
Diss. ETH No 13879

On the Design of

Analog VLSI

Iterative Decoders

A dissertation submitted to the

Swiss Federal Institute of Technology, Zürich

for the degree of

Doctor of Technical Sciences

presented by

Felix Losteoberger
Ing. en Microtechnique dipl. EPFL

born on May 31,1969

citizen of Kriens (LU) and Honau (LU)

accepted on the recommendation of

Prof. Dr. George S. Moschytz, examiner

Prof. Dr. Hans-Andrea Loeliger, co-examiner

Prof. Dr. David A. Johns, co-examiner

November 2000

Diss. ETH No 13879

On the Design of

Analog VLSI

Iterative Decoders

A dissertation submitted to the

Swiss Federal Institute of Technology, Zurich

for the degree of

Doctor of Technical Sciences

presented by

Felix Losteoberger
Ing. en Microtechnique dipl. EPFL

born on May 31, 1969

citizen of Knens (LU) and Honau (LU)

accepted on the recommendation of

Prof. Dr. George S. Moschytz, examiner

Prof. Dr. Hans-Andrea Loeliger, co-examiner

Prof. Dr. David A. Johns, co-examiner

Hartung-Gorre Verlag, Konstanz, November 2000

Fur Rita, Simon und David

Acknowledgements

First of all I would like to thank my doctoral father Prof. Dr.

George S. Moschytz for his confidence in me and my work by

giving me a large scientific freedom and for always having the

door of his office open in case of doubts and setbacks. I very

much admire his human kindness to create a fruitful working
environment within the Signal and Information Processing Lab¬

oratory.

I am deeply indebted to my mentor and friend Prof. Dr. Hans-

Andrea Loeliger who set the initial spark to this fascinating re¬

search project. With his never ending enthusiasm he led me

safely through all the periods of frustration and exhaustment

which are common to ambitious research projects. I very much

appreciated the long technical and sometimes also philosphical
discussions that broadened my understanding of coding theory,
data communications and signal processing.

Many thanks also to Prof. Dr. David A. Johns from the Uni¬

versity of Toronto, Canada, for having accepted to serve as a

competent co-examiner for the present doctoral dissertation.

My special thanks go to Markus Helfenstein and Felix Tarkoy
of our research team. Their maturity, both technically and per¬

sonally, substantially added value to the results of this interdis¬

ciplinary research. It was and still is a great pleasure for me to

share ideas and dreams together.

All the colleagues at the laboratory always helped to create an

intellectually very stimulating and familiar working environ¬

ment. I especially wish to thank my roommates and friends

Hanspeter Schmid and Pascal Vontobel, but also Dieter Arnold,
Marcel Joho, Daniel Lippuner, Heinz Mathis, and Stefan Moser

for the time they invested into long and profound discussions

on many different topics. I also enjoyed and learned a lot from

the collaboration with Georg Fromherz and Ermanno Schinca

whose diploma work I supervised.

I would also say 'thank you' to Max Dtinki, who keeps our Sun

workstation cluster constantly running and up-to-date. With

great pleasure I also acknowledge the assistance with the de¬

sign of printed circuit boards and measurement setup provided

by the technical staff of the laboratory, in particular, Felix Frey,
Patrick Schweizer, and Thomas Schärer.

Whenever there were problems that we were not able to solve at

the laboratory, I always found kind persons whithin the depart¬
ment of electrical engineering willing to help me. The follow¬

ing persons (in alphabetical order) provided me with practical
solutions to many problems: Christoph Balmer, Hubert Käslin,
Ruedi Koppel, and Andreas Wieland from the Design Center;
Armin Deiss, Norbert Felber, Clemens Hammerschmied, Hans-

peter Mathys, Michael Oberle, Dirk Pfaff, and Robert Reute-

mann from the Integrated Systems Laboratory (IIS); Didier Cot-

tet and Michael Schefner from the Electronics Laboratory (HE);
Geert Bernaerts and Etienne Hirt from Art of Technology, a

spin-off of IfE. Thank you very much to all of you for your

help.

