, we describe the stages from Fig. 4.1, state our approach and
list potential algorithms to solve our recognition problem. Furthermore, we
explain how different parameters influence the recognition rate in theory.
Then, in Sec. 4.3, we apply the algorithms to the two experiments from
our case study and compare their performance. Thus, this chapter covers
the two boxes ‘Parameter Selection’ and ‘Recognition Performance’ from
the design process depicted in Fig. 2.3.

The goal of this chapter is to show that we can indeed recognize user
activities based on a sound analysis of the environment. By no means,
we intend to list all possible algorithms that could perform this task.
Rather, we show as a proof of concept that several algorithms perform
reasonably well. Furthermore, this chapter serves as a preparation for
later chapters to show that even with this small, straight-forward chosen
set of algorithms a broad range of recognition rates can be achieved, which
makes a careful selection necessary – particularly with regard to a trade-off
between performance and power.

4.2. Analysis of the Recognition Procedure

The main problem with analyzing the different stages of the recognition
process from Fig. 4.1 separately is that the choice of parameters in earlier
stages depends on the algorithms used in later stages and vice versa. For
example, depending on the features, different bit resolutions of the input
signal might lead to the same result. In the end, recognition rates can
only be given with a classifier: however, a bad classifier will undo all effort
in the previous stages. Therefore, we cannot neglect this interdependency
between different stages and we present a detailed analysis of the whole
recognition process: from sensor selection to classification result.

4.2.1. Initial Assumption: Frame-Based Recognition

A classic approach to classification problems is the sliding window ap-
proach [11, 83]: in an observation window or ‘frame’ a set of features is
computed. The window is then shifted by a few samples, so that it still
overlaps the previous window. For continuous recognition, the feature val-
ues or the classification results from each frame are averaged to get a class
prediction for a larger window [31]. However, continuous context recogni-
tion implies that the sensors are constantly working. It also involves high
data rates which need to be constantly processed. Initial investigations
([84] and Fig. 5.5) based on 8 to 256 point FFTs with sampling frequen-
cies from 0.5 kHz to 5 kHz showed that the microcontroller available on
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the hardware platform in Sec. 3.2 is not able to handle the amount of data
needed to perform continuous sound-based activity recognition.

Since previous research [28, 29] has shown that continuous recognition
is not mandatory for the activities considered in this work (cf. Table 3.1),
we focus on optimizing recognition rate and power consumption on a
frame basis. This approach works because the considered activities occur
at a timescale of several seconds and the sounds show a quasi stationary
behavior during that time [28]. Achieving high recognition rates on the
basis of a single frame or a few frames makes continuous recognition su-
perfluous. This is supported by the results in [62]: The authors showed
that for simple motion based activities like walking, running, standing,
sitting, etc., the classification accuracy did not drop significantly if only
every second frame (of otherwise consecutive but non-overlapping frames)
was processed.

4.2.2. Sensor Placement and Sensor Selection

In contrast to other works, which try to find an optimal sensor placement
for a given task [53, 54], we consider the placement and type of the sensors
as unchangeable. As stated in Chapter 1 and 2, we work with a wrist-
worn microphone to detect ‘noisy’ activities caused by a hand movement.
Indeed, since sound pressure is inversely proportional to the distance from
its source (cf. Appendix B.4), a microphone mounted on the wrist can be
used to detect sounds that occur in close proximity to the user’s hand.
In addition to the microphone, we investigate the use of wrist mounted
accelerometers to support the decision making process. Of the two signal
types, sound is regarded as the primary source of information since the
sounds originate from the appliances and are thus independent of the user.
In contrast, the movement to turn a device on might be user dependent.
Furthermore, in Sec. 4.2.4 we will analyze the use of a second microphone
to segment the data into interesting pieces.

4.2.3. Signal Acquisition

In the signal acquisition phase of Fig. 4.1, analog sensor signals are digi-
tized with the help of an analog-to-digital converter. For further process-
ing, the data is grouped in frames with duration tw = N/fs, with sampling
frequency fs and number of samples N .

As argued in [28] and [57], lowering the sampling frequency and bit
resolution can reduce the power consumption of the system while still giv-
ing acceptable recognition rates. Generally, one tries to keep the sampling
frequency of the input data as low as possible to avoid high frequency



4.2. Analysis of the Recognition Procedure 37

noise being added to the signal but at the same time high enough so that
all the relevant information is preserved.

N and tw are mainly limited by the memory of the microcontroller and
by timing constraints of the application (i.e. the maximum allowable du-
ration for recognition result calculation). The minimum N is determined
by the features, e.g. calculating a zero-crossing-rate with just 2 points is
useless. The bit resolution is limited by the AD-converter on one side,
and on the lowest signal level on the other hand (assuming that no gain
control is available). Further statements require a knowledge of the signals
and are therefore given Sec. 4.3, which covers the data interpretation.

4.2.4. Data Pre-processing and Segmentation

This stage (cf. Fig. 4.1) typically consists of low-level operations such as
smoothing or filtering the data. In our case, we skip the pre-processing for
two reasons. Firstly, we assume that the signals have already been low-
pass filtered by adequate analog filters and secondly, that this step can
be combined with the feature extraction stage. So for example, applying
a Hanning window prior to calculating FFT based features can as well be
regarded as a feature calculation step.

Under segmentation we understand the partitioning of the data in
interesting and uninteresting segments. A simple method to detect the
start of an activity using a microphone and one accelerometer axis has
already been presented in Sec. 3.1.2. Additionally, we introduce a method
which uses two microphones.

RMS analysis with two microphones

As stated in Sec. 2.1.2, a wrist-worn microphone predominantly picks up
sounds that are caused by the user or occur in close proximity to the user’s
hand. However, this method does not allow to distinguish between quiet
sounds close to the hand and loud sounds farther apart. To estimate the
distance to the sound source, the sound amplitude levels at two different
(body) locations need to be compared.

For a free wave in air, the recorded sound amplitude is proportional to
the sound pressure which in turn is inversely proportional to the distance
from its source (cf. Appendix B.4). In general, two microphones A and B
placed at different locations on the body will have different distances to
the sound source. Assuming that the sound source is located at a distance
rA from the first microphone and rB = rA + δ from the second, the ratio
of the short term RMS is:

rmsA

rmsB
=

rB

rA
= 1 +

δ

rA
(4.1)



38 Chapter 4: Algorithms for Sound-Based Activity Recognition

with the root mean square rms of the raw microphone data defined as in
equation (B.2) on page 115.

For sound sources located far away from both microphones (and thus
from the user), rA will be larger then δ (since δ cannot be larger than
the distance between the body locations on which the microphones are
placed). As a consequence, the quotient in (4.1) will be close to 1. On the
other hand, if the source is very close to the first microphone we have in
general rA < δ and with it rmsA/rmsB ≫ 1.

Thus, putting the first microphone on the wrist and the second one
on the chest, we can use a large quotient as an indication that the sound
was generated close to the user’s hand. Therefore, the rms comparison
provides a means to filter out background noise, i.e. audio sources that
are located away from the user’s hand but are picked up by the wrist
microphone anyway. Nonetheless, there are disadvantages associated with
this method:

• As a premise for equation (4.1), the gain of the two microphones
has to be same. This implies that techniques to control the gain
automatically cannot be implemented unless the gain control of the
two microphones can be coupled.

• The rms needs to be constantly calculated and transmitted to the
second sensor node, so that the comparison in equation (4.1) can be
performed. Assuming that a 16 bit rms is calculated over 50ms non-
overlapping windows, a bit rate of 320 bit/s is generated. Depending
on the amount of local memory, transmitting in burst mode is not
possible. E.g. with 5 kHz sampling rate and one transmission every
second, 5000 samples need to be stored before a decision about a
the usefulness of the data can be made.

• We assumed that the 1/r relationship (cf. equation (B.27)) is true
in a real world scenario. However, measurements with a small loud-
speaker1 emitting a 1 kHz sine indicate that the microphone position
(microphone not pointed directly at the loudspeaker but rotated by
up to 5 degrees) and the environment (reflections on furniture) in-
fluence this behavior. Fig. 4.2(a) shows the ideal case. In most cases
the results resembled the two examples depicted in Fig. 4.2(b). We
observe that a higher signal amplitude might be received farther
away from the source than closer to it (e.g. compare points at 50
and 60 cm).

1PC loudspeaker with membrane diameter 5 cm, placed at least 1 m away from each
wall in a 4 × 3.5 m2 living room.
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Figure 4.2. Measured sound amplitude (rms averaged) of a 1 kHz sine in
function of the distance to the source. (a) ideal behavior expected for free
field. (b) most measurements show local deflections from the ideal behavior
due to reflecting surfaces and non-ideal microphone alignment.

Further Segmentation Possibilities

It is worth mentioning that segmentation can be done at various points
in the signal flow (cf. Fig. 4.1):

Hardware pre-processing: One possibility is to take advantage of
hardware pre-processing prior to the signal acquisition stage. Un-
der hardware pre-processing we understand low-power analog cir-
cuits which can wake up the processor. The segmentation method
presented in Sec. 3.1.2 could for example be replaced by a tilt-sensor
mounted at the right angle to detect raising of the arm [85] and a
threshold detector which monitors the amplitude of the microphone
signal and works similar to a voice activated switch. The advantage
is that a recognition system only needs to react to events which are
labeled as “potentially interesting” by the pre-processing engine and
can be shut down afterwards and therefore save power. Especially,
our frame-based recognition approach would benefit from hardware
based segmentation since interesting segments can be detected with-
out the need to turn on the microcontroller.

Classifier fusion: Another possibility, based on classifier fusion, was in-
vestigated by my colleague J. Ward in [31]: microphone and ac-
celerometer data are classified continuously but independently. If
both classifiers agree, it can be assumed that an interesting segment
was found. The disadvantage of this approach is that it requires the
recognition system to run continuously.
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4.2.5. Feature Extraction and Classification

This stage (cf. Fig. 4.1) aims at finding features which best reduce the
signal to context-relevant information. It also includes a feature subset
selector which attempts to remove irrelevant and redundant features. The
introduction of features and feature selectors leads to data reduction. Fi-
nally, a classifier associates the feature vector to a known class based on
a specific decision rule learned during system training.

Features

In the past 10 to 15 years, many features for context recognition tasks
have been proposed [11, 34, 39, 40, 43, 56, 86] – many of them originat-
ing from research in speech recognition. Of those, we considered the most
commonly used ones – under the constraint that they can be reasonably
implemented on the microcontroller. Table 4.1 lists the features; the math-
ematical definitions can be found in Appendix B.1. We did not include
the standard feature of speech and music processing – mel-frequency cep-
strum coefficients (MFCC) – even though this feature is sometimes used
in auditory context recognition [32, 34, 43]. Firstly, we do not intend to
emulate the human hearing process nor the speech process. Secondly, with
the cepstrum coefficients (CEP) we have a representative of the cepstral
methods in our feature list that performed just as well as MFCC for au-
ditory context recognition in [43]. Since the complexity of CEP is high
(requires two FFTs), it should be avoided for a low power implementation
whenever possible. Furthermore, we assume the sounds to be stationary.
Therefore, wavelet transformations were not used either.

For the microphone data, features in the temporal domain and in
the frequency domain are considered. The frequency domain features are
based on the magnitude of half of the number of the Fourier components
|F [0]| . . . |F [N

2 − 1]|, retrieved from a N -point FFT. In our test runs, sim-
ilar results were achieved with or without applying a Hanning window
prior to the fourier transformation. This is due to the stationary nature
of the sounds. Especially for N ≤ 32, we even noticed a degradation in
recognition rate when using a Hanning window. All features are scalar,
except for FFTcomp (dimension: N

2 ), BER (dim: 4) and CEP (dim: 6).
For the acceleration data, only the y and z-axis are considered since the
x-axis is already used as a trigger to start the classification process (see
Sec. 3.1.2).

Most features, i.e. zcr, mcr, fluc, BW, FC, FLUC-S, SRF and BER,
offer the advantage that they are immune to linear scaling of the input
data x→ αx. Of the cepstrum coefficients only the first one is subject to
input data scaling. Mean, std and rms scale linearly with the input data.
The fourier coefficients FFTcomp also scale with the input data. There-
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Table 4.1. List of considered audio and acceleration features in time and
frequency domain. See Appendix B.1 for mathematical definitions.

Feature Abbreviation

so
un

d

ti
m

e Zero-crossing rate ZCRmic

Fluctuation of amplitude FLUCmic

fr
eq

ue
nc

y

Fourier coefficients FFTcompmic

Bandwidth BWmic

Frequency Centroid FCmic

Fluctuation of amplitude spectra FLUC-Smic

Spectral Rolloff Frequency SRFmic

Band Energy Ratio (4) BERmic

Cepstrum coefficients CEPmic

ac
ce

le
ra

ti
on

ti
m

e

Mean meanaccY , meanaccZ

Standard deviation stdaccY , stdaccZ

Fluctuation of amplitude flucaccY , flucaccZ

Root mean square rmsaccY , rmsaccZ

Zero Crossing Rate zcraccY , zcraccZ

Mean Crossing Rate mcraccY , mcraccZ

fore, the input data x should be normalized. We found that normalizing
with 1

N

∑N
i=1 |x[i]| works equally well as the usually used rms. This helps

to lower the power consumption since the square and the root operation
is omitted. Of course, normalizing with the sum of FFTcomp would also
work [87].

Feature Selection

The feature selection process selects a set of features from the available
features. The goal is to reduce the dimension of the feature space while
preserving as much discriminatory information as possible. Optimal fea-
ture sets contain features that are highly correlated with the class and
show a low intercorrelation between the individual features. Intuitively,
a set with more features will achieve higher recognition rates. So for ex-
ample, all multi-dimensional features investigated by Peltonen et al. [43]
performed better than the scalar ones. On the other hand, a large fea-
ture set may contain redundant features and require more training data
to train a general valid classifier. Since a complete overview is beyond the
scope of this work, we refer to [11, 88–90] for further literature studies.
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Here, we investigated two methods:

• Discarding features with little discriminatory ability: This in-
cludes methods based on mutual information (MI) [90] as well as
correlation-based [91] feature selection methods. For data set I, we
used a simple co-variance matrix to find correlated features. In data
set II, we used the more sophisticated CFS (Correlation-based Fea-
ture Selection) method which also considers how well a feature rep-
resents the class [91] and is implemented in the Weka toolbox [92].

• Linear transformation of the feature vector: With this method there
is no need to choose between two or more correlating features. In-
stead, the feature space is linearly transformed so that the resulting
features are uncorrelated and/or best represents the class. To re-
duce dimensionality, the least significant dimensions can be dropped.
We investigated two methods: Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA) [93, 94]. We expect better
results with the LDA since it takes the different classes into account
whereas PCA only considers the properties of the features. In our
experiments, the original feature set was reduced to a M −1 dimen-
sional feature space with the help of a transformation matrix; where
M is the number of classes.

However common those methods are, we see two disadvantages which need
to be tackled in future work:

• Feature selection methods are based on the information content of
the features but ignore the classifier. It has been shown that a feature
set with a high information content according to Shannon’s entropy
[90] does not necessarily lead to an improved recognition rate [91].

• Methods that search the feature subspace for the best feature, eval-
uate features based on their ability to discriminate classes and their
independence of other features. They do not take into account the
computational complexity of the features.

We overcome the second problem by defining different feature sets with
different number of features. The method that compiles the feature set
assures that all sets perform well, while in a next step the set which
represents the best power versus recognition rate trade-off is selected. Ta-
ble 4.2 shows the resulting sets for the audio features: starting with a full
set, subsets were defined iteratively according to the ranking of the fea-
tures assigned by the CFS method. Compared to Table 4.1, FFTcompmic

is not included in the full set because all frequency domain features are
based on it: our approach is to contrast the FFTcompmic with the features
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Table 4.2. Audio-Feature Sets for Data Set II.

Set No. Features

F1 7 ZCR, FLUC, BW, FC, FLUC-S, SRF, BER

F2 5 ZCR, BW, FC, SRF, BER

F3 5 ZCR, FLUC, FLUC-S, SRF, BER

F4 3 ZCR, FLUC, BER

F5 2 ZCR, BER

F6 2 FLUC, BER

sets in Table 4.2. CEPmic is not included in the full set because it is more
complex to calculate than all the other features and did not improve the
recognition rates in our experiments (see Sec. 4.3.2).

Classifiers

We evaluated different classifier types to classify the features: Naive Bayes,
C4.5 decision tree [95], k-nearest neighbor (kNN) with k from 1 to 10 and
nearest class-center classifier (NCC) – see also Appendix B.2. In the later
case, the mean value of each class is used as a class center: A test point
is assigned to the class associated with the minimum Euclidean distance
to the class center. Since the sounds are assumed to be stationary for the
observation duration, Hidden Markov Models (HMM) or other classifiers
based on time series are not considered.

4.3. Results of the Case Studies

4.3.1. Feasibility of the Two Microphones Method

Visual Validation with Data Set I

To evaluate the feasibility of using two microphones to distinguish between
sounds that occur in the immediate vicinity of the user and loud sounds
that occur farther away from the him (see equation (4.1)), the workshop
and the kitchen sounds were recorded using two mono microphones: one
worn on the wrist and the other on the chest.

The two scenarios were selected because they are representative of two
slightly different situations: (1) the user directly causing a sound through
a certain motion of his hand (by using a tool e.g. sawing) and (2) the user
being next to the appliance he is operating, possibly having his hand on
the switch, activating/deactivating it (e.g. switching on the coffee grinder).
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In all cases, the rms is calculated over a sliding window of 51.2ms length
with a sampling frequency of fs = 5 kHz.

The first type of situation is represented by the workshop sounds.
Except for filing, we found that the rms of the wrist microphone is 1.5
to 2 times the rms of the chest microphone. As an example, a plot of the
sliding-rms for the sound caused by smoothing a surface with sand paper is
shown in Fig. 4.3(a). The curve reflects the periodic sanding motion with
the minima corresponding to the changes in direction and the maxima
coinciding with the maximum sanding speed in the middle of the motion.
Since the user’s hand is directly on the source of the sound the wrist rms
is twice as large as the chest rms.
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Figure 4.3. rms of the wrist and chest microphone signals (sampled with
5 kHz), calculated over a 51.2ms sliding window for three different sounds.
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By contrast, in the filing example in Fig. 4.3(b), the rms analysis does
not work well for two reasons: first, the user’s hand shielded the sound to
the wrist microphone and second, the user was bent over the workbench
bringing the chest microphone within the same distance to the sound as
the wrist microphone. As a result, the wrist microphone rms is neither
significantly nor consistently higher than that of the chest microphone
(although a trend can be seen).