My deepest gratitude goes to my wonderful family. My wife

and best friend Rita always supported me during the time of

working on this dissertation, which is just simply as hard as do¬

ing the research itself. For months, my little sons Simon and

David had to share their father on weekends only. I would also

thank my parents who taught me in my younger years the cu¬

riosity and the passion to know how things work. All of them

gave me the courage to finish the work.

This work was financially supported by the Swiss National Sci¬

ence Foundation under Grants 21-49619.96 and 20-55761.98,
and by ETH Zurich under Grant 41-2639.5.

Abstract

The rapidly growing electronic networking of our society has

created the need for a high-speed and low-power data commu¬

nications infrastructure. Both voice and data communications

have been made available for the mobile user. Additionally,
more complex coding schemes and decoding algorithms have

been introduced to protect the user data from corruption during
the transmission over a communications channel. The aim of

all these new coding and decoding approaches is to meet the

theoretical channel capacity limit to make a better use of the

signal power and channel bandwidth. The iterative probability-

propagation-type algorithms that are used to decode state-of-

the-art codes such as Turbo codes and low-density parity-check
codes create the need for a tremendous computational power.

Often, the computational complexity can not be implemented
with a traditional digital design approach and a given power

budget.

This thesis discusses the efficient implemention of high-perfor¬
mance decoding algorithms in analog VLSI technology. The

building blocks are very simple analog transhnear circuits that

implement vector multipliers with basically only one transistor

per element of the outer product of two discrete probability dis¬

tributions. The presented analog probability propagation net¬

works made of these building blocks are a direct image of the

underlying sum-product algorithm. The design of these ana¬

log networks follows a heavily semiconductor-physics-centered

bio-inspired design approach, that exploits, rather than fights

against, the inherent nonlinear behaviour of the basic semi¬

conductor devices. By using such a bio-inspired design ap¬

proach, the performance of these networks in terms of speed
or power-consumption or both is increased by at least a factor

of 100 compared to digital implementations. Despite the use of

very-low-precision circuit devices, a remarkable system-level

accuracy can be achieved by such a large, highly-connected

analog network.

The first part of the thesis discusses the background of chan¬

nel coding and decoding and the theoretical foundations of fac¬

tor graphs and the sum-product algorithm, which operates by

message passing on such graphs. This part provides a brief in¬

troduction to the information-theoretic aspects of the interdis¬

ciplinary research effort.

The second part of the thesis is devoted to the actual transis¬

tor level implementation of the sum-product algorithm using

very simple analog-VLSI computational building blocks. This

part discusses the design-oriented aspects of the research, how¬

ever, it relies heavily on the information-theoretic concepts in¬

troduced in the first part.

Finally, we present practical designs and design studies of sev¬

eral decoding networks. Algorithmic simulations, circuit sim¬

ulations, and, where available, measurement results of the im¬

plemented decoding networks are presented. Two of the de¬

coder examples were actually fabricated in a 0.8 (xm BiCMOS

process. Additionally, application-specific design problems are

discussed.

The thesis is finished with a summary of the achieved results

and a presentation of future research propositions in the field of

analog decoding.

Keywords: Iterative decoding, low-density parity-check (LDPC)

codes, repeat-accumulate (RA) codes, trellis codes, Turbo codes,
maximum-a posteriori probability (MAP) decoder, maximum-

likelihood (ML) sequence detection, sum-product algorithm,
Vrterbi algorithm, probability propagation, factor graphs, ana¬

log VLSI technology, bio-inspired networks.

Kurzfassung

Die schnell wachsende elektronische Vernetzung unserer Ge¬

sellschaft hat einen grossen Bedarf an schneller und leistungs¬
armer Datenkommunikationsinfrastruktur erzeugt. Sowohl

Sprach- wie auch Datenkommunikationsmittel sind inzwischen

für den mobilen Benutzer zugänglich. Zusätzlich werden

laufend komplexere Kodierungsverfahren und Dekodieralgo¬
rithmen eingeführt, um die Benutzerdaten vor Übertragungs¬
fehlern zu schützen. Das Ziel dieser neuen Kodier- und

Dekodierverfahren ist das Erreichen der theoretischen Kanal¬

kapazitätsgrenze, damit die vorhandene Signalleistung und

Kanalbandbreite optimal ausgenutzt werden können. Die

bei der Dekodierung der dem aktuellen Stand der Technik

entsprechen Kodes (wie zum Beispiel Turbo Kodes und Kodes

mit dünn besetzter Paritätsprüfmatrix) verwendeten itera¬

tiven Wahrscheinlichkeits-Fortpflanzungs-Algorithmenbenöti¬

gen eine enorme Rechenleistung. Diese Rechenkomplexität
kann bei vorgegebenem Leistungsbudget oft nicht mehr mit tra¬

ditionellen digitalen Entwurfsansätzen erreicht werden.

Die vorliegende Dissertation beschäftigt sich mit der ef¬

fizienten analogen VLSI-Implementation von leistungsstarken

Dekodieralgorithmen. Die Baublöcke der vorgestellten Tech¬

nik sind sehr einfache analoge translineare Schaltungen zur

Implementierung von Vektormultiplizierern. Dabei wird prak¬
tisch nur ein Transistor zur Bildung eines Elementes des

äusseren Produkts von zwei diskreten Wahrscheinlichkeits¬

verteilungen benötigt. Die aus den Baublöcken aufgebauten

analogen Wahrscheinlichkeits-Fortpflanzungs-Netzwerke sind

ein direktes Abbild des zugrundeliegenden Summe-Produkt-

Algorithmus'. Der Entwurfsprozess dieser analogen Netz¬

werke verfolgt einen auf die Halbleiterphysik ausgerichteten
und von der Biologie inspirierten Entwurfsansatz, wobei das

grundlegend nichtlineare Verhalten von Halbleiterelementen

ausgenutzt wird anstatt dagegen anzukämpfen. Indem dieser

bio-inspirierte Entwurfsansatz verfolgt wird, kann das Leis-

tungsverhalten in Bezug auf den Stromverbrauch oder die

Geschwindigkeit oder beides, verglichen mit einer äquivalenten

digitalen Lösung, um mindestens einen Faktor 100 erhöht wer¬

den. Obwohl nur Bauelemente mit sehr schlechten Präzisions¬

eigenschaften verwendet werden, erreichen diese hochgradig
verbundenen analogen Netzwerke eine erstaunliche Systemge¬

nauigkeit.

Der erste Teil der Dissertation vermittelt Hintergrundinfor¬
mationen zum Thema Kanalkodierung und -dekodierung und

liefert die theoretischen Grundlagen über Faktorgraphen und

den Summe-Produkt-Algorithmus, der gemäss dem sogenann¬

ten Nachrichten-Übertragungs Prinzip auf solchen Graphen

angewandt wird. Dieser Teil gibt eine kurze Einführung in die

informationstheoretischen Aspekte der interdisziplinären For¬

schungsanstrengungen.

Der zweite Teil der Arbeit ist der eigentlichen Implementierung
auf Transistorebene des Summe-Produkt-Algorithmus' mittels

sehr einfacher Rechenbaublöcke gewidmet. Dieser Teil disku¬

tiert somit die entwurfsorientierten Aspekte der Arbeit. Er

nimmtjedoch sehr stark Bezug auf die im ersten Teil vorgestell¬
ten informationstheoretischen Konzepte.

Schliesslich werden im dritten Teil praktische Ausführun¬

gen und Entwürfe von verschiedenen Dekodiernetzwerken be¬

sprochen. Es werden dabei algorithmische Simulationen,

Schaltungssimulationen und, soweit vorhanden, Messresultate

der von uns gebauten Dekodiernetzwerke vorgestellt. Zwei

dieser Dekoderbeispiele wurden in einer 0.8 (im BiCMOS-

Technologie fabriziert. Zusätzlich werden auch