For the second type of situation, exemplified in the kitchenette sce-
nario, we recorded a sequence starting with the user having his hand on
the switch to activate the coffee grinder, then walking back approximately
3m and approaching the device again to switch it off. Fig. 4.3(c) shows
that the rms of the wrist microphone is large when the hand is on the
switch, becoming equal with the chest rms as soon as the hand is removed
and falling on both microphones as the user is moving away.

Statistics for Data Set II

To support our thesis that the ratio of the rms from two distributed
microphones can be used to spot activities related to hand movements, we
analyze data set II. Fig. 4.4 displays the lower quartile, median, and upper
quartile of all the rms values for all 11 test subjects and all repetitions.
In analogy to the sound pressure level (SPL, cf. Appendix B.4), the rms
is displayed as 20 log10(rms(x)) where x are the sound amplitudes of a
whole segment (cf. Fig. 3.4). We notice that except for the microwave, the
rms of the wrist and chest microphone differ by 3 to 6dB. Fig. 4.4 is even
somehow misleading, since it does not depict the segments of the wrist
and chest microphone that belong together, i.e. that were recorded at the
same time. In fact, for fs = 44.1 kHz and looking at a whole segment, the
rms of the chest microphone was only in 1.2% of all cases larger than the
one of the wrist. If the rms is calculated just over a short frame of 25 to
50ms duration instead of a whole segment, then this value increases to
8 to 10%. Therefore, Fig.4.5 depicts the ratio of the two rms according
to equation (4.1) on page 37. We notice that in most cases the ratio is
between 1.2 and 1.8 and therefore we conclude that a two microphone
system works.

Furthermore, from Fig. 4.5 we observe that the difference between the
wrist and the chest rms varies with sampling frequency especially for the
coffee maker, the grinder and the water tap. Comparing Fig. 4.4(a) and
(b) we notice that especially for the water tap (≈85% of the total energy
above 5 kHz) and the grinder (≈60% of the total energy above 5 kHz) the
energy in the high frequency bands is lost in the down-sampling process.

In an earlier work [30], we have shown that a two microphone system
provides useful segmentation for the workshop sounds as well. It allows
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(a) with 44.1 kHz sampling frequency
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Figure 4.4. Dynamic range of the kitchen recordings in data set II for
the wrist and the chest microphone and all 11 test subjects. The ordi-
nate shows 20 log10(rms(x)) where x are the sound amplitudes of a whole
segment (cf. Fig. 3.4), with possible amplitude values from −1 to +1.The
boxes show the lower quartile, median, and upper quartile values. The lines
extending from each end of the boxes indicate outliers that are maximal
1.5 times the interquartile range beyond the corresponding quartile. The
crosses represent outliers beyond this limit.
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Figure 4.5. Statistics of the ratio of the wrist and chest rms in data
set II for two sampling frequencies. For each repetition of an activity,
the two rms were calculated over a whole segment (cf. Fig. 3.4) and the
ratio calculated according to equation (4.1). Values larger than 1 mean
that the rms of the wrist microphone is larger than the one of the chest
microphone. See Fig. 4.4 for the interpretation of the boxes.

to partition a continuous data stream that contains even more sounds
than considered in our case study. However, due to the continuous rms-
calculation and the expected high communication overhead and the there-
with associated higher power consumption, we will not use this method
in our further considerations.

4.3.2. Approach Validation with Data Set I

Data set I was used to proof that the features and classifiers from Sec. 4.2
work for a broad range of applications. Furthermore, it was used to nar-
row down the search space for the final specification of the features and
classifiers.

Performance Evaluation of Data Set I

Table 4.3 gives an overview of the 13 combinations of features and feature
selectors we used to evaluate the different recognition methods. All 13
combinations were classified using a NCC, a kNN, a Naive Bayes, and a
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Table 4.3. Features and feature selectors applied to data set I.

No. Feature Feature selector

1 128 FFTcomp LDA

2 128 FFTcomp PCA

3 128 FFTcomp keep all

4 7 audio features LDA

5 7 audio features PCA

6 7 audio features keep all

7 7 audio features keep uncorrelated

8 7 audio features keep uncorrelated + LDA

9 7 audio features + 6 CEP LDA

10 7 audio features + 6 CEP PCA

11 7 audio features + 6 CEP keep all

12 7 audio features + 6 CEP keep uncorrelated

13 7 audio features + 6 CEP keep uncorrelated + LDA

The 7 audio features are: ZCRmic, FLUCmic, BWmic, FCmic,

FLUC-Smic, SRFmic, BERmic

C4.5 decision tree classifier. The recorded data was split into a test and
training set, out of which random frames with fs = 4.8 kHz, N = 256 and
tw = 53.3ms were picked. All classes were assumed to occur with equal
probability (cf. Appendix A).

Observations

Fig. 4.6 shows the resulting average recognition rates based on a 10-fold
cross-validation. The 13 quadruples of bars correspond to the 13 different
combinations in Table 4.3. For the kNN classifier, the maximum of 10 runs
with k from 1 to 10 is displayed. We make the following observations:

• for all 4 scenarios, recognition rates > 80% can be achieved with the
right combination of features, feature selectors and classifiers.

• in most cases, selecting a set of features in contrast to keeping all
features does not degrade the recognition rate – the exception being
the kitchen sounds (combination 6 vs. 7).

• apart from the NCC, which works only well in combination with
LDA (combination 1, 4, 9), no classifier can be clearly favored.
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Figure 4.6. Comparison of the overall recognition rate for different fea-
tures, feature selectors and classifiers (cf. Table 4.3) for the kitchen, office,
workshop and outdoor sounds, with fs = 4.8 kHz, N = 256, tw = 53.3ms.

• in most cases, PCA (combination 2, 5, 10) works worse than LDA
(combination 1, 4, 9).

• there is no clear gain in using the CEP coefficients in addition to
the 7 audio features (combination 9 to 13). For some combinations
the recognition rate drops.

• due to the quasi-stationary nature of the sounds, the combination of
fourier coefficients together with LDA performs exceptionally well.

We conclude that our approach to detect user activities with wrist worn
microphones and simple frame-based context recognition algorithms is
feasible for a broad range of scenarios.
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Conclusions: FFTcomp/LDA vs. feature sets

We will continue to use different classifiers together with:

(a) the fourier coefficients combined with LDA, hereafter named FFT-
comp/LDA method

(b) several sets of the 7 audio features, namely feature set F1 through
F6 from Table 4.2

We continue with both variants, even though variant (a) – the combination
of FFTcomp and LDA – performs better, because of following reasons:

• As argued in Chapter 1 and 2, recognition rate is not the only per-
formance metric that should be considered in the design of a wear-
able system. As we will show in Fig. 5.4 on page 71, calculating the
matrix multiplication of the LDA transformation (cf. page 42) for
5 sounds consumes 17% more power than calculating the 7 audio
features (for a frame of length N = 512).

• As discussed in Sec. 2.1.1, the communication link needs to be taken
into account as well. In Sec. 6.1.2 we will discuss the consequences
of the ‘communication vs. computation’ trade-off on the power con-
sumption. The impact of the communication link (between the sen-
sor node and the central wearable computer) on the system design
for variant (a) and (b) are summarized as follows:

– a bi-directional link allows to store information locally on the
sensor node. Thus, it makes an autonomous context recogni-
tion system (i.e. one that does all the classification online) fea-
sible. For variant (a) the memory of the sensor node contains
the transformation matrix2 and information about the classi-
fier (e.g. tree structure for C4.5, class centers for NCC, mean
and variance of the probability density function for the Naive
Bayes classifier); for variant (b) it contains information about
which feature set to use and information about the classifier.

– a sensor node with a uni-directional link from the node to the
central wearable computer cannot adapt to new sounds. There-
fore, it has to transmit its data before the classification stage
is reached (cf. Fig. 2.2). The classification is left to the central
wearable computer. Thus, a uni-directional link requires higher
bandwidth than a bi-directional link. For variant (a) the data
to transmit is the FFT components; for variant (b) the data is
either a fixed set of audio features or the FFT components.

2The memory requirement of a transformation matrix for 5 sounds and 128 FFT
components with 16 bit resolution is (5 − 1) × 128 × 16 bit = 1 kB of RAM.
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4.3.3. Recognition Performance of Data Set II

In this section, we test the performance of features and classifiers on our
second data set. We operate with just 5 ‘parameters’: sampling frequency
fs, number of samples N in a frame, different feature sets, choice of clas-
sifiers and different frame averaging strategy (see below). Since all combi-
nations of the parameters lead to more than 2’500 results, we show only
a limited number of results which best represent the general case. How-
ever, to determine the optimal trade-off between recognition performance
and power consumption in Sec. 5.3, all combinations were simulated. The
other parameters of Fig. 4.1 on page 34 were determined in preliminary
investigations and then fixed for the simulations of the 2’500 results.

Performance Evaluation

• Three strategies for obtaining a trade-off between power consump-
tion and recognition accuracy will be discussed:

1. processing one single sound frame out of one segment (segment
defined by start and end of an activity, cf. Fig. 3.4)

2. averaging features from several sound frames of one segment
3. combining features from one sound frame with features from

one acceleration frame

• Since most kitchen appliances show some non-stationary sounds for
a short time after they are turned on, we skip the first sound samples
of a segment. We set the start of the first frame ts = 0.5 seconds after
the segmentation algorithm detected the start point of an activity
(cf. Fig. 3.4). Acceleration signals on the other hand are always
analyzed directly after the device is turned on, because we want to
capture as much of the movement as possible (e.g. turning the knob
of the water tap or the hot water nozzle).

• All classes occur with equal probability and therefore just an overall
accuracy is considered as performance metric (cf. Appendix A). The
recognition rate thus denotes how well the system recognizes the five
activities (microwave, coffee maker, hot water nozzle, coffee grinder,
water tap) on average. Single activities might be recognized with
better or worse accuracy.

• Unless otherwise noted, recognition rates are calculated using a C4.5
decision tree classifier with 10-fold cross-validation. In each fold, nine
tenths of the 1545 recorded activities (from all test subjects and all
classes) are used for training, the rest for testing. The training and
test sets contain data from all users: this is called user-adapted case.
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User-adapted vs. user-independent performance evaluation

Another performance evaluation is possible as an alternative to the user-
adapted case: In the user-independent case, the recorded data from one
subject is used only as test data while data from the remaining subjects is
used as training data – hence the training is independent of the test-user.

We found that compared to the user-adapted case, the recognition rate
in the user-independent case drops only 1 to 3% when using sound but
drops more than 10% when using acceleration3. Table 4.4 supports our
assumption from Sec. 1.2.1 that sound-based recognition is less dependent
of the user than movement based activity recognition. The difference of 1
to 3% can be explained with different microphone orientations and varying
background noise during the recordings.

Table 4.4. Comparison of recognition rates in the user-adapted (U-A)
and user-independent (U-I) case (see text) for data set II using a C4.5
classifier and sampling frequencies fs=5 kHz and 10Hz for microphone
and accelerometer, respectively. Frame length is tw=51.2ms for mic and
1 sec for acc.

Sensors Features U-A U-I

mic
Feat. Set F1 83.6% 81.8%

Feat. Set F5 77.9% 75.0%

acc
meanaccY , stdaccY 78.3% 67.5%

meanaccY , stdaccY , meanaccZ , stdaccZ 88.3% 76.2%

mic+acc
Feat. Set F1, meanaccY , stdaccY 94.8% 92.0%

Feat. Set F5, meanaccY , stdaccY 91.6% 88.2%

Signal Acquisition Stage

In preliminary investigations, the limits for sampling frequency, number
of samples, sampling duration and bit resolution were explored. For the
case studies described in Sec. 3.1 we found that acceleration data can be
processed with a minimal sampling frequency of 10Hz and 8 bit resolution
(which complies with the results in [57, 62]) but needs to be analyzed

3When comparing percentages, the correct way of describing the difference of for
example r1=5% and r2=10% is to say that they differ by 5 percentage points and
that r2 is 100% larger than r1. However, throughout our work, we use the shorter and
common notation that they differ by 5%.



4.3. Results of the Case Studies 53

for 1 second since about 10 sampling points should be used for feature
calculation. Audio should be sampled with frequencies in the range of 1
to 10 kHz with at least 8 bit [28]. According to the available memory on
the microcontroller, we set N to a maximum of 512 points, which would
fill one tenth of the memory.

As an exemplary result, Fig. 4.7 shows the recognition rate as function
of fs, tw, N and feature set F1 and F5 (cf. Table 4.2). The results are
based on the analysis of one sound frame per activity (strategy no. 1 on
page 51).

• Fig. 4.7(a) shows that the recognition performance increases with
increasing sampling frequency and with a longer duration tw of the
frame. The decrease in recognition rate with a lower sampling fre-
quency is on one hand due to the loss of high frequency fourier com-
ponents and on the other hand due to the lower number of sampling
points for a given tw.

• Fig. 4.7(b) illustrates the influence of the parameters N , tw and fs.
On the one hand, for a fixed number N of samples, lowering the sam-
pling frequency increases the observation window tw, which might
result in a high recognition performance (Feat. Set 1). On the other
hand, a low sampling frequency may cut off relevant information
and therefore reduce the recognition rate (Feat. Set 5).
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Figure 4.7. Recognition rate in function of fs, tw and N for feature set
F1 and F5 calculated over one frame with a C4.5 classifier.
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Performance of Features and Classifiers

In the following paragraphs, we will discuss the three strategies from
page 51. A comparison of all three strategies is given in Fig. 4.11 on
page 58 for different feature sets and for the FFTcomp/LDA approach.

1. Using one sound frame per segment: Fig. 4.8 shows a compar-
ison of all features sets and the FFTcomp/LDA approach with different
classifiers. As with data set I, FFTcomp/LDA together with a nearest class
center classifier works best. Comparing feature set F1 to F6, we observe
that sets with more features generally perform better, with a difference
between the best and the worst set of 5 to 8%. Furthermore, we notice that
the performance depends strongly on the classifier. Since feature set F1
to F6 are not transformed by LDA, the NCC classifier does not perform
as good as the other classifiers. In all cases, the kNN classifier seems to be
the best choice. The C4.5 classifier is the second choice in 4 out of 6 cases,
followed by the Naive Bayes classifier in 2 out of 6 cases. The superior
performance of kNN and C4.5 is confirmed in other works [12, 60].

However, the superior performance of the kNN classifier is only due to
the large number of instances allowed to be kept for the nearest neighbor
search. As Fig. 4.9(a) illustrates, the performance of the kNN drops below
the one of the C4.5 classifier as soon as less than 550 randomly chosen
training instances (i.e. 110 instances per class) are used. On the other
hand, as shown in Fig. 4.9(b) the performance of the C4.5 classifier does
not depend so strongly on the tree size. Reducing the number of leaves
from a full tree to 15 leaves reduces the recognition rate by less than 5%.
Therefore, we conclude that a C4.5 or a Naive Bayes classifier is the best
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Figure 4.8. Recognition rate for feature set F1 to F6 and for the FFT-
comp/LDA approach evaluated with different classifiers. Recognition rates
calculated over one sound frame with fs=5 kHz, tw=51.2ms.
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Figure 4.9. Recognition rate in function of the complexity of a classifier.
Parameters: feature set F1 with fs=5 kHz and tw=51.2ms.

choice for a sensor node that uses the feature sets in Table 4.2 to recognize
the kitchen scenario from Sec. 3.1.2.

2. Feature averaging over several sound windows tw: In this strat-
egy, we calculate the features of different sound frames and use the mean
values of the features for classification. In the FFTcomp/LDA case, the
Fourier components are averaged over different frames and then the LDA
transformation is applied to the mean values.

On the one hand, the recognition rate depends on the number of frames
over which the features are averaged: using more frames will increase the
recognition rate (as long as the sound stays stationary) until a saturation
is achieved. On the other hand, as illustrated in Fig. 4.10, the absolute
value of the recognition rate depends also on the time interval between the
frames. For the same number of frames, a wider spacing means that frames
are taken over a broader range of the sound than with a smaller spacing.
In most cases, we observe a higher recognition rate for a wider spacing:
e.g. compare the point on the dashed black line at 1.9 sec (93% recognition
rate) with the one on the solid black line at 1 sec (91% recognition rate).
In both cases, the recognition rate is calculated over 7 frames but the
recognition rate is higher for the curve with the larger interval. Exceptions
exist, as shown with the black curves for averaging over 2, 3 and 4 frames.

A comparison of the ‘feature averaging’ strategy with the two other
strategies is shown in Fig. 4.11 on page 58. In this figure we used 3
frames with the start points of the frames spaced 3tw=154ms apart (and
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Figure 4.10. Influence of number and interspacing of frames for ‘feature
averaging’ strategy. Recognition rates are shown in function of the duration
between the beginning of the first frame and end of the last frame, for
different intervals between frames. The number of frames over which the
features are averaged can be read off from the sum of markers on one line
(counted from the left to the desired point; e.g. the rightmost recognition
rate on the dashed black line is averaged over 7 frames).

thus a duration from beginning of the 1st frame to the end of the 3rd of
7tw=358ms). A gain of 5 to 10% can be achieved with this method. The
difference between the best and the worst feature set is smaller than in
the single frame case. Otherwise, the feature sets behave in the same way
as in the single frame case. Note that in case of the feature set, the averag-
ing strategy always stays below the combination of audio and acceleration
signals. By contrast, in the FFTcomp/LDA case the averaging strategy is
the better choice starting from a sampling frequency of 3 kHz. In the best
case, we achieve 99% recognition rate.

3. Combining Sound with Acceleration: To combine sound with
acceleration, feature sets for the acceleration data, similar to Table 4.2,
need to be defined first. However, we found only one useful4 combination

4Two criteria were used to define ‘useful’: firstly, a recognition rate of more than
70% and secondly, features which are easier to calculate were preferred (e.g. the combi-
nation of meanaccY and flucaccY achieved 77.6% recognition rate, but this combination
requires one division more than meanaccY and stdaccY – cf. equation (B.1)).
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which works on a single axis: meanaccY and stdaccY together (or the same
features from the z-axis) achieve about 78% recognition rate. Adding more
features to this set does not improve the recognition rate; using only one
feature results in 50% recognition rate. Taking mean and std of both the
y and the z-axis, improves the accuracy to 88% but has to be paid with
40% increase in power consumption compared to the use of just one axis
because two accelerometers need to be on (cf. Sec. 5.2: assuming that they
are always on and the microcontroller calculates only mean and std).

We use the feature fusion method to combine sound and acceleration.
In this method, one classifier is trained with features from both sensors.
The alternative is the classifier fusion method in which two classifiers are
trained (one for sound and one for acceleration) and afterwards the two
classification results are combined. Several approaches to combine the two
classification results were investigated, namely ‘Highest Rank’, ‘Average’,
‘Borda Count’ and ‘Logistic Regression’ (see Appendix B.3 for a short
description). As a further classifier fusion method, a ‘probability matrix’
approach was tested: in this case, the confusion matrix from the training
is used as an indication of how reliable a classifier output is.

Table 4.5 compares the methods for different feature sets. Apart from
the ‘probability matrix’ approach, which came close to achieving the same
results as the feature fusion method, all other classifier fusion methods
produced worse results than the feature fusion method. The reason, why

Table 4.5. Comparison of different methods to fuse sound and accel-
eration data. Recognition rates are given for two different sound feature
sets and different fs and N . For acceleration: fs=10Hz, N=10 with fea-
tures meanaccY and stdaccY . Results are based on a C4.5 classifier and the
performance is evaluated as described on page 51.

Fusion Method
Set F1 Set F5 Set F1 Set F5

fs=2.5 kHz, N=64 fs=5 kHz, N=256

Sound only 77.7% 70.9% 83.6% 77.9%

Acceleration only 78.3% 78.3% 78.3% 78.3%

Feature Fusion 93.4% 90.2% 94.8% 91.6%

Highest Rank 83.2% 81.5% 87.3% 84.7%

Average of All Ranks 83.6% 83.5% 87.7% 85.7%

Average of Best Rank 84.8% 84.0% 88.2% 86.2%

Borda Count 84.3% 84.9% 87.5% 84.3%

Logistic Regression 84.3% 86.2% 88.7% 85.2%

Probability Matrix 89.3% 87.6% 91.7% 88.3%
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in our case ranking-based classifier fusion methods perform worse than the
feature fusion method, is the small number of classifiers compared to the
number of classes [96]. This, plus the fact that classifier fusion methods
are more complex to calculate than a single classifier, motivated us to
continue with the feature fusion method.

Fig. 4.11 shows that by adding two simple features from the accelera-
tion signal (meanaccY and stdaccY ) to the sound features, the recognition
rate can be increased by 10 to 20% and the overall recognition rate reaches
90 to 97%. Moreover, we observe that in this case the recognition rate is
made less dependent on the sampling frequency of the microphone. We
also discovered that for this strategy the choice of classifier is less criti-
cal – with the exception of the NCC classifier which delivers an inferior
performance. Furthermore, we noticed that the recognition rate can be
increased by additional 0.5 to 2% if more features from the acceleration
signal, or the acceleration data of the z-axis are used.

4.4. Summary

Sound processing is usually associated with high data rates and high com-
putational complexity. To make a low power, sound-based activity recog-
nition system feasible, we work with a frame-based method – in contrast
to a continuous recognition. This requires segmentation procedures which
partition the data stream into potentially interesting segments. One tech-
nique proposed in this chapter operates with the difference of the signal
amplitudes of a wrist and a chest worn microphone. With the help of
the recordings from our case studies, we have shown that comparing the
rms from the two microphones helps to spot activities related to hand
movements in most situations.

Furthermore, by adapting various ‘parameters’ of the recognition pro-
cess – i.e. using different sampling frequencies fs, number of samples N ,
feature sets, classifiers and frame averaging strategies – we can achieve
recognition rates of 75 to 95%. Two methods were analyzed in detail:

(a) a simple spectrum matching method based on LDA-transformed
Fourier components

(b) calculating and classifying audio features

Method (a) outperforms method (b) by about 10% in recognition rate.
Three strategies were used to evaluated the performance of the methods:

1. single-frame based sound recognition

2. multi-frame based sound recognition

3. combining single-frame features from sound and acceleration.
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Strategy (3) works best with method (b), while (2) dominates for most
situations with method (a). Fig. 4.11 on page 58 is representative summary
of the results. As an alternative to (3), we also investigated classifier fusion
strategies. However, the recognition rates were 5 to 10% lower than for
the feature fusion strategy.

In addition to showing that sound-based activity recognition is feasi-
ble for a broad range of sounds, this chapter laid the foundation for our
‘performance versus power consumption’ trade-off which will be discussed
in the next chapter: The combinations of parameters (like sampling rate,
frame length, features, classifiers and strategies) not only cover a broad
range of recognition rates, but of power consumption values as well.



5
Design for Power

Efficiency

This chapter deals with the possibilities to reduce the power con-
sumption of a general purpose sensor node. We introduce a model
which allows to specify the power consumption of our sensor node
by means of power and execution time measurements. The sec-
ond part of the chapter illustrates our approach to combine power
consumption and recognition accuracy during the training phase
of the context recognition system. Our method leads to a pareto
plot which combines the two conflicting design choices ‘power con-
sumption’ and ‘recognition rate’ and allows to pick out an optimal
operation point for a given application.
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5.1. Introduction

The energy or power sources available to a wearable system have a direct
impact on its lifetime and its performance. As illustrated in Sec. 1.3, es-
pecially for miniaturized, autonomous sensor nodes, power consumption
is one of the key design issues. Thus, it is not astonishing that low power
design and power awareness is a very active research field – see [97–101]
for an overview. Activities range from CMOS design of low-power sig-
nal acquisition units [102] and special purpose processors (e.g. minimum
energy FFT processor [103]) to the design of systems which incorporate
dynamic voltage scaling [104].

In this work, we act on the assumption that the aforementioned low-
power methods are not applicable for our sensor node. Thus, the possibil-
ities for power reduction are limited:

• shutting down subsystems like sensors, ADC or network interface

• duty cycling and battery management

• minimizing instruction-level energy, i.e. low-power software design
[105, 106]

We consider these techniques as a means to an end and do not intend to
exploit them further than they already have. Our goal is a context recog-
nition system which represents a trade-off between recognition accuracy
and power consumption. Thus, we trade performance of a wearable system
for its battery lifetime.

In contrast to some related work, the term ‘performance’ is not con-
nected to something the user perceives directly, as for example ‘latency’
[51] or ‘video quality’ [107]. Rather, it denotes the recognition accuracy
the system has been previously trained to achieve. In contrast to tradi-
tional context recognition systems, we do not trim the system to achieve
the highest possible recognition rate, but try to operate it at a point
which allows to get as much useful information as possible while keeping
the overall power consumption to a minimum. Thus, the training of the
recognition system is extended by a power analysis.

In the first part of this chapter, i.e. in Sec. 5.2, we describe the power
measurements and execution time measurements of the hardware from
Sec. 3.2. We avoid power estimations based on data sheets and literature
studies as in [58, 108]. Instead, we rely on a more accurate method which
includes modeling and measuring the hardware to synthesize the total
power consumption. Then, in Sec. 5.3, we illustrate our trade-off analysis
and explain what we can gain from it (compare also Fig. 2.3). In this
chapter, we assume the hardware to be an autonomous node which per-
forms all computation itself. Later on, in Sec. 6.1.2, we will discuss the
additional design options in case a communication system is available.
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5.2. Power and Execution Time Measurements

Power consumption measurements are only an intermediate step to our
goal, the trade-off analysis between power consumption and recognition
performance. Therefore, we (a) try to keep the measurements as simple
as possible and as exact as necessary and (b) only present a selection of
results here.

5.2.1. Theoretical Considerations on the Power Model

Today’s methods to model the power consumption of a system cover all
levels of abstraction: from transistor level [109], through architectural
[77, 78] and instruction level [110, 111] to algorithm [76] and operating
system level [25, 107]. The complexity of a model is a trade-off between its
accuracy and the time and resources invested [112]. In this context, time
and resources include not just the simulation process, but also the time
to build a model and the availability of specifications for the hardware.
Thus, many works concentrate on estimating the power consumption of
processors (plus memory) for which cycle-accurate descriptions or simula-
tors exists, e.g. for the StrongARM processor [113]. To simulate complex
systems, additional estimations of the efficiency of the DC-DC converter
or the capacitance of the interconnecting PCB lines are required [114].

However, for most sensor platforms such a detailed specification on
architectural level does not exist, nor does a designer have the time to
derive it from power measurements. Therefore, we propose a model that
treats most of the hardware aspects as a black box. The model requires few
measurements but is still accurate since the measurements are made on
the target platform. Furthermore, we argue that the power consumption
values do not need to be absolutely correct: if all values are off by the
same factor or the same constant, the trade-off analysis between power
consumption and recognition rate is still valid. In the remainder of this
section, we will discuss our model and the assumptions on which it is
built.

Battery model

A) ideal battery: We assume an ideal battery which has a constant
voltage and capacity over the whole discharge cycle. The battery lifetime
Tbat is therefore given by the capacity C, the nominal battery voltage
VBatNom and the average power Pavg

Tbat =
C · VBatNom

Pavg
(5.1)
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B) non-ideal battery: Since non-ideal batteries exhibit a voltage drop
in function of the load over the course of their discharge, equation (5.1) is
only a first order approximation accurate enough to get a rough indication
of the battery lifetime.

Furthermore, as shown in [52, 115], Tbat,nonideal depends rather on
the peak power consumption than on the average power consumption.
As a consequence, reducing the average power consumption by means of
lowering the duty cycle is not as effective as by means of decreasing the
maximum power consumption. However, the difference diminishes with
smaller loads. In our case, the peak current at the battery terminal is less
than 9mA, C is 150mAh and thus the load is smaller than 0.06C. With
such a slow discharge rate, this non-ideal property can be neglected and
Pavg is a sufficient means to describe the battery lifetime [115].

Processor Model

C) architectural level: On an architectural level, the power consump-
tion of a CMOS microprocessor can be expressed by

Ptot = Pdyn + Pstat = CLV 2
ccfµC + VccIleak (5.2)

where Ptot is the total power composed of a dynamic and a static com-
ponent. Vcc is the supply voltage, Ileak the leakage current, CL the total
average capacitance being switched per clock cycle and fµC the operating
frequency [25]. If we denote tcalc as the time to execute a software routine,
the total energy consumed by the routine is

Etot = Ptottcalc = CtotV
2
cc + VccIleaktcalc (5.3)

where Ctot is the total capacitance switched by executing the software
routine [25]. Obviously, the total capacitance remains constant for any
clock frequency fµC and execution time tcalc. Consequently, the dynamic
energy consumption is also constant (for constant Vcc). Thus, if we mea-
sure Etot and tcalc for different clock frequencies fµC at constant Vcc, we
get a curve for Etot that depends linearly on the execution time tcalc with
the slope being proportional to Vcc · Ileak.

For the MSP430F1611, the calculated1 leakage current at Vcc = 3V is
Ileak =7µA. In contrast to the total current of 500µA at fµC =1MHz and

1Ileak can be calculated with the help of two operating currents in active mode.
According to [82]: I1 = 500 µA (at f1 = 1 MHz) and I2 = 9 µA (at f2 = 4096 kHz,
both at Vcc = 3 V). The execution times are tcalc,i = α/fi for i = {1, 2} with α some
constant. The total energy is Etot,i = Vcc · Ii · tcalc,i. Now the leakage current can be
calculated with equation (5.3):

Ileak =
1

Vcc

·
Etot,1 − Etot,2

tcalc,1 − tcalc,2

=
I1/f1 − I2/f2

1/f1 − 1/f2

(5.4)
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Vcc =3V the static component, i.e. the leakage current, can be neglected
in active mode and the total energy consumed by the routine is

Etot = Ptottcalc ≈ CtotV
2
cc (5.5)

Consequently, it is sufficient to measure the power and the execution time
at one processor frequency.

D) instruction level: On the instruction level, the average power con-
sumption of the microcontroller is given by PµCon

= Vcc · I, where I is the
average current. The average current I may be estimated by breaking the
software code down into single instructions and using an instruction level
energy model [105, 116]. This model has to be previously derived either
from simulation based power analysis tools or from current measurements
of the CPU. The current consumption between different instructions may
vary significantly. However, Sinha et al. [25] have shown that the variation
of the current consumption of whole programs is much smaller (38% vari-
ation between instructions vs. 8% between benchmark programs). There-
fore, Sinha concluded that in a first order approximation “the current
consumption of a piece of code is independent of the code and depends
only on the operating voltage and the frequency of the processor”. Indeed,
our current consumption measurements for different software code on the
MSP430 support this first order approximation. Therefore, we model I
as a constant; the value measured on the Sensor Node is I=1.508mA
(see Table 5.1). Consequently, we calculate the energy consumption of an
algorithm

E = Vcc · I · tcalc (5.6)

by measuring the execution time tcalc.

System Model

E) duty cycling parameters: The average power consumption of a
system that uses duty cycling and switches all components on and off at
the same time is given by

Pavg = Pactive
tactive

Tp
+ Pidle

Tp − tactive

Tp
(5.7)

with the periodicity Tp. Increasing Tp extends the idle phase (the low
power phase) and decreases the average power consumption2. However,

2Assuming a periodic recognition process, Tp also indicates how often a classification
result is delivered. Therefore, increasing Tp causes more events to be missed, which
leads to a reduced recognition rate [62].
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since we intend to compare different context recognition methods, we pre-
fer to change the average power consumption by varying Pactive and tactive

rather than by adjusting Tp. Therefore, if not noted otherwise, the power
consumption was calculated for a periodicity of Tp = 1 second.

F) asynchronous duty cycling: In case only one sensor is used, i.e. in
our case the microphone, the average power consumption can be divided
into four components:

1. microphone power consumption
2. microcontroller doing signal acquisition, i.e. AD-conversion and fill-

ing the memory with data. This occurs simultaneously to (1).
3. feature calculation and classification
4. idle phase during which the microphone, the ADC and most parts

of the MSP430 are shut down: only a real-time clock, that triggers
the next sampling phase, is active.

The average total power consumption Pavg is therefore given by

Pavg = PMic ·
tw
Tp

+ PSigAcq ·
tw
Tp

+ PµCon
· tcalc

Tp
+ PµCidle

· Tp − tw − tcalc

Tp

(5.8)

with tw the sampling duration (the duration of a frame) and tcalc the
time to calculate the features and the classification result. Measurements
for (1) and (2) are covered in Sec. 5.2.2, those for (3) are described in
Sec. 5.2.3.

If more than one sensor is used and the sampling duration for the
sensor signals are different, Pavg includes more terms. For example, in
Sec. 4.3.3 we assumed that the accelerometers are sampled for one second:
for a short time all sensors are sampled, then the microphone can be turned
off and the sound features can be calculated while the accelerometers are
still being sampled.

G) Summary: Based on assumptions A to F, we define equation (5.8)
as the model of our sensor node, with the parameters of the model de-
rived from measurements on the hardware. We need to measure PMic,
PAcc, PSigAcq (for different sampling frequencies), PµCon

, PµCidle
– or the

corresponding currents – and tcalc in order to calculate the average power
consumption Pavg according to equation (5.8) and the battery lifetime
Tbat according to equation (5.1). tw depends on N and fs via tw = N/fs.
Given are periodicity Tp = 1 second, battery capacity C = 150mAh and
nominal battery voltage VBatNom = 3.7V (see Sec. 3.2).
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5.2.2. Power of Sensors and Signal Acquisition Stage

Measurement results: Table 5.1 lists the results of the current con-
sumption measurements of the sensors (and related electronics) and the
most relevant microcontroller modes. The measurements were made with
the hardware from Sec. 3.2 at the 3.7V battery terminal. Thus, in contrast
to data sheet estimations, the numbers in Table 5.1 include the efficiency
of the step-down converter and other losses.

For the signal acquisition stage, Table 5.1 shows that the 10Hz sam-
pling frequency of the accelerometers (acc) contributes little to the power
consumption if compared to the much higher sampling frequency fs of
the microphone (mic). In our measurements, we observed that the power
consumption is linear with fs. At fs = 2 kHz the current is about 0.5mA.
It is mainly dominated by internal voltage reference of the AD-converter
(0.47mA) and the low-power mode of the microcontroller (0.02mA) – for
the microcontroller was put into low-power mode between two samples.
The relationship between sampling frequency and number of samples is
depicted in Fig. 5.1 for different cases. Power values are calculated with
equation (5.8) using Tp = 1 sec, tcalc = 0 and tw = N/fs for the micro-
phone. The curves that include the accelerometers were calculated under
the assumption that the accelerometers are always on.
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Figure 5.1. Power consumption of sensors and microcontroller (without
feature calculation). The 3 configurations (mic only, mic and 1 acc axis,
mic and 3 acc axes) are depicted for 2 microphone sampling frequencies
(fs=1 kHz and fs=5 kHz). Power values are calculated with equation (5.8)
assuming that the microphone is sampled at fs for N samples and then
turned off, while the accelerometers are on for 1 second.
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Observations for signal acquisition stage: Three design rules for
the signal acquisition stage can be derived from the measurements:

• For a given number of samples, choose the highest possible sam-
pling frequency. E.g. at N=400 the power consumption with 1 kHz
sampling frequency is higher than with fs=5kHz. This rule is de-
rived from the fact that a short on-time is favorable for a low power
consumption.

• For a fixed on-time, a high sampling frequency has no effect on
the power consumption. This is indicated by the arrow: e.g. for an
on-time of tw = N/fs = 512/5kHz = 102.4/1kHz = 102ms we
get almost the same power consumption for sampling frequencies of
5 kHz or 1 kHz, respectively (the calculated difference is less than
10µW). However, as will be shown in Sec. 5.2.3, a high number of
input samples N will increase the processing time and therefore the
overall power consumption.

• Using accelerometers results in a high power consumption even
though they are only sampled with 10Hz. This has three reasons:
the high power consumption of the sensors itself, the power con-
sumption of the voltage reference of the ADC, which is independent
of the sampling frequency, and the relatively long on-period of the
accelerometers3.

5.2.3. Execution Time for Feature Calculation

Measurement results: Fig. 5.2 and Fig. 5.3 show the measured execu-
tion time of the FFT and the audio features running on the microcontroller
with a clock frequency of fµC =4096 kHz. Input and output resolution of
the feature calculating routines are 16 bit, but internally 32 bits are used.

To compute the Fourier coefficients of N real-valued samples, a K =
N
2 complex FFT is used which requires some rearranging of the output
data [117]. As expected, the time to calculate the FFT is proportional to
K · log2(K). The additional post-processing time in Fig. 5.2 includes the
aforementioned rearrangement of the output data, and the calculation of
the squares of the spectral magnitudes |X[i]|2.

For the features, tcalc is proportional to the number of samples from
which the feature is calculated (N or K depending on whether the feature

3The sensors cannot be shut down between two consecutive samples because the
charge in the capacitors of the low-pass filters needs to the conserved. If the sensors
are shut down, the capacitors discharge and need to be recharged when the sensors are
turned on. This recharging time (approx. t = 5 RC) is longer than the time between
two samples t = 1/fs if the filters are designed to fulfill Nyquist’s theorem.
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is a time domain or a frequency domain feature). The high complexity of
the BER feature originates from the necessity to calculate FC first (see
Appendix B.1). FC and FLUC-S have a long duration due to the square
root operation in the calculation of the spectral magnitudes. Not depicted
is the time to calculate meanacc and stdacc from 10 input samples: there
we measured tcalc =0.144ms.
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Figure 5.2. Measured execution time for a K-point FFT. Microcon-
troller clock frequency is fµC =4096 kHz.
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Fig. 5.3 ignores that certain features can be reused to calculate other
ones; e.g. FC is needed to calculate BW. This re-usability of computed
results is taken into account in Fig. 5.4 where the execution time of the
six feature sets and the FFTcomp/LDA method is shown. For the LDA
transformation matrix we assumed the existence of 5 classes or sounds,
thus the matrix is of size [N

2 × 4]. Furthermore, as a simplification, we
implied that the LDA transformation can be performed on the squared
magnitudes of the Fourier components |X[i]|2 instead of the the magni-
tudes |X[i]|, which would otherwise require a square root operation.
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Observation: Based on the previous measurements, we estimate the
real-time processing capabilities of the microcontroller. More precisely, we
are interested in the maximal allowed overlap of frames

max overlap =

(

1− tcalc

tw

)

· 100% (5.9)

so that continuous sampling and processing of the data is possible without
the need to discard the sampled data. For equation (5.9) we made two
assumptions:

1. An old frame is processed while at the same time a new buffer is
filled with samples.

2. The microcontroller can handle sampling and processing indepen-
dently, so that tcalc is not affected by the sampling procedure.
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An overlap value close to 100% means that for every new incoming sample
the features can be computed. Zero overlap denotes that all samples are
processed but that the frames do not overlap, i.e. that the frames are
adjacent. An overlap of −100% (or tcalc = 2tw) implies processing of only
every second frame, i.e. that gaps the size of a frame arise in the continuous
data stream. Fig. 5.5 displays the maximal allowed overlap for feature set
F5 and the FFTcomp/LDA method, i.e. the two with the fastest and the
slowest execution time, respectively. Due to the nature of the FFT, which
requires N = tw · fs to be a power of 2, only the points indicated by
the markers are valid. Comparing this result with Fig. 4.11 on page 58,
we observe that generally frame overlap will not be possible for sampling
frequencies which deliver a high recognition rate (i.e. fs > 2 kHz for the
FFTcomp/LDA method and fs > 3 kHz for F5).
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Figure 5.5. Processing capability of the microcontroller in terms of per-
centage of frame overlap that allows to continuously sample the input sig-
nal at fs and compute the features of a frame of duration tw. Microcon-
troller clock frequency is fµC =4096 kHz.

5.2.4. Execution Time for Classifiers

Fig. 5.6 shows the measured execution time for a Naive Bayes, a NCC and
a tree classifier. The time for calculating Naive Bayes and NCC depends
linearly on the number of features and the number of classes (5 classes for
our scenarios). Although Naive Bayes is implemented using an efficient
method to calculate the product of the Gaussian distribution (by trans-
forming them into a logarithmic space, cf. equation (B.18)), it is not as
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Figure 5.6. Measured execution time for (a) Naive Bayes and near-
est class center (NCC) classifier in function of number of features and
number of classes and (b) decision tree classifier in function of the tree
height h (max. number of leaves = 2h). Microcontroller clock frequency is
fµC =4096 kHz.

efficient as the NCC classifier, which on the other hand generally performs
worse in terms of recognition rate.

Based on the observation on page 54 that the kNN classifier needs
to store about 550 training instances to reach the same performance as
a C4.5 classifier, the kNN classifier was not implemented. The execution
time of a kNN classifier can be estimated based on the measurements
of the NCC classifier. At their core, both classifiers calculate Euclidean
distances (see Appendix B.2). Assuming that the execution time of the
classifier routine is dominated by the distance calculations, the execution
time is

tcalc,kNN =
J · L
M · L · tcalc,NCC =

J

M
· tcalc,NCC (5.10)

with M the number of classes, J number of training instances and L the
dimensionality of the feature space. Thus, for J = 550 training instances
and L = 10 features, the execution time of the kNN classifier is tcalc,kNN ≈
54ms. Especially for large J (as with J = 550), the complexity of the
sorting algorithm (cf. Appendix B.2.2) cannot be neglected. Thus:

tcalc,kNN =
J · L + J · log2(J)

M · L + M
· tcalc,NCC (5.11)
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For J = 550 training instances and L = 10 features we estimate the
execution time of the kNN classifier to tcalc,kNN ≈ 94ms.

According to the Table in Fig. 5.6, a decision tree classifier is the
most power efficient of the three classifiers. For each node it requires a
table lookup and a branching operation which can be calculated in less
than 5µs, with the total number of branching operations equal to the tree
height h. With our data sets, the trained trees have never been higher than
10, i.e. h ≤ 10. Thus, even large trees can be computed in less than 50 µs.
This, plus the fact that the C4.5 algorithm provided high recognition
results, was our motivation to continue solely with the C4.5 classifier.

5.2.5. Total Average Power Consumption

Combining the results from Sec. 5.2.2 to Sec. 5.2.4, the average total
power consumption Pavg can be synthesized. Equation (5.8) is used as
the model of our hardware, with the parameters of the model given in
Table 5.1, Fig. 5.4 and Fig. 5.6.

Fig. 5.7 shows one example of the total average power consumption for
feature set F2 in function of fs, N and tw. We assume to use only the mi-
crophone, calculate the features over one sound frame of duration tw and
deliver one classification result every second. The following observations
can be made:

• Fig. 5.7(a) shows that power consumption can be reduced by de-
creasing N due to the shorter calculation time of the features for
smaller N .

• If N is given, a high sampling frequency should be considered to
achieve low power consumption since this shortens the on-time of the
sensors. On the other hand, if the length of the observation window
tw is given, a low sampling frequency should be chosen because this
decreases tcalc (see Fig. 5.7(b)).

• Fig. 5.7(b) also shows that the power consumption required to cal-
culate the FFT and features dominates the average power consump-
tion. This is visible in the difference between the solid and the dashed
lines. In case of constant N , the difference is constant since the mi-
crocontroller always requires the same time to process N samples.
In case of constant tw, the difference increases with increasing fs

since N is proportional to fs.

This concludes our power consumption analysis. More results are depicted
in the next section together with the prediction accuracy as part of our
trade-off analysis.
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5.3. Trade-off Analysis

5.3.1. Power Consumption vs. Recognition Rate Trade-off

So far, the metrics power consumption and prediction accuracy have been
analyzed separately. Generally, the effect that system parameters from
Fig. 4.1 on page 34 have on those two metrics are conflictive. To give an
example: results indicate that tw and fs should be small to achieve a low
power consumption (cf. Fig. 5.7), but at the same time this results in a low
recognition accuracy (cf. Fig. 4.7). To find an optimal operation point for a
given application, we propose to incorporate power consumption concerns
in the training of a context recognition system as it was illustrated in
Fig. 2.3 on page 21.

Selected Results

We demonstrate our approach by combining the recognition rate sim-
ulations from Sec. 4.3.3 with the measured power consumption values
from Sec. 5.2. Fig. 5.8 show the resulting curves for sampling frequency
fs =2.5 kHz (a,c,e) and feature set F2 (b,d,f). Fig. 5.8(a,b) present the
‘one sound frame’ strategy, (c,d) show the results where the microphone
features are averaged over 3 frames and in (e,f) the microphone features
are combined with the features from one accelerometer.
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Figure 5.8. Selected results of the recognition rate versus power con-
sumption trade-off for 3 strategies: audio features from 1 frame (top),
audio features averaged over 3 frames (middle), combination of audio and
acceleration features from one frame each (bottom).
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Each marker in the plot represents a calculated value and stands for
a certain length of the observation window tw and number of sampling
points N . Optimal points with regard to the power consumption versus
recognition rate trade-off are the ones towards the upper left corner. In
most cases, the optimal point belongs to a high sampling frequency fs =
2.5 . . . 10 kHz and to feature set F1 or F2. It can be observed, that different
feature sets with the same number of sampling points have little influence
on the power consumption compared to the overall power consumption,
but they do have an influence on the recognition rate.

Pareto Analysis

Combining the results for all parameter combinations and feature sets
and selecting only the pareto points4, leads to a curve representing the
upper limit for the recognition rate and the power consumption. This is
depicted in Fig. 5.9 for the three strategies (one sound frame, microphone
features averaged over 3 windows, microphone features fused with fea-
tures from one or two accelerometers, respectively), considering only the
feature sets. In Fig. 5.9(a) the power consumption is shown for a period-
icity of Tp =1 second. As pointed out in Sec. 5.2.1, increasing Tp leads to
a reduced power consumption as shown for Tp =10 seconds in Fig. 5.9(b).
The minimal power consumption is 76 µW: this is the power consumption
of the hardware platform with the microcontroller running in low-power
mode and all sensors turned off.
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Figure 5.9. Pareto front for different recognition methods with periodic-
ity Tp. Only feature sets F1 to F6 are considered here (cf. Fig. 5.10).

4A point is called pareto point if it sees no other points in the north-west quadrant
that originates from this point.
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Fig. 5.9(a) shows that depending on the areas in the power vs. recogni-
tion rate plane, different strategies deliver the best trade-off. For example,
starting from a power consumption of 3.25mW it is better to use one ac-
celerometer in addition to the microphone. Interestingly, most power con-
sumption values that are reached by the ‘one sound frame only’ strategy
are also covered by the feature averaging method – with the advantage
of a higher recognition rate. The difference lies in the length of the sam-
pling window: Averaging over several short windows results in a better
recognition rate than using one single long window – with a similar power
consumption. Using the second accelerometer on the hardware platform
only increases power consumption without gaining much in recognition
performance. This could be solved by changing the accelerometer orien-
tation on the hardware, so that both the y and the z-axis belong to one
accelerometer (cf. Sec. 3.2).

As we have shown, a linear transformation of the FFT components
results in a higher recognition rate than the method with the feature sets
(e.g. Fig. 4.8) but has to be paid with a higher power consumption (cf.
Fig. 5.4). A comparison of the two methods in the power versus recogni-
tion rate plane is shown in Fig. 5.10. It is evident, that the FFTcomp/LDA
method outperforms the feature set method for all three strategies. Fur-
thermore, the FFTcomp/LDA method allows a pure sound-based activity
recognition process, since it can even outperform the ‘mic + acc’ strategy.
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Gain of the Trade-off Analysis

In the end, the range in which we can vary parameters like sampling
frequency, frame length, feature sets and recognition strategies, are limited
by the wearable system and by the requirements of the application. Thus,
although per definition every point on the pareto front represents the
upper limit for the recognition rate for a given power consumption (and
vice versa), the context recognition system may not be operated on every
point of the pareto front.

Table 5.2 lists some of the parameters that can be restricted by bound-
ary conditions. Obviously, the less stringent the conditions are, the easier
it will be to find a set of parameters that match the boundary conditions.
So, even though a visual inspection of Fig. 5.10 suggest that a pareto
point in the north-west corner should be chosen, the requirements of the
wearable system may dictate another choice. For example, a usage sce-
nario which specifies a long battery life has an upper boundary for the
power consumption. Likewise, a system that does not have enough mem-
ory to hold all the LDA transformation matrices needed for one location
(cf. Sec. 2.1.3 and page 50) cannot use the FFTcomp/LDA method.

To cover a broad range of results, three choices will be presented. Be-
sides comparing different points on the pareto front, we will also discuss
the gain in recognition rate and battery lifetime achieved by choosing an
optimal point in contrast to a random selected parameter set. By com-
paring Table 5.1 with Fig. 5.10 we notice that our frame based approach
alone has reduced the power consumption by more than half in contrast
to continuous recognition: if all components are kept continuously on, the
system consumes 9.5mW which equals to a battery lifetime of 59 hours
(in the following section, we use the battery model from equation (5.1)
in Sec. 3.2 with a battery capacity of C =150mAh and nominal battery
voltage VBatNom =3.7V).

Table 5.2. Boundary conditions for system parameters.

Parameter Example Imposed by

Sampling frequency fs ≤ 5 kHz hardware

Acquisition window tw ≤ 200ms application timing constraints
(e.g. result ready in < 0.5 sec)

Sampling points N ≤ 512 hardware (memory), fs, tw

Recognition rate ≥ 85% application

Power consumption ‘as low as possible’ battery life, application

Periodicity Tp ≈ 1 sec application, battery life

Recognition method ‘only feature sets’ hardware, system design



80 Chapter 5: Design for Power Efficiency

‘Feature set averaging over several audio frames’: With the exam-
ple given in Table 5.2 one needs to choose the ‘feature averaging method’.
To find the combination of feature set, sampling frequency and sampling
duration that results in the optimal power consumption vs. recognition
rate trade-off, Fig. 5.11 has to be considered. It shows the pareto curves
of all features sets (Table 4.2) in function of the sampling frequency (e.g.
the curve for fs = 2.5 kHz is the pareto curve of Fig. 5.8(c)). In this case,
fs =2.5 kHz is optimal and the point indicated by the arrow is chosen: it
belongs to feature set F2 with N = 64 and tw =25.6ms. Since it matches
all the other boundary conditions in Table 5.2, it is a valid point. Overall
recognition rate is 86.73% at a power consumption of 0.72mW with Tp =1
second. From Fig. 5.11 we also see that the potential in power savings is
significant: the point on the pareto front at a power consumption of 3mW
is associated with a classification accuracy of 89.3%. This corresponds to
a marginal increase in recognition rate by 3% while it shortens the battery
lifetime by factor 4 (770 hours down to 185 hours). Moreover, picking a
random point, i.e. one below the pareto front, may even lead to a reduc-
tion in recognition rate and battery lifetime at the same time. E.g. the
point at 1mW and 85% recognition rate shortens battery life by 216 hours
and the recognition accuracy by 2%.

Table 5.3 shows the confusion matrix (CM) for the chosen (optimal)
point. Especially the sounds from the coffee maker and the hot water
nozzle are confused quite often. This was to be expected since they are
both generated by the same device (see Fig. 3.2) which uses the same
water pump for both functions. This behavior has already been reported
in one of our earlier works [63].
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Table 5.3. CM for sound (averaging), fs=2.5 kHz, N=64, F2

a b c d e ← classified as Accuracy

284 3 18 1 3 a=microwave 91.91%

2 257 34 10 6 b=coffee maker 83.17%

32 27 233 14 3 c=hot water nozzle 75.40%

0 14 13 282 0 d=coffee grinder 91.26%

2 14 4 5 284 e=water tap 91.91%

Table 5.4. CM for sound and acceleration, fs=2.5 kHz, N=64, F2

a b c d e ← classified as Accuracy

287 7 9 6 0 a=microwave 92.88%

4 298 0 2 5 b=coffee maker 96.44%

5 0 276 26 2 c=hot water nozzle 89.32%

2 4 23 280 0 d=coffee grinder 90.61%

0 3 0 0 306 e=water tap 99.03%

Table 5.5. CM sound (averaging), fs=10 kHz, N=64, FFTcomp/LDA

a b c d e ← classified as Accuracy

302 0 3 1 3 a=microwave 97.73%

2 281 24 2 0 b=coffee maker 90.94%

7 15 269 14 4 c=hot water nozzle 87.06%

2 5 16 286 0 d=coffee grinder 92.56%

2 3 3 0 301 e=water tap 97.41%

‘Combining sound feature-sets with acceleration’: If a higher
recognition rate for the coffee maker and the hot water nozzle is needed,
the acceleration signals have to be considered as well. The two functions
are activated differently: The coffee maker is switched on by pressing a
button, whereas the hot water nozzle is operated by turning a knob. Ta-
ble 5.4 lists the confusion matrix with the same parameters as for Table 5.3
with the difference that sound features are analyzed over only one win-
dow and acceleration features are used as well (meanaccY and stdaccY ).
Overall recognition rate is 93.66% at a power consumption of 3.3mW with
Tp =1 second, which leads to a battery lifetime of 168 hours.

As Fig. 5.8(e) and (f) illustrate, there are many sub-optimal points.
By choosing one of these, one can easily be off by 0.5 to 1mW in power
consumption (about 1 or 2 days of battery lifetime) at a reduced accuracy.
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‘Averaging FFT components over several audio frames followed
by LDA transformation’: If possible, this approach should be chosen
to detect the given group of activities. By averaging the fourier compo-
nents over 3 frames, an average recognition performance of 93.14% can
be achieved with as little as 0.55mW, which corresponds to 42 days of
‘continuously’ analyzing 3 frames per second. Table 5.5 lists the confusion
matrix for the selected pareto point which belongs to fs =10 kHz and
N =64. Astonishing here is that this translates to a frame duration of
just 6.4ms: A point that has never been considered as an optimal point
during our separate recognition rate or power consumption analysis.

Furthermore, the pareto curve in Fig. 5.10 shows that to achieve high
recognition rates, an excessive increase in power is required. For example
the last two points on the pareto curve for this strategy are related to an
accuracy of 98.1% and 98.8%, respectively. But this small increase of 0.7%
has to be paid with 2mW additional power consumption (from 2.29mW
to 4.35mW, i.e. a reduction of the battery lifetime by almost 50%).

5.3.2. Classification Speed vs. Recognition Rate Trade-off

For our applications, we presumed that the sounds under investigation last
for several seconds and thus classification speed is not an issue. However,
in some cases, it is more important to be able to analyze as many frames
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Figure 5.12. Number of classifications per second versus recognition rate
for the FFTcomp/LDA method assuming one sound frame is analyzed.
Microcontroller clock is fµC =4096 kHz.



5.4. Summary 83

as possible, e.g. to make sure that even sounds of short duration like loud
closing of a door, are not missed.

In this case, most possibly a trade-off between recognition speed and
recognition accuracy exists: For a frame of given duration tw, increasing
the number of samples will increase the recognition rate but also increase
the execution time of the feature calculation. This is illustrated in Fig. 5.12
for the FFTcomp/LDA method. To achieve the highest recognition rate on
a frame-wise basis, only 3 classifications per second are possible. Allowing
the recognition accuracy to drop by 7% makes 15 classifications per second
possible.

5.4. Summary

Since sensor nodes should run autonomously for days and months, a low
power design is critical for such systems. For a predefined hardware, the
options to achieve low power consumption are limited: in our case they are
restricted to shutting down subsystems, duty cycling and efficient software
design. We used a simplified model of our hardware to estimate the power
consumption of the Sensor Node for various sampling frequencies, sam-
pling durations, features and classifiers. The parameters of the model were
derived directly from power consumption measurements of the hardware
and execution time measurements of different software routines running
on the microcontroller.

Next, a set of parameters which optimizes a context recognition sys-
tem not only with regard to recognition rate but also in terms of power
consumption has to be found. Our novel approach extends the standard
design and training process used to optimize recognition performance in
machine learning with a power optimization. It leads to a pareto plot
which combines the two conflicting design choices ‘power consumption’
and ‘recognition rate’ and allows to pick out an optimal operation point
for a given set of criteria. Our empirical design process allows to find pa-
rameter combinations which are not obvious from an analytical analysis.

In the case study with data set II, we found that optimizing the ‘pa-
rameters’ (sampling frequency fs, sampling duration tw, feature choice
and classifiers) of the sound-based recognition process allows improve-
ments in power consumption by a factor of 2 to 4 with only little degrada-
tion in recognition performance. Furthermore, the trade-off analysis does
not stop at parameter optimization. The right selection of sensors or the
number of observation windows is crucial as well and can further improve
the recognition rate at an identical power consumption.

Three optimal points were selected to illustrate how well our system
can classify the operation of kitchen appliances with the help of a wrist-
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worn microphone and accelerometers. We achieve the following recognition
accuracies and power consumptions at a rate of 1 classification per second:

• 87% consuming 0.72mW (battery lifetime 770 hours or 1 month)
using sound only and a set of audio features.

• 94% consuming 0.55mW (battery lifetime 1’009 hours or 42 days)
using sound only and a linear transformation of the Fourier compo-
nents.

• 94% consuming 3.3mW (battery lifetime 168 hours or 1 week) using
sound and acceleration features.



6
Discussion and

Conclusion

This chapter discusses our achievements with respect to our ini-
tial assumptions. Especially, we will illustrate how the recognition
algorithms deal with a large number of sounds. Furthermore, we
present initial results of our algorithms running completely online
on the hardware platform. Moreover, we review the relevance and
the limitations of our design process and discuss the power con-
sumption of future generations of the Sensor Node based on the
International Technology Roadmap for Semiconductors. Finally,
we conclude our work on sound-based activity recognition with a
list of achievements and propositions for further research.
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6.1. Discussion

In Chapter 2 we have introduced constraints concerning the sensor archi-
tecture, the hardware, the microphone placement, and the number and
type of sounds used. While we argue that some of the constraints are well
justified (e.g. wrist-worn microphones for user activity detection or the use
of a general purpose hardware platform), others might leave open ques-
tions. So, for example, how well would our algorithms perform if more
than just 5 sounds have to be distinguished? This will be discussed in
Sec. 6.1.1. Furthermore, in Sec. 6.1.2 we will review the assumption that
it is more power efficient to perform the classification locally in contrast
to transmitting the raw sensor data to a wearable computer.

Moreover, we have assumed that our approach of recording the exper-
iments with high quality equipment and lowering the quality of the data
as part of the design process is comparable to performing the recogni-
tion procedure online on the hardware. Sec. 6.1.3 shows the recognition
performance of the hardware platform if the on-board microphone and
fixed-point computations are used. Last but not least, we review the rel-
evance and the limitations of our design process in Sec. 6.1.4 and discuss
the power consumption of future generations of the Sensor Node based on
the International Technology Roadmap for Semiconductors in Sec. 6.1.5.

6.1.1. Classifying a Large Number of Sounds

Based on the arguments in Sec. 2.1.3, we have optimized our algorithms
for a small number of sounds. The following paragraphs show how our
recognition process scales with the number of sounds.

Increasing the number of sounds will lead to a decrease in recognition
rate, since a limited number of features allows to discriminate only a lim-
ited number of sounds. This can easily be explained with the probability
density function of the features: Adding more classes does not change their
probability density functions but generally places them closer together in
the feature space so that they are harder to separate. To avoid this, more
features can be used – and thus creating more ‘space’ in the feature space.

To evaluate how much the recognition rate will drop, all 19 sounds from
data set I (i.e. all the sounds from Table 3.1) were mixed together and thus
the classification task was to distinguish between 19 different sounds. The
result is shown in Fig. 6.1. The performance evaluation was done in the
same way as for Fig. 4.6 on page 49. The 13 quadruples of bars correspond
to the 13 different combinations in Table 4.3. Especially interesting is
combination 1 and 6, which corresponds to the FFTcomp/LDA approach
and Feature Set F1, respectively.
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We observe that the recognition rates, which in case of 5 sounds per
group were in the range of 80% to almost 100%, now drop to 70% to 90%.
Furthermore, we notice that the FFTcomp/LDA approach now definitely
performs better and achieves 85% recognition rate. This, however, is due
to the different dimensionality: While feature set F1 spans a 10 dimen-
sional feature space for any sound group, the LDA transformation in the
FFTcomp/LDA approach reduces the feature space to M − 1 dimensions,
where M is the number of sounds. If, for a fair comparison with Fig. 4.6,
only the 4 most dominant dimensions are considered, then the recognition
rate drops to 67% (C4.5) or 72% (kNN) in case 19 sounds are used. Sim-
ilarly, we observe that combination 9 and 11 perform rather well, which
again can be accredited to a larger feature set.

To sum up, increasing the number of classes from 5 to 19 results in a
reduced accuracy by 10 to 20%. To compensate, one needs to include more
features in the feature sets or use the FFTcomp/LDA approach since it
scales with the number of classes. Obviously, both variants will lead to an
increase in power consumption. Based on our observations, we expect the
recognition process to work with more sounds as well, but with a gradual
decrease in recognition rate if more sounds are included.
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Figure 6.1. Recognition rates for classifying all 19 sounds from data set
I, with fs = 4.8 kHz, N = 256, tw = 53.3ms.

6.1.2. Computation vs. Communication Trade-off

Throughout our work we have assumed that the hardware platform is an
autonomous node which performs all computation itself. In a non stand-
alone system, the communication strategy will have an impact on the
power consumption (cf. Fig. 2.1). Generally, it is presumed that wireless
communication is more power consuming than computation [52, 64]. To
support this statement, one usually compares the energy to transmit one
bit across the wireless link with the energy to execute an instruction on
the local processor [48]:

ETX,bit =
PTX

DataRate
EµC,instr =

PµC · CPI

fµC
(6.1)
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where CPI is the number of clock cycles per instruction for the processor.
If an algorithm requires m instructions to reduce the data by n bits, then
it is energy-wise more efficient to do local processing before transmitting
data if

m · EµC,instr < n · ETX,bit (6.2)

For the MSP430F1611

EµC,instr =
2mA× 3V

4MHz/(1 cycle/instr)
= 1.5nJ/instr (6.3)

The nRF2401 transceiver requires

ETX,bit =
8.8mA× 3V

1000 kbps
= 26.4nJ/bit (6.4)

according to the data sheet. This value is optimistic because several effects
are neglected: First of all, the MSP430 cannot deliver data rates of 1Mbps.
However, the nRF2401 transceiver has a ‘ShockBurst’ modus which allows
the microcontroller to fill a register of the transmitter at much lower speed.
During that time just the MSP430 and the register of the nRF2400 draw
current. Once the register is filled, the RF frontend is activated to transmit
the data with 1Mbps over the wireless link and hence for a short time
8.8mA is drawn. Depending on the speed of the microcontroller and the
output power at the RF frontend, we measured ETX,bit in the range of

ETX,bit = 115 . . . 290nJ/bit (measured) (6.5)

This complies with Kohvakka et al. [72] who measured a much higher
power consumption of the nRF2401 compared to data sheet calculations1.
Based on those numbers, we determine the computation – communication
trade-off in two examples:

Example 1: Online Classification vs. offline Classification:. We assume
that in both cases the features are calculated locally. Execution time
for a tree based classifier was roughly tcalc = 25µs (cf. Sec. 5.2.4)
at fµC = 4096 kHz. Thus, m = 102 instructions; the classification
process consumes 154 nJ.

The classification stage reduces the number of bits by n = 4·16−8 =
56 bits, assuming a 4-dimensional feature space (FFTcomp/LDA),
16 bit features and 8 bit classification result. It would require at least
56 bits ·115nJ/bit = 6.4µJ to transmit these bits. Therefore, local
classification is advisable.

1For comparison: ETX,bit of a Bluetooth radio ranges between 100 nJ/bit [58] to
270 nJ/bit [53].
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Example 2: Raw data transmission vs. local feature calculation and
classification:. Here, we consider the best and the worst case (cf.
Fig. 5.4): tcalc,F5 = 192ms and tcalc,FFTcomp/LDA = 313ms for
N = 512 input samples and fµC = 4096 kHz. Therefore, local feature
calculation and classification consumes between 1.2mJ and 1.9mJ.

The reduction in numbers of bits is n = 512 · 16 − 8 = 8184 bits.
Transmitting 8184 bits requires between 0.9mJ and 2.4mJ. In this
case, it is not obvious whether local computing or wireless commu-
nication should be favored.

As the second example illustrates, a first order approximation of the en-
ergy consumption is not sufficient to determine the computation – com-
munication trade-off. More aspects need to be considered. A complete
investigation is beyond the scope of this work; here we just list some as-
pects which in the end let us favor local processing. In terms of power,
the first order approximation has the following drawbacks:

• protocol overhead and networking issues like packet loss or colli-
sions is ignored (e.g. longer transmit duration might lead to more
collisions)

• power consumption of the receiver is not included, neither are trans-
mitter power up/down transients.

Even if in terms of energy efficiency, the computation vs. communication
trade-off is decided in favor of transmitting raw data for processing on the
wearable computer (cf. Fig. 2.2), other factors need to be looked at:

• availability of channel bandwidth to send raw data

• availability of the central wearable computer (to receive and process
the data).

• impact on the power consumption of the central wearable computer
if it has to process the data from one or several sensor nodes.

6.1.3. Online Recognition Performance

For our empirical design process, we have assumed that comparable recog-
nition rates can be achieved by recording the experiments with high qual-
ity equipment and lowering the quality of the data as part of the de-
sign process and by performing the recognition procedure directly on the
hardware. Thus, so far we have not dealt with limited microphone sensi-
tivity, reduced accuracy of fixed-point calculations and system noise usu-
ally present in a hardware platform. In the following section, we evaluate
the overall influence of the hardware implementation on the recognition
accuracy.
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Frame Based Recognition: A series of experiments were recorded
with our hardware2 in the wood workshop and the kitchen. Similar to
the recording procedure for data collection I, described in Sec. 3.1.2, we
recorded sounds with several hand positions. Overall, about 12’000 frames
were recorded with the hardware and the features calculated in real-time
on the hardware’s microcontroller.

Table 6.1 lists the frame-wise recognition rates using feature set F5 and
a C4.5 decision tree classifier for the kitchen and the workshop sounds.
As a comparison, the recognition rates for data set I and II are listed.
The difference of about 30% between set I/HW and set II for the coffee
maker and the hot water nozzle might be contributed to a different coffee
machine used for the two experiments. Thus, a direct comparison is only
possible between set I and HW. As for the comparison between data set I
and the SoundButton, we observe that the recognition rates are generally
5 to 15% lower for the hardware.

Table 6.1. Frame based recognition rates for data set I and II and the
hardware prototype (HW). Results are calculated with feature set F5, a
decision tree classifier, fs = 4.8 kHz (5 kHz for set II) and N = 256.

(a) Kitchen Sounds

Sound Set I Set II HW

microwave 94% 90 % 93 %

coffee maker 97% 65 % 95 %

hot water nozzle 91% 64 % 83 %

coffee grinder 78% 77 % 70 %

water tap 89% 92 % 81 %

Average 90% 78 % 84 %

(b) Workshop Sounds

Sound Set I HW

sawing 76 % 66 %

drilling 94 % 82 %

hammering 78 % 86 %

grinding 83 % 41 %

filing 62 % 56 %

Average 79 % 66 %

There are some results which are not fully understood so far. For
example, the bad recognition rate of the grinding machine (41% vs. 83%)
in the workshop sounds or the good recognition rate of hammering (86%
vs. 78%). We believe, that these results are mainly due to the recorded
sound levels: some of the sounds recorded with the prototype showed
very small amplitudes (3 bits and less) which makes sound discrimination
almost impossible. Or in other words: although the features are in principle
immune to scaling of the input vector, the fixed-point implementation of
the algorithms showed a tendency to classify sounds in ‘loud’ and ‘quiet’

2We used a first prototype called ‘SoundButton’ from [29, 80] for these experiments.
The performance is comparable to the one of the hardware presented in Sec. 3.2 because
the differences in layout and hardware components between the SoundButton and the
Sensor Node are marginal.
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sounds. Therefore, we suggest to include an automatic gain control for the
microphone in future hardware revisions.

Event Based Continuous Recognition: To illustrate the perfor-
mance of the system in a real life scenario, a subject wearing the Sound-
Button was asked to randomly pick 20 activities from the list of ‘kitchen’
tasks and perform them at random times within a 10 minute period. Fea-
ture set F5 was calculated online on the hardware at a rate of 5.6 frames
per second and transmitted together with the raw microphone data to
a PC. Then we processed the data as follows: Firstly, we identified in-
teresting segments using the ratio of rms from the microphone signals of
two devices – one mounted on the user’s wrist, the other on the user’s
chest (cf. Sec. 4.2.4). Then, we applied a frame by frame recognition to
these segments and classified the features, which had been calculated on
the microcontroller, with a tree based classifier. Finally, we performed
segment-wise classification using a majority decision over all frames in a
segment.

The results of the first 4 minutes are shown in Fig. 6.2. It depicts the
hand labeled ground truth, the frame based recognition and the activities
that are detected as the result of the majority decision over all frames
in a segment (segmented with the help of the rms ratio between the two
microphones). For the whole 10 minutes, we counted 18 correctly labeled
events, 2 substitutions (a wrongly classified event), 2 insertions (detection
of an event although none was there) and 0 deletions.

0 50 100 150 200 250

Garbage

     Grinder

Coffee

      Nozzle

   Microwave

   Water tap

time [sec]

Segment based
Frame based
Ground truth

Figure 6.2. Continuous recognition with the hardware platform using a
wrist and chest microphone for segmenting the data stream, feature set F5
and a C4.5 classifier for frame based classification, and a majority decision
over all frames of one segment to achieve event based recognition.
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6.1.4. Relevance and Limitations of Design Method

The problem addressed by our design methodology – reducing the power
consumption of a context recognition system – is widely recognized to be
one of the key challenges of the field. In principle, the general concept
of an iterative, empirical optimization method that incorporates power
consumption issues into the training process of the activity recognition
system is applicable to any context recognition system.

As argued in Sec. 1.2.2, the recognition of interactions with appliances
through sound analysis is relevant for a wide range of applications. Fur-
thermore, the sensors used in our case study are prototypical for a generic
combination of ‘complex’ and ‘simple’ sensors often found in wearable
systems [53, 54]: One sensor, in our case the microphone, captures sig-
nals which contain a lot of information and can be used to spot complex
activities such as “getting a coffee” but require high sampling rates and
computing power. On the other hand, the second sensor delivers less infor-
mation and therefore may allow ambiguous interpretations of the reading
but is easier to process. Other sensor combinations are for example video
and accelerometers [118] or accelerometers and a light sensor [63].

In summary, it can be said that the case studies used to illustrate
our method are certainly not toy examples and the lessons learned are
applicable to a range of other scenarios and hardware platforms. This is
backed up by other studies which have shown that design methodologies
can improve battery lifetime with almost no degradation in recognition
performance [60, 62]. Nonetheless, we acknowledge that there are clearly
limits to what can be generalized from a single study and further system
examples need to be considered.

In technical terms, the main limitation of the methodology presented
in this work is the lack of an automated design method which automat-
ically selects the parameters for an optimal recognition rate vs. power
consumption trade-off during the training phase of the system. Therefore,
the following items need to be incorporated:

• automatic power estimations tools which include the power con-
sumption of the algorithms, the sensors and AD-converter

• methods which evaluate the performance of features and their power
consumption

• design tools which determine the optimal parameters automatically,
e.g. with genetic algorithms [119]



6.1. Discussion 93

6.1.5. Glimpse into the Future

Although in the computer area some technology forecast proved to be
wrong3, we dare to glimpse into the future and forecast sound-based ac-
tivity recognition systems of the future. Especially, we are interested in
the validity of the presented methods and results, 10 years from now, in
2015.

ITRS Roadmap: The International Technology Roadmap for Semi-
conductors (ITRS) [121] identifies the technological challenges and needs
which the semiconductor industry will be facing over the next 15 years.
The problem with extrapolating the power consumption of our hardware
platform are manyfold:

• in terms of logic circuits, the ITRS focuses on microprocessors
(meaning processors with several GHz processor frequency) made
in a single process technology. Manufactures of microcontrollers, on
the other hand, use proprietary processes specifically developed for
low power operation, often combining several different processes that
are specialized for different sections of the µC [122].

• manufacturable solutions for achieving the semiconductor speed and
density postulated by the ITRS are not known for years beyond
2009.

• power consumption of sensors (e.g. MEMS microphone) cannot be
estimated based on ITRS.

Extrapolating Power Values: We will investigate 4 systems which
are described in detail in Table 6.2.

1. Sensor Node from Sec. 3.2 implemented in 2005
2. Sensor Node as in 1. but assuming a lower operating voltage
3. Sensor Node in 2015 with the same functionality (i.e. number of

transistors) and same standby power consumption as in 2005 but
otherwise scaled with process technology

4. Sensor Node in 2015 with increased functionality compared to 2005;
leakage and dynamic power consumption scaled with process tech-
nology

3Remember the famous quote: “640 kB ought be enough for everybody” by Bill
Gates or “I think there is a world market for about 5 computers” by IBM chairman
Thomas Watson back in 1943 – more examples of technology forecasts that did never
fulfill in [120].
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We made the following assumptions to estimate the power consumption
of the systems:

• power consumption is based on calculation of the ‘Averaging FFT
components over several audio frames followed by LDA transfor-
mation’ strategy for the parameters in Table 5.5 in page 81 (fs =
10 kHz, N = 64).

• only microphones are used. Accelerometers are omitted.

• the average total power consumption is calculated with equa-
tion (5.8) with Tp = 1 seconds.

• the power consumption of the MSP430 is used as a base (cf. Ta-
ble 5.1). The power consumption for future processors is calculated
with the help of scaling factors derived from the ‘ITRS Process In-
tegration, Devices, and Structures (PIDS) 2005’ roadmap for the
LSTP (low standby power logic) category.

• processor power consumption scales according to equation (5.2) and
depends only on the logic circuits, i.e. memory power consumption
is assumed to scale linearly with logic circuits.

• current consumption of the microphone, the ADC reference voltage
generator and the ADC4 scale only by a factor 0.5 in 10 year.

• The efficiency η of the step-down converter was modeled with:

η = α− β · (iL)−γ in % with iL : load current in mA

with α = 88, β = 4.2, γ = 0.78 fitted to the efficiency curve of
the Texas Instruments TPS62220 step-down converter used on the
Sensor Node. For the 2015 Sensor Node we choose: α = 95, β = 5,
γ = 0.78. The minimum efficiency is always set to 70%.

Table 6.2 displays the key parameters of the four systems and indicates
how the parameters were derived from ITRS. Fig. 6.3 shows the calculated
power consumption (including step-down converter efficiency) and battery
lifetime (assuming the model from equation (5.1) and 24 h operation)
of the four systems. The power consumption is split into the 4 phases
described in connection with equation (5.8) and Table 5.1: Microphone,
Signal Acquisition, Feature Calculation (in this case FFTcomp/LDA) and
Idle/Standby phase.

4According to the ‘System Drivers’ chapter [121], the figure of merit for an ADC
– measured in GHz/W – improves by a factor of 2 every three years. However, this
applies mostly to sampling frequencies of several MHz to GHz. As shown in Sec. 5.2.2,
in our case the current consumption of the ADC reference voltage generator dominates
the power consumption of the ADC.
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Figure 6.3. Extrapolated power consumption and battery lifetime for
the four systems in Table 6.2

We make the following observations:

• Even today a reduction of the power consumption by a factor 2 is
possible by lowering the supply voltage to 1.8V.

• In 10 years, a sub-100 µW sound-based user activity recognition sys-
tem is feasible (System 3). However, this requires that technology
scaling is used to make the chips smaller and to consume less power
in overall (and not just per transistor). System 3 could provide one
classification per second, 24 hours a day, for almost 2 1

2 years.

• System 4 reflects the trend in processor manufacturing: at more or
less constant chip size, maximum speed and number of transistors
are increased but at the same time total power consumption as well
(as seen with current trends in processors for PDAs and PCs – com-
pare [124]). System 4 offers more processing capability than needed
for the algorithms used in this work. High leakage currents cause
the total power consumption to be higher than for the optimized
system of 2005 (System 2). Due to an increased battery capacity,
the lifetime of System 4 is still twice as long as of System 2.

Having a low power system at hand does not render the design method-
ology presented in this work obsolete. This is illustrated in Fig. 6.4. On the
left, the same graph as in Fig. 6.3 is shown but with a different ordinate
scaling. Fig. 6.4(b) depicts the power consumption and battery lifetime for
the four systems of Table 6.2 on the assumption that N = 512 samples are
processed with fs = 10 kHz (the rightmost point on the FFTcomp/LDA
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pareto plot – marked with grey stars – in Fig. 5.10). This result in a longer
on-time of the ADC and a longer feature calculation time tcalc compared
to the configuration with N = 64 samples and fs = 10 kHz.

We observe that with the help of our design methodology, the battery
lifetime of System 1 and 2 is decreased by a factor of 7.8 and 7.3, respec-
tively. For the future Systems 3 and 4 the decrease in battery lifetime is
still a factor of 4.2 and 2.3, respectively. Due to higher leakage currents for
System 4 (which are constantly present), the battery lifetime for system
4 decreases not as much as the lifetime for System 3. Nevertheless, based
on Fig. 6.4 we conclude that our design method is both valid and useful
in the future.
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Figure 6.4. Impact of number of sampling points N on power consump-
tion and battery lifetime for the four systems in Table 6.2.

6.2. Conclusions

The objectives of this work were twofold:

1. to show that sound is a useful senor modality to detect user activity

2. to show that sound-based user activity recognition is possible on
hardware platforms which offer only limited computational power

We believe, that this work is a different approach to the field of wearable
activity detection which is usually done with motion sensors. The achieve
our goal, we made the following contributions:

• We analyzed scenarios in which sound-based activity detection is
useful. Furthermore, we discussed under which constraints low-
power sound-based activity recognition is feasible.
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• We modeled the recognition chain from sensors to classifiers to show
that with little computational complexity reasonable recognition
rates can be achieved. Such a detailed analysis is rare in related
works. Most works just concentrate on one topic (e.g. features).

• We introduced a novel way to segment the data stream by comparing
the signal amplitude of a wrist-worn and a chest-worn microphone.

• We recorded sounds for 4 different scenarios and applied our recog-
nition algorithms to them to prove that our method works for a wide
range of scenarios.

• As a major contribution, a design method was introduced to deter-
mine the power consumption versus recognition rate trade-off during
system training. To our knowledge, this is the first report that illus-
trates how energy limited context recognition systems can benefit
from a detailed analysis of not only the recognition procedure, but
also the power consumption.

• To prove our design method, we recorded data in a second exper-
imental setup which involved 11 users. Furthermore, we presented
power consumption measurements of an existing sensor hardware
and implemented features and classifiers on a microcontroller to per-
form sound classification.

We believe that our work will open new ways for user activity recognition
and context recognition systems:

• First of all, we have shown that sound-based user activity is possible.
But whether it is useful for daily applications needs to be proven in
field studies where emphasis is put on a natural environment. While
loud background noises were eliminated during our experiments, in
an realistic setting we may encounter interfering noise, e.g. from a
radio, a TV or from people talking.

• Furthermore, emphasis needs to be put on low-power sound-
segmentation methods. The performance of these is dependent on
the ratio of occurrence between ‘sound-based’ activities and other
sounds/noises. Thus, the segmentation methods need to be tested
in real world scenarios where other sounds can occur or the user is
allowed to perform other activities than the ones the context recog-
nition system should recognize.

• Our work could open up new ways to train context recognition sys-
tem: by including its power consumption. Future research could deal
with including power consumption into the feature subset selection
or with the design of automatic tools to speed up the search process.



A
Dealing with Class

Skew in Context

Recognition *

As research in context recognition moves towards more maturity
and real life applications, appropriate and reliable performance
metrics gain importance. This chapter focuses on the issue of per-
formance evaluation in the face of class skew (varying, unequal
occurrence of individual classes), which is common for many con-
text recognition problems. We propose to use ROC curves and
Area Under the Curve (AUC) instead of the more commonly used
accuracy to better account for class skew. We present a theoretical
analysis of their advantages for context recognition and illustrate
their performance on a real life case study.

*This chapter is mainly based on Ref. [125]
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A.1. Introduction

As context-aware systems become more mature and aim to move from
laboratory examples towards real life applications, the need for appropri-
ate performance measures becomes stringent. For one, such measures are
required for an objective comparison between different research results.
Second, they are needed to optimize system architectures with respect to
specific requirements and trade-offs demanded by different applications.

Class Skew in Context Recognition: Very often context recogni-
tion deals with varying, unequal occurrences of individual classes. This is
called class skew. It can be caused either by naturally imbalanced classes
or by varying user preferences. Performance metrics should consider this
effect in order to avoid misleading interpretations of the result. In health
care, for example, one often tries to detect rare events like collapses, heart
attacks, seizures or other dangerous incidences. In other context recogni-
tion domains, an engineer might train a system to recognize certain events
without knowing the user’s preferences. Place and scene recognition based
on environmental clues is such an example: the time spent at an individ-
ual location might differ from user to user and not match the percentages
used during the training of the system. Monitoring daily activity also has
to deal with class skew since no two activities take the same amount of
time: e.g. sleeping takes much longer than eating, but both are probably
equally important. Thus, in many context recognition applications it is
not desirable to tune classifiers to recognize often occurring events better
than rare ones.

Accuracy and Class Skew: The performance measure most com-
monly used in context recognition research is the overall accuracy. It is
defined as the total number of correctly classified instances divided by
the total number of instances. We argue that it is not well suited for con-
text recognition applications with class skew. Consider a simple two class
problem with a naive classifier that always says “class 1 occurred”. If, in
reality, both classes occur 100 times, the accuracy is 100/200 = 50%. If
class 1 occurs 10’000 times and the other class occurs only 100 times, the
accuracy is 10000/10100 = 99%. The same classifier produces a different
accuracy for different class skews.

Note that for fields such as speech or character recognition, which also
use accuracy, the above is an advantage rather than a problem. In both
these fields it makes sense to have better accuracy for more common words.
Additionally, the relative probabilities of classes (words, characters) are
known and, in the long run, constant. Thus, the fact that accuracy reflects
on how well the classifier is adapted to the class distribution is a desirable
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feature. This is not the case for many context recognition tasks where the
class distribution is neither known nor constant, and fine tuning for better
recognition of more common classes is not always desirable.

Contributions and Outline: We postulate that metrics which are less
sensitive to class skew such as Receiver Operating Characteristic (ROC)
and Area Under the Curve (AUC) should be used to evaluate and design
context recognition systems. To make our case we will first introduce
some common performance metrics and discuss on a theoretical basis how
and why they are subject to class skew (Sec. A.2.1). We will then briefly
describe ROC and AUC and explain why these metrics are better suited
to deal with class skew than accuracy (Sec. A.2.2 and A.2.3). The data
from the case study in Chapter 3 will then be used to show how the
different metrics perform in a real-life scenarios. This includes both a two
class and a multi-class problem (Sec. A.2.4 and A.3). Finally, open issues
are outlined in Sec. A.4.

ROC analysis was originally developed for radar detection theory [126]
but is also widely used as a method to measure performance in diagnostic
systems [127–129], medical imaging [130–132] and machine learning [133,
134]. Even though the metrics considered in this chapter have been in
existence for years, they have up to now hardly been used in the field of
ubiquitous and wearable computing. [135, 136] are a few rare examples.
Worth mentioning is also [137], where the authors use ROC curves to deal
with unknown costs for interruptability at learning time.

A.2. Two Class Problem

A.2.1. Illustration of the Problem

Metrics: We assume to observe two classes H0 and H1 which occur with
the a priory probabilities P0 = P (H0) and P1 = P (H1), respectively. Each
class is represented by one or more features R with a probability density
function (pdf) fr|Hi

(R|Hi). The task of a classifier is to ‘guess’ the true

Table A.1. Confusion Matrix.

Ĥ1 Ĥ0

H1
True
Positives

False
Negatives

H0
False
Positives

True
Negatives
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class Hi based on the observation of R. In other words: it maps each
instance (or observation) R to a hypothesis Ĥi. The decision is correct
if Ĥi = Hi. For each observed instance there are four possible outcomes,
as illustrated by the confusion matrix in Table A.1. Each field contains
the number of instances, that are classified as Ĥi, given Hi. Based on
Table A.1 we list some very well known metrics:

tpr = recall =
TP

TP + FN
(true positive rate) (A.1)

fpr =
FP

FP + TN
(false positive rate) (A.2)

precision =
TP

TP + FP
(A.3)

accuracy =
TP + TN

TP + FN + FP + TN
(A.4)

norm_acc =
1

2

(

TP

TP + FN
+

TN

FP + TN

)

(A.5)

Since these metrics stem from detection theory which was originally devel-
oped for detection of adverse airplanes on radar, tpr is also called hit rate
and fpr also false alarm rate. Additionally, miss rate = 1− tpr = FN

TP+FN
is defined. The normalized accuracy norm_acc tries overcome class skew
by first calculating the recognition rate for each class individually.

To illustrate how these metrics perform in the presence of class skew,
we use the example from the introduction: we consider a classifier A,
which always guesses “class 1 occurred”. A second classifier B always says
“class 0 occurred”. Both classifiers are presented with three different class
distributions: α: both classes occur 100 times, β: class 1 occurs 10’000
times but class 0 only 100 times and γ: class 1 100 times and class 0
10’000 times. Table A.2 lists the calculated metrics. As far as accuracy
is concerned, we observe that depending on the class distribution, every
accuracy can be achieved and that tuning a classifier to achieve a high
accuracy would favor often occurring classes.

Table A.2. Metrics for Classifier A and B, class distribution α, β, γ.

Metrics A.α A.β A.γ B.α B.β B.γ

tpr = 1 1 1 0 0 0

fpr = 1 1 1 0 0 0

precision = 0.5 0.99 0.01 − − −
accuracy = 0.5 0.99 0.01 0.5 0.01 0.99

norm_acc = 0.5 0.5 0.5 0.5 0.5 0.5
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Source of Class Skew: In context recognition, there are two ways class
skew can be introduced into the recognition system:

1. A given classifier is presented with different class distributions.

2. At various times, a classifier is trained with different class distribu-
tions.

The first kind of class skew was illustrated in the example in Table A.2.
A classifier A, which has been previously ‘trained’, i.e. has fixed rules
of how to make a decision, is presented with class distributions α, β or
γ. Clearly, accuracy is subject to class skew and changes even though the
classifier does not. Normalized accuracy norm_acc is constant for all three
class distributions. As we will show in Sec. A.2.2, normalized accuracy is
immune to the first kind of class skew. Judging from Table A.2, it even
seems to be constant for different classifiers. This however is due to the
fact that classifier A and B use a similar decision criterion.

To understand the second kind of class skew and to show how ROC
analysis deals with it, we use Bayesian decision theory [93] to briefly in-
troduce a simple model of classifier training. First, we assume that the
classifier to be trained is presented with a representative training set of
features R. From this set, a classifier tries to estimate the pdf fr|Hi

(R|Hi)
of the features and the a priori probabilities Pi for class Hi. Based on those
estimates, a classifier calculates the a posteriori probability P (Hi|R) that
a new observation R belongs to class Hi. Finally, the hypothesis Ĥi that
belongs to the class with the highest P (Hi|R) is chosen. Mathematically
this is expressed by the MAP (maximum a posteriori) criterion1

P (H1|R)
H1

≷
H0

P (H0|R) (A.6)

It can be shown that the MAP criterion also minimizes the total proba-
bility of error [138]. Using Bayes’ theorem and rearranging equation (A.6)
results in

fr|H1
(R|H1)

fr|H0
(R|H0)

H1

≷
H0

P0

P1
= η (A.7)

which is often referred to as the likelihood ratio test. Equation (A.7) cor-
responds to making a decision based on the computation of the likelihood
ratio for the observed value R and then comparing it to a threshold η.

It illustrates the second kind of class skew: for different a priori proba-
bilities Pi, i.e. for different class distributions, the threshold η needs to be
chosen differently. If the classifier is trained a second time with a different

1Whereby equal costs for a wrong classification (C01 = C10 = 1) and no costs for a
correct detection (C00 = C11 = 0) are assumed.
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class distribution, it will choose a different threshold. Similarly, if a clas-
sifier is presented with a different class distribution than in the training
phase, the threshold is not optimal anymore. In the confusion matrix, a
different threshold will result in a changed ratio of instances in the first
and second column.

To illustrate this further, we assume normally distributed pdfs2, i.e.
fr|H0

(R|H0) ∼ N(0, σ2) and fr|H1
(R|H1) ∼ N(m,σ2), and solve equa-

tion (A.7). It can be shown that the optimal threshold is:

δ =
m

2
+

σ2

m
ln

P0

P1
(A.8)

Hypothesis Ĥ0 is chosen if R < δ and Ĥ1 if R > δ. Only if both symbols
are equally probable, i.e. P0 = P1 then δ = m

2 . Fig. A.1 shows the pdfs
of the observed instances R, the threshold δ and the areas for a wrong
classification.

R0
mδ

fr|H0
(R|H0) fr|H1

(R|H1)

Figure A.1. Probability density function fr|Hi
(R|Hi) and threshold δ.

A.2.2. Receiver Operating Characteristic (ROC)

Detection theory has long known ROC curves as a means to compare
different detectors and to depict the trade-off between between true pos-
itive rate and false positive rate (ROC curves plot tpr against fpr, cf.
Fig. A.2). Besides this capability, their advantage is their independence of
class skew. A detailed description of ROC graphs for classifier evaluation
can be found in [134] and [139–141].

2In detection theory this example is known as ‘MAP detector for On-Off Keying in
AWGN channel’. There, a binary source which produces the symbols H0 = 0 (Off) and
H1 = m (On) is considered. After the symbols are altered by a probabilistic transition
mechanism the resulting symbols R which have then a probability density function
(pdf) of fr|Hi

(R|Hi) are observed. In an additive white gaussian noise (AWGN) chan-
nel, the pdfs will be normally distributed.



A.2. Two Class Problem 105

Independence of Class Skew: To show that ROC curves are not
susceptible to class skew, we will analyze how they overcome the two
different kind of class skew described in Sec. A.2.1. First, consider the case
where a trained classifier is presented with different class distributions.
The class distribution is the ratio of the number of instances in the first
row to the ones in the second row of the confusion matrix in Table A.1. If
the class distribution changes, but the detector always applies the same
threshold η, the ratio of true and false decisions within one row does not
change. Since fpr and tpr are metrics that are each based on one row,
they are independent of the first kind of class skew. For the same reason,
normalized accuracy stays constant as long as only the ratio of the classes
in the test set is changed. On the other hand, a metric based on a column
of Table A.1 is subject to class skew, as Table A.2 proves for accuracy and
precision.

The reason why ROC curves are not subject to the second kind of
class skew, is that they are parametric plots of fpr against tpr using the
threshold η (and hence the class distribution) as parameter. ROC curves
cover the whole of prior probabilities Pi, i.e. η is varied from 0 to∞, while
the curve is plotted from point (1,1) to (0,0). If the class distribution of
the training set changes, the operating point on the ROC curve changes,
but not the curve itself.

We illustrate this further in case of the MAP detector with normally
distributed pdfs (see equation (A.8) and Fig. A.1). The probability of a
FP and TP is given by

fpr =

∞
∫

δ

fr|H0
(R|H0)dR = Q

(

δ

σ

)

= Q

(

ln η

d
+

d

2

)

(A.9a)

tpr =

∞
∫

δ

fr|H1
(R|H1)dR = Q

(

δ −m

σ

)

= Q

(

ln η

d
− d

2

)

(A.9b)

with Q(x) = 1√
2π

∞
∫

x

exp(−x2

2 )dx, d = m
σ , and η = P0

P1
. Fig. A.2 shows the

ROC curves for different values of d. For any given d, the statistics of fpr
and tpr vary as η = P0

P1
is varied.

For most classifiers such as Naive Bayes, neural networks or decision
trees, ROC curves can be generated without having to train the classifier
with different class distributions. These ranking or scoring classifiers pro-
duce at their output the probability of an instance belonging to class Hi.
A threshold is used to generate a binary decision: if the classifier output
is below the threshold, the classifier chooses hypothesis Ĥ0, else Ĥ1. Each
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Figure A.2. ROC graph for the MAP detector with normally distributed

pdfs and different signal to noise ratios d2 = m2

σ2 .

threshold produces a confusion matrix and therefore a point in the ROC
space. Consequently, if we vary the threshold, we get a whole ROC curve3.

It can be shown, that varying the threshold at the output of a ranking
classifier is equivalent to varying the class probabilities P0 and P1. In case
the classifier produces a posteriori probabilities P (Hi|R), equation (A.6)
can be rewritten to4:

P (H1|R)
H1

≷
H0

k · P (H0|R) (A.10)

with k related to the threshold at the classifier’s output. This changes the
term η in equation (A.7) to η = k · P0

P1
. Therefore, varying the threshold at

the classifier’s output, i.e. varying k, can be seen as simulating a change
in class distribution.

3Many classifiers which per se do not produce scores like decision tree or ruled
generators, can easily converted into scoring classifiers, cf. [140]. If a classifier produces
only a binary decision, a system engineer would need to simulate different underlying
class distributions to get a ROC curve.

4Most ranking classifiers do not produce a posteriori probabilities but scores which
express the degree to which an instance R is a member of H1. Usually, there exists
a monotonic function which allows to transform scores into a posteriori probabilities.
This monotonic transformation will yield the same ROC curve [126] and therefore all
ROC curves generated by varying the threshold at the output of a classifier are immune
to class skew.
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Comparison of Classifiers: As mentioned before, a ROC graph also
provides a means to compare different detectors or classifiers. Generally,
the points on the diagonal from (0,0) to (1,1) represent a classifier that
randomly guesses a class. Any classifier that performs better lies in the
upper triangle, with the optimum at (0,1). Fig. A.2 shows that the de-
tectors with increasing d (i.e. increasing signal to noise ratio d2 = m2

σ2 )
perform better: i.e. for a given fpr the tpr increases.

An important property of ROC curves is that the slope at a particular
point is equal to the threshold η (and therefore the class distribution)
required to achieve the tpr and fpr of that point [138]:

d tpr

d fpr
=

P0

P1
= η (A.11)

This property is useful if one classifier does not outperform another classi-
fier so clearly as in Fig. A.2. Consider the example in Fig. A.3. Compared
to classifier 1 and 2, classifier 3 is never optimal. But the decision between
classifier 1 and 2 depends on the expected class distribution. Classifier 1
is optimal for a class distribution with more occurrences of class H0 than
H1; classifier 2 for one biased towards H1. As an example, two slopes for
a class distribution of H0 : H1 = 5 : 1 and 1 : 5, respectively, are plotted.
Graphically, we see that the line with slope 0.2 needs to be shifted down
until it touches the curve of classifier 1 and therefore classifier 2 is the
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the class distribution η = P0

P1
either classifier 1 or 2 performs better.
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better choice for η = 0.2. Mathematically, the lines with slopes P0

P1
have

the following equation [141]:

tpr =
P0

P1
fpr +

accuracy − P0

P1
(A.12)

Therefore, given a fixed slope, a classifier is better if the corresponding
tangent has a higher tpr -axis intercept point than another classifier. An
algorithm, called ROC Convex Hull Method, which systematically explores
this property is described in [139].

Cost for Wrong Decisions: ROC graphs allow an easy integration of
cost for a correct or wrong decision. We denote Cij the cost for for choosing
Ĥi if Hj is produced. Instead of the MAP criterion in equation (A.6),
Bayes criterion [138] is used which minimizes the average expected costs.
The likelihood ratio test is then

fr|H1
(R|H1)

fr|H0
(R|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
(A.13)

which in terms of ROC curves is simply a modification of the class ratio
P0

P1
and therefore ROC curves are not altered by varying costs. Alternative

representations are for example discussed in [142] and [143].

A.2.3. Area Under the Curve (AUC)

Very often, it is more convenient to have one number representing the
performance of the classifier than a whole graph. In connection with ROC
graphs the area under the ROC curve (AUC) is often used since it is also
independent of class skew. AUC is a measure that compares the average
performance of a classifier. More specifically, “the AUC of a classifier is
equivalent to the probability that the classifier will rank a randomly chosen
instance from H1 higher than a randomly chosen instance from H0” [140].
In other words, a classifier with a higher AUC means that the classifier
performs better on average, although in certain regions of the fpr–tpr
plane another classifier with lower AUC might perform better.

This can be seen in Fig. A.3: classifier 3 outperforms classifier 1 in
certain regions (for high fpr) but in average classifier 1 is better since
it has a larger AUC. In this case, AUCc1 = 0.81, AUCc2 = 0.82 and
AUCc3 = 0.78. For a random classifier (diagonal line between (0,0) and
(1,1)) AUC is 0.5 and any other classifier should have AUC > 0.5.

A.2.4. Case Study

We used our data set II described in Sec. 3.1.2 to illustrate how ROC
curves and AUC perform compared to accuracy in a realistic scenario.
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Again, the task was to classify different activities by analyzing the sound
of the kitchen appliances. Since the recorded sound is almost independent
of the user, we use only sound (in contrast to sound and acceleration data)
to compare performance metrics under different class skews. In doing so,
we can be sure that differences in the results are not caused by accidentally
choosing a ‘wrong’ set of users who perform an activity differently than
another user group (see also Sec. A.4).

Obviously, if two classes are perfectly separable, i.e. if the pdfs in
Fig. A.1 do not overlap, a reasonable classifier will always produce a recog-
nition accuracy of 1 – independent of the class skew. Therefore, to show
the effects of class skew, the goal was to achieve a low separability between
the two classes. From our previous work [63], we expected some confusion
between the sounds from the coffee maker and the hot water nozzle since
they are both generated by the same water pump. Furthermore, we used
a set of parameters (sampling frequency, feature set, etc.) that would not
give the highest possible separability between the two classes5. Otherwise,
we would have been able to achieve AUC = 0.94. However, using a non-
optimized parameter set is in no way unrealistic nor does it mean to tune
our data to favor certain metrics: On one hand, there are many applica-
tions where classes are not perfectly separable – no matter how good the
parameter set is chosen. On the other hand, limited resources on a wear-
able device might inhibit the use of performance optimized parameters.

From the recorded data, different training and test sets were compiled
and classified with a Naive Bayes classifier. We used different class skews
to simulate different user preferences: some prefer coffee and others tea.
Differences in the distribution of the classes in the training and the test
set could occur in a scenario where a ‘coffee drinker’ hands his training
system to a ‘tea drinker’.

Table A.3 lists the individual accuracy of the two classes H0: cof-
fee maker and H1: hot water nozzle. Furthermore, the overall accuracy,
normalized accuracy norm_acc and AUC are listed. Fig. A.4 shows the
corresponding ROC curve calculated for the different class skews.

We observe, that only ROC curves – and consequently AUC as well –
are independent of class skew. On the other hand, accuracy is susceptible
to class skew. That is because accuracy is based on a single point on
the ROC curve: i.e. a classifier that is trained with a H0 : H1 = 1 : 3
set, chooses a threshold that is optimal for this class distribution. As
shown in Sec. A.2.1, this threshold is not optimal anymore for another
class distribution. In our example accuracy ranges from 66% to 85%: by
simply changing the frequency of occurrence of the classes, accuracy can
be increased. But this does not necessarily mean that the system performs

5Here we used fs = 2.5 kHz, N = 64 and features SRF, 2nd and 4th BER.
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Table A.3. Comparison of metrics for the two-class problem.

Training H0 : H1 1:1 1:3 1:3 3:1 3:1

Testing H0 : H1 1:1 1:3 3:1 3:1 1:3

accuracy for H0 0.83 0.69 0.68 0.91 0.92

H1 0.75 0.90 0.91 0.60 0.57

accuracy 0.79 0.85 0.74 0.83 0.66

norm_acc 0.79 0.80 0.80 0.76 0.75

AUC 0.87 0.88 0.87 0.87 0.87

better, nor that it is a fair metric to compare different systems. Normalized
accuracy is resistant to class skew as long as the class distribution in
the training set does not change. Since precision is subject to class skew
(Sec. A.2.2), the common precision-recall graphs are also subject to class
skew – as illustrated in Fig. A.5.

This case study also shows, that due to the real valued nature of the
input signals and the limited data set, small deviations from the ideal
behavior exist. For example, AUC should be constant for all class distri-
butions although we calculated values from 0.871 to 0.877. Furthermore,
the accuracy for H1 should be the same in the last two columns of Ta-
ble A.3, but they differ by almost 3 percentage points.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Training  Testing

    1:1          1:1

    1:3          1:3

    1:3          3:1

    3:1          3:1

    3:1          1:3

Figure A.4. ROC curves of the case study: immune to class skew.
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Figure A.5. Precision-Recall curves of the case study: dependent on class
distribution and therefore subject to class skew.

A.3. Multi Class Problem

A.3.1. Multi-class ROC

If we have M classes, we get an M×M confusion matrix with M fields for
correct classifications and M2 −M fields for errors [144, 145]. In general,
this leads to a ROC surface with M2 −M dimensions [146], which even
with 3 classes is a 6-dimensional surface and therefore not practical to
depict.

A.3.2. Multi-class AUC

The generalization of the two class AUC is the V olume Under the ROC
Surface (VUS). However, since this metric is rather tedious to calculate,
two other means have been proposed. Both are based on projecting the
classification results down to a set of two-dimensional ROC curves and
averaging the AUC for these curves. Therefore the analysis of a multi-class
problem is reduced to a two class problem:

• 1-vs-rest: From the set of all classes C, class ci is chosen as the
positive class H1 and all other classes are assumed to be the negative
class H0. Then, the AUC(ci) of these two ‘classes’ is calculated. This
process is repeated for every class ci ∈ C, i.e. M = |C| times. The
AUC(ci) values are weighted by ci’s prevalence p(ci) and averaged
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to get a multi-class AUC [140].

MAUC1 =

M−1
∑

i=0

AUC(ci) · p(ci) (A.14)

Although easy to calculate, the drawback is that this metric is sen-
sitive to class skew, since the negative class includes several classes.

• 1-vs-1: From the set of classes C, two classes ci and cj are picked
out from the classification result and the pairwise AUC(ci, cj) is cal-
culated. Then, the multi-class AUC is calculated as the unweighted
average over all possible M(M − 1) pairs [147]:

MAUC2 =
1

M(M − 1)

∑

{ci,cj}∈C

AUC(ci, cj) (A.15)

This metric is independent of class skew.

A.3.3. Case Study Continued

Similar to Sec. A.2.4 we compared different metrics for a multi-class prob-
lem in Table A.4. This time, a Naive Bayes classifier was trained and tested
with three different classes: ‘c0: coffee maker’, ‘c1: hot water nozzle’ and
‘c2: water tap’. The results are similar to those in Table A.3. It can be
seen that both accuracy and normalized accuracy are susceptible to class
skew, although the normalized accuracy is not affected by class skew as
long as the ratio of the classes in the training set is constant. From the
multi-class metrics, only MAUC2 stays the same for all class skews.

As mentioned in Sec. A.2.4, the effects of class skew cannot be observed
in perfectly separable classes. Therefore we used a parameter set that did

Table A.4. Results of the case study for the 3-class problem.

Training c0 : c1 : c2 1:1:1 1:1:1 1:1:5 1:1:5

Testing c0 : c1 : c2 1:1:1 1:1:5 1:1:1 1:1:5

accuracy for class c0 0.71 0.69 0.62 0.63

c1 0.55 0.56 0.53 0.53

c2 0.92 0.92 0.95 0.95

accuracy 0.73 0.84 0.70 0.84

norm_acc 0.73 0.72 0.70 0.70

MAUC1 0.89 0.96 0.88 0.95

MAUC2 0.89 0.88 0.88 0.88
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not achieve the highest possible separation6. Using an optimized set, we
were able to achieve MAUC2 = 0.96.

A.3.4. Theoretical Example

To emphasize the aforementioned results, we simulated different class
skews for training and testing in an theoretical example. A Naive Bayes
classifier was trained and tested with normally distributed random num-
bers, i.e. fr|Hi

(R|Hi) ∼ N(i, 1). Table A.5 summarizes the results. Again,
we see that all metrics but MAUC2 are subject to class skew.

Table A.5. Comparison of metrics for the multi-class problem in a the-
oretical example: Naive Bayes classifier and classes normally distributed:
fr|Hi

(R|Hi) ∼ N(i, 1).

Training c0 : c1 : c2 1:1:1 1:1:1 1:10:1 1:10:1

Testing c0 : c1 : c2 1:1:1 1:10:1 1:1:1 1:10:1

accuracy for class c0 0.70 0.71 0.05 0.04

c1 0.38 0.38 0.99 0.99

c2 0.69 0.69 0.04 0.04

accuracy 0.59 0.43 0.36 0.84

norm_acc 0.59 0.59 0.36 0.36

MAUC1 0.77 0.66 0.77 0.66

MAUC2 0.77 0.77 0.77 0.77

A.4. Discussion

In the previous sections we have shown that only ROC graphs, AUC or
in case of a multi-class problem MAUC2 are immune to class skew. Two
assumptions were made:

1. the same kind classifier is used and it picks the same features for
different class distributions

2. the pdf of the features stays constant for different class distributions

The first assumption might not always be correct. Assume that a classifier
is presented several data streams (i.e. observed features are vectorial R),
each of which represents different characteristics of the recognition prob-
lem. If the classifier is allowed to distribute different weights to the data
streams, it might do so differently for two different class distributions.

6We used fs = 2.5 kHz, N = 64 and features ZCR, BW, SRF, 2nd and 3rd BER.
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Whether the second assumption holds depends on the source of the
data. Imagine a user learning sign language. He will improve by using the
sign language more often and therefore perform the signs in a smoother
way. In this case, especially if the features are badly chosen, the pdf of the
underlying data will change as the class distribution changes over time. In
other cases, the pdf of the data to classify does not depend on class skew.
In auditory scene recognition, for example, the features are calculated
from environmental sound. These features are independent of how long a
user stays in each location and therefore the second assumption is fulfilled.

This discussion shows that even though ROC graphs and AUC pro-
vide means to handle class skew, a system designer still has to be careful
about the implications a change in the class distribution imposes on the
system’s performance. Even more care needs to be taken if accuracy or
normalized accuracy is to be used, e.g. to perform a quick feasibility study
or to overcome the computing time for multi-class AUC. In this case, an
interpretation of the result needs to take into account the class distribu-
tion in the training and testing sets. Moreover, one has to be aware that
another class distribution will lead to a different result.

A.5. Summary

We propose to use ROC analysis to design context recognition systems
and to use AUC or multi-class AUC to represent the performance of a
system. We have showed in theory and with the help of a case study
that these metrics are independent of class skew. As we have argued in
the beginning, many applications in context recognition will have varying
class skew. Although ROC analysis is widely used in other research areas,
in the field of wearable computing accuracy is still the dominant metric
to express the performance of a system – even though it heavily depends
on the distribution of the classes in the training and test phase.



B
Definitions

B.1. Definition of Features

B.1.1. Time-domain features

• Zero-crossing Rate zcr is defined as the number of zero crossings
within a frame.

• Mean-crossing Rate mcr is defined as the number of mean cross-
ings within a frame.

• Fluctuation of Amplitude fluc gives an indication of how much
the signal oscillates around the mean value in relationship to the
mean value.

fluc =
mean(x)

stdev(x)
(B.1)

• Root mean square rms is defined as

rms =

√

√

√

√

1

N

N
∑

i=1

x2[i]. (B.2)
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B.1.2. Frequency-domain features

Let X[i] denote the ith frequency component of the N -point FFT of x. For
a real valued input x, X[i] and X[N−i] are conjugate complex. Therefore,
if only magnitudes of the fourier components |X[i]| are considered, the
spectrum can be represented with just the first K = N

2 components1.

• Fourier components FFTcomp If the fourier coefficients are used
as features we mean the magnitude of the first K = N

2 components

FFTcomp =
∣

∣X[i]
∣

∣ for i = 1 . . . K (B.3)

• Fluctuation of amplitude spectra FLUC-S is similarly defined
as fluctuation in the time domain:

FLUC − S =
mean(

∣

∣X
∣

∣)

stdev(
∣

∣X
∣

∣)
(B.4)

• Frequency Centroid FC represents the balancing point of the spec-
tral power distribution:

FC =

∑K
i=1 i ·

∣

∣X[i]
∣

∣

∑K
i=1

∣

∣X[i]
∣

∣

(B.5)

This feature correlates with the zero-crossing rate feature [39].

• Bandwidth BW is defined as the range of frequencies that the sig-
nal occupies. More precisely, it is the the square root of the power-
weighted average of the squared difference between the spectral com-
ponents and the frequency centroid:

BW =

√

√

√

√

∑K
i=1 (i− FC)2 ·

∣

∣X[i]
∣

∣

2

∑K
i=1

∣

∣X[i]
∣

∣

2 (B.6)

• Spectral Rolloff Frequency SRF is the ‘frequency’ h below which
resides TH percent of the total power.

SFR = max
(

h
∣

∣

∣

h
∑

i=1

∣

∣X[i]
∣

∣

2
< TH

K
∑

i=1

∣

∣X[i]
∣

∣

2
)

(B.7)

In accordance with [43] we chose the threshold TH = 0.93.

1Note that we use MATLAB notation and start vectors with index 1.
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• Band Energy Ratio BER is the ratio of the energy in a certain fre-
quency band to the total energy. In this work we use 4 logarithmi-
cally divided subbands as in [43]. The BER in the mth subband is
defined as:

BERm =

am+1
∑

i=am+1

∣

∣X[i]
∣

∣

2

K
∑

i=1

∣

∣X[i]
∣

∣

2
for m = 1 . . . 4 (B.8)

where am = 2m+log2(K)−5. Logarithmic subband are usually pre-
ferred because they represent the human hearing process more ac-
curately. However, for a classification task, linearly spaced subbands
would also be possible [148].

• Cepstrum Coefficients CEP We use the term cepstrum as it was
originally introduced by Bogert et al. [149] and define it as the
Fourier transform of the logarithm of the spectrum of a signal2.
The real valued cepstrum coefficients are defined as:

CEP [k] =
1

N

N
∑

n=1

ln
(

∣

∣X[n]
∣

∣

)

· e−j
2π(k−1)(n−1)

N (B.9)

In this work we used the first six cepstrum coefficients: k = 1 . . . 6
One of the interesting properties of the cepstrum is that any peri-
odicities in a spectrum will be sensed as specific components in the
cepstrum. Therefore, the cepstrum is well suited for echo or vocal-
pitch detection [150].

B.2. Definition of Classifiers

Let y denote the L dimensional input vector for the classifier and y[l] the
sample number l of the input vector y, with l = 1 . . . L . In our case, y

is either the L dimensional feature space (with L = 5 . . . 10, dependent
on the feature set, cf. Table 4.2) or the result of the LDA transformed
Fourier components (with L = M − 1 and M the number of classes, cf.
Sec. 4.2.5).

2Many texts state that the cepstrum is the ‘inverse Fourier transform of the log-
arithm of the spectrum’. This is not the definition given in the original paper, but
unfortunately widespread [8].
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B.2.1. Nearest class-center classifier (NCC)

With the help of a training set {y1,y2, . . . ,yj , . . .yJ} the center vectors
mi for each class ci are calculated:

mi =
1

Ji

∑

yj∈ci

yj for i = 1 . . . M (B.10)

with J the total number of vectors in the training set and Ji the number
of training vectors for class ci with J =

∑M
i=1 Ji.

A test point y is assigned to the class associated with the minimum
Euclidean distance to the class center. The Euclidean distance to center
vector mi is calculated with

di =
∣

∣y −mi

∣

∣ =

√

√

√

√

L
∑

l=1

(

y[l]−mi[l]
)2

(B.11)

For the implementation on the microcontroller the square root was omit-
ted to save computation time. The predicted class ĉj is

ĉj = argmin
i=1...M

(di) = argmin
i=1...M

∣

∣y −mi

∣

∣ (B.12)

The NCC classifier requires M ·L distance calculations. In our implemen-
tation the argmin calculation requires at most M ·(M−1)/2 comparisons,
in the best case M − 1 comparisons.

B.2.2. k-nearest neighbor (kNN)

Given a training set {y1,y2, . . . ,yj , . . .yJ} consisting of J prototype pat-
terns or vectors of dimension L, a test point y is classified as class ĉi if
most of the k closest prototype patters are from class ci [151]. ‘Closest’
refers to the Euclidean distance dj between the test point y and a vector
of the training set yj :

dj =
∣

∣y − yj

∣

∣ (B.13)

Thus, the kNN classifier needs to find the k smallest distances dj . The
class ci to which most of the k smallest distances belong, is the predicted
class ĉi.

The complexity of the distance calculations is O(J · L). Sorting algo-
rithms to sort the J distances dj have a complexity between O(J · log2(J))
and O(J2) [8]. For an overview of speed-optimized kNN classifiers we refer
to [151].
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B.2.3. Naive Bayes Classifier

The Naive Bayes Classifier assumes that each feature yn is conditionally
independent of every other feature ym for n 6= m. This means that

P (yn|ci, ym) = P (yn|ci) (B.14)

The maximum a posteriori (MAP) decision rule is used to classify a fea-
ture vector: given an observed feature vector y, the class ĉj that is most
probable is chosen:

ĉj = argmax
i=1...M

[P (ci|y)] (B.15)

Using Bayes’ theorem and the assumption of conditional independence
results in

ĉj = argmax
i=1...M

[

P (ci)

P (y)
·

L
∏

n=1

P (yn|ci)

]

(B.16)

We assume a Gaussian distribution for the conditional probabilities:

P (yn|ci) =
1

σn,i

√
2π

e
− 1

2

(

yn−µn,i
σn,i

)2

(B.17)

where the mean µn,i and the standard deviation σn,i for each combination
of feature and class is estimated from the training set.

The denominator P (y) in equation (B.16) is constant for a all classes
and can be omitted. Furthermore, applying a monotonically increasing
function – like a logarithm and a multiplication with 2 – to equation (B.16)
does not influence the argmax function. Thus, we can eliminate the expo-
nential function in equation (B.17) and rewrite equation (B.16) as

ĉj = argmax
i=1...M

[

ln

(

2 · P (ci) ·
L
∏

n=1

1

σn,i

√
2π

)

−
L
∑

n=1

(

yn − µn,i

σn,i

)2
]

(B.18)

In this equation, the ln(·) term can be pre-computed based on the training
instances. An M dimensional vector is required to store the pre-computed
ln(·) terms. Additionally, two L ×M matrices are required to store µn,i

and 1/σn,i.
To evaluate equation (B.18), a Naive Bayes classifier needs to calcu-

late M · L subtractions, M · L multiplications (with 1/σn,i) and M · L
squares; furthermore M subtractions from the ln(·) term are required.
Compared with a NCC classifier (cf. equation (B.12)), classifying a fea-
ture vector with a Naive Bayes classifier is more complex, especially due
to the additional M · L multiplications (see also Fig. 5.6).
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B.3. Classifier Fusion Methods

Classifier fusion is necessary if the output of two or more classifiers need
to be combined to give one single result. Classifier fusion is a well-studied
field: for further literature we refer to [96, 152–156]. Most classifiers can
provide a level of confidence they have for each class. We denote the
confidence level from classifier Z for class ci with CZ(i). However, these
confidence levels may be incomparable among classifiers. One approach is
to convert the confidences into a posteriori probabilities. The drawback is
the computational complexity and the required large amount of training
data. Therefore, most fusion strategies assign ranks to the classes in a
linear ordering, based on the sorted confidence levels. For each classifiers
Z, a class ci receives a rank RZ(i) – with the highest rank belonging to
the most likely class. Then, a score function calculates a score S(i) over all
classifiers for each class ci based on the ranks. The class with the highest
score wins:

ĉj = argmax
i=1...M

(S) (B.19)

Subsequent definitions will be explained with the following example: for
a 4 class problem, classifier A provides the following confidence levels
CA=[CA(1), CA(2), CA(3), CA(4)]=[0.35, 0.41, 0.10, 0.14] for one in-
stance. Classifier B outputs CB =[0.4, 0.15, 0.45, 0] for the same instance.
The ranks are then calculated as RA=[2, 3, 0, 1] and RB=[2, 1, 3, 0] for
classifier A and B, respectively.

Highest rank: The score of a class is equal to its highest rank:

S(i) = max
(

RA(i), RB(i)
)

(B.20)

For our example, the scoring vector is S=[2, 3, 3, 1]. In our case, ties
are solved by looking at the confidence levels. Thus, our implementation
actually calculates S(i) = max

(

CA(i), CB(i)
)

. In the example class 3
wins.

Borda Count [96]: The Borda count for a class is the sum of the
number of classes ranked below it:

S(i) =
∑

∀Z

RZ(i) (B.21)

The Borda count is a generalization of the majority vote and treats all
classifiers and ranks equally. In our example, the scoring vector is S=[4,
4, 3, 1]. Again, we solved ties by comparing the confidence levels of the
classes with the highest scores. Thus, in the example class 2 wins.
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Logistic Regression [96]: Logistic Regression is a generalization of
the Borda Count. The score is a weighted sum of ranks:

S(i) = αi +
∑

∀Z

βi,Z ·RZ(i) (B.22)

The weights βi,Z indicate the significance of the classifier Z and are esti-
mated using the training set. If the number of classes is large and/or the
amount of available training data is small, the same weight for all classes
can be used:

S(i) = α +
∑

∀Z

βZ ·RZ(i) (B.23)

Average of All Ranks [83]: This measure is based on the confidence
levels. The metric assumes that the confidence levels are comparable
among classifiers and averages the confidence levels of all ranks:

S(i) =
∑

∀Z

CZ(i) (B.24)

For our example, the scoring vector is S=[0.75, 0.41, 0.55, 0.29] and thus
class 1 wins.

Average of Best Rank [83]: Similar to the ‘Average of All Ranks’, this
metric compares the average ranking of the top choices of the classifiers.

S(i) =











∑

∀Z

CZ(i)
if ci is ranked top by at
least one classifier

0 if ci is never ranked top

(B.25)

In our example: class c2 and c3 are ranked top by classifier A and B,
respectively. Therefore, the scoring vector is S=[0, 0.41, 0.55, 0] and thus
class 3 wins.

Probability Matrix: Like ‘Logistic Regression’, this method uses a
training phase to get a prior knowledge of the quality of a classifier. In
contrast to the other methods presented here, it uses neither rank nor
confidence levels but operates on the decision of the classifier. For each
classifier, a confusion matrix is produced by testing the training set with
the classifier. An element n

(Z)
ij of the confusion matrix denotes that n

(Z)
ij

samples of the true class ci have been assigned to class cj by classifier Z.
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The conditional probability that an instance x belongs to the true class
ci if classifier Z assigns class cj to it, is given by:

P
(

x ∈ ci|Z(x) = cj

)

=
P
(

x ∈ ci

)

· P
(

Z(x) = cj |x ∈ ci

)

P
(

Z(x) = cj

) =
n

(Z)
ij

∑M
i=1 n

(Z)
ij

Thus, we can build a Probability Matrix containing the elements
pm

(Z)
ij = P

(

x ∈ ci|Z(x) = cj

)

, where pm
(Z)
ij is the probability that the

true class is ci if classifier Z detects cj . If two classifiers disagree on their
output, i.e. classifier A chooses class ck, while classifier B chooses class cl,
the decision is based on the Probability Matrix according to:

pm
(A)
lk

cl

≷
ck

pm
(B)
kl (B.26)

For example, if classifier A detects class 4 (but from training we know
that with a high probability the true class could also be class 1, i.e. pm

(A)
14

is high) and classifier B detects class 1 (but with low probability that the
true class is any other class, i.e. pm

(B)
41 is low) then pm

(A)
14 > pm

(B)
41 and

we assume that the true class was class 1.

B.4. Sound Pressure and Sound Intensity

B.4.1. Sound Pressure

Acoustical sound waves apply a force to air particles. Sound pressure p
is defined as the fluctuating pressure superimposed on the static pressure
(in air: atmospheric pressure) by the presence of sound. Sound pressure is
a scalar quantity. The unit is Pascal; it is equal to a force F of one newton
applied over an area A of one square meter [8].

The amplitude of sound pressure from a point source decreases in the
free field proportional to the inverse of the distance r from that source:

p ∝ 1

r
(B.27)

For a plane progressive wave the sound pressure p is:

p = ρ · cs · v (B.28)

with ρ: the density of air, in kg/m3 (1.204 kg/m3 at 20°C),
cs: the speed of sound, in m/s (343.4m/s at 20°C),
v: the sound velocity or particle velocity, in m/s.
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Usually, the term sound pressure refers to the root-mean-square averaged
pressure deviation caused by a sound wave passing through a fixed point.

prms =

√

1

T

∫ T

0

p2(t) dt (B.29)

Sound pressure level (SPL), Lp, is a decibel scale based on a reference
sound pressure p0 calculated as:

Lp = 20 log10

(

prms

p0

)

(B.30)

The reference sound pressure p0 = 2·10−5 Pa corresponds to the threshold
of human hearing and equals to a pressure variation of less than a billionth
of atmospheric pressure (atmospheric pressure at sea level: 1013mbar =
1.013 · 105 Pa).

Microphones and most sound measurement equipment convert pres-
sure variations into a voltage which is proportional to the sound pressure.
Therefore changes in sound pressure level can be calculated by:

∆Lp = 20 log10

(

V1

V2

)

(B.31)

where V1 and V2 are the measured voltage amplitudes. Similarly, our
eardrums are sensitive to the sound pressure. Microphones are usually
specified in SPL at 1 meter distance. Table B.1 states the specified SPLs
and the sensitivity of the microphones that were used for the experiments
and on the hardware platform. For comparison: a conversation measured
at a distance of 1m has a SPL of 40 to 60 dB; for a jet a SPL of 110 to
140 dB can be measured in 100m distance [8].

Table B.1. Specified SPLs and sensitivity of Sony ECM-C115 and
Knowles Acoustics SP0103 microphone.

Microphone Sony Knowles Acoustics

ECM-C115 SP0103

Noise Level 39 dB SPL 35 dB SPL

Maximum Sound Pressure a 110 dB SPL c 100 dB SPL d

Sensitivity a,b 10mV/Pa e 79mV/Pa f

a at 1 kHz, b open circuit output voltage level, c THD = 3%, d THD < 1%, e output
impedance: 1.9 kΩ, f output impedance: 100 Ω
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B.4.2. Sound Intensity

Sound intensity I is the time-averaged product of particle velocity v and
sound pressure p.

−→
I =

1

T

∫ T

0

p · −→v dt (B.32)

Sound intensity is a vector quantity. It describes as a function of frequency
the direction and the amount of net flow of acoustic energy at a position
in a sound field [157].

The amount of sound intensity |I| is the acoustic power Pac per unit
area A measured in watts per square meter (W/m2). Neither eardrums
nor microphones can convert sound intensity to voltage modulation3.

For a spherical sound source in the free field, the amount of sound
intensity as a function of distance r is:

|Ir| =
Pac

A
=

Pac

4πr2
(B.33)

Sound intensity is inversely proportional to the square of the distance
from a point source: |I| ∝ 1/r2.

Sound intensity level, LI , is the logarithmic measure of the sound
intensity relative to the standard threshold of hearing intensity I0 =
10−12W/m2.

LI = 10 log10

( |I|
I0

)

(B.34)

B.4.3. Relationship between Sound Pressure and Intensity

Usually, there is no direct relationship between sound pressure and sound
intensity [157]. However, for a free progressive wave in air (e.g. a plane
wave traveling down a tube, or a spherical wave traveling outward from a
source in free air) the relationship is given by:

|I| = p2
rms

ρ · cs
(B.35)

As a consequence, sound intensity level LI and sound pressure level Lp

are only the same in case of a free progressive wave in air. In this case:

LI = 10 log10

( |I|
I0

)

= 20 log10

(

prms

p0

)

= Lp (B.36)

3Sound intensity measurement equipment exists: the difficulty lies in measuring the
particle velocity. Luckily, the particle velocity can be related to the pressure gradient
using Euler’s equation: ∂v

∂t
= − 1

ρ
∂p
∂r

. The pressure gradient can be measured with two

closely spaced microphones [157, 158].



Glossary

Symbols

A area

C capacity (Ah)

cs speed of sound (m/s)

ci class number i

ĉj hypothesis; recognized class

CZ(i) confidence level of classifier Z for class ci

d distance

fµC microcontroller main clock frequency

fr|Hi
(R|Hi) pdf of features R for class Hi

fs microphone sampling frequency

I sound intensity (W/m2)

J number of training instances or vectors

K number of frequency domain samples
(

K = N
2

)

L dimensionality of feature space

LI sound intensity level in dB

Lp sound pressure level in dB

M number of classes

N number of input samples (time domain)

p sound pressure

P0, P1 a priory probability for class H0 and H1

Pac acoustic power radiated by a source

Pavg average power

prms sound pressure: root-mean-square average

r distance

ρ density of air (kg/m3)

R feature vector
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RZ(i) rank of class ci from classifier Z

S(i) score of class ci in classifier fusion methods

t time

tcalc execution time of a software routine; time to cal-
culate features and classification

Tp periodicity; number of classifications per second

ts start time of a frame relative to start of segment

tw observation window, frame length

v sound velocity or particle velocity (m/s)

V voltage

VBatNom nominal battery voltage

x(t) continuous function

x vector of input samples

x[i] sample number i of input vector

X vector of frequency components

X[i] ith frequency component of the FFT of x

Abbreviations

A ampere

acc accelerometer

ADC analog to digital converter

ASIC application specific integrated circuit

AUC area under (ROC) curve

BER band energy ratio

BW bandwidth

CEP cepstrum coefficients

CFS correlation-based feature selection

CM confusion matrix

DAT digital audio tape

DCO digital controlled oscillator

DSP digital signal processor
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ECM electret condenser microphone

FC frequency centroid

FFT fast fourier transformation

FFTcomp magnitude of the fourier components

fluc fluctuation (of amplitude)

FLUC-S fluctuation (of amplitude spectra)

FN false negatives

FP false positives

FPGA field-programmable gate array

fpr false positive rate

fps frames per second

GPS global positioning system

HMM hidden markov model

Hz hertz

ITRS international technology roadmap

for semiconductors

kB kilo byte (1’000 bytes)

kNN k-nearest neighbor classifier

ksps kilo samples per second

LDA linear discriminant analysis

LPF low-pass filter

LSTP low standby power logic (ITRS categorization)

MAP maximum a posteriori

MAUC multi-class AUC

mcr mean-crossing rate

MEMS micro-electro-mechanical system

MFCC mel-frequency cepstrum coefficient

MHz mega hertz

MI mutual information

mic microphone

ms milli-seconds

µC microcontroller

NCC nearest class center classifier
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PC personal computer

PCA principal component analysis

PCB printed circuit board

PDA personal digital assistant

pdf probability density function

PIDS process integration, devices, and structures

RAM random access memory

RFID radio frequency identification

RMS root mean square

ROC receiver operating characteristic

SPL sound pressure level

SRF spectral rolloff frequency

THD total harmonic distortion

TN true negatives

TP true positives

tpr true positive rate

V volt

VGA video graphics array (640×480 pixels)

W watt

zcr zero-crossing rate
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Low-Power Sound-Based User Activity Recognition
Tiny computers and sensors integrated into our clothes are likely to
have a major impact on our life in the future. By monitoring our physi-
cal condition and activities they will allow to provide us assistance with
everyday tasks or warn us of dangerous situations: They will recognize
that we are running to catch a train and might tell us that we don’t need
to hurry because the train is delayed as well. They will follow the work
steps of a maintenance worker and warn him in case he is about to make
a hazardous mistake.
For such sensor nodes to be of any use, they need to recognize our acti-
vities with a high accuracy. Furthermore, they should be fully autono-
mous – operating for months or years on a miniature battery.
Unfortunately, systems tuned to achieve high recognition accuracy are
likely to consume a lot of power. This work presents an empirical design
methodology to optimize a context recognition system with respect to a
trade-off between power consumption and recognition performance
rather than straightforward maximization of the recognition rate.
Activities do not necessarily have to be recognized with the help of moti-
on sensors. Many tools we use everyday produce a distinct sound, be it
an electric shaver, a coffee machine or a photocopier. Even more, many
of our actions are accompanied by a clear and distinct sound, be it
typing on a keyboard, brushing teeth or closing a door. Thus, in this
work we use sound as a novel modality for user activity recognition. As
we will demonstrate for several scenarios, sounds that are caused by the
user or occur in close proximity to the user’s hand can be picked up with
a wrist-worn microphone.
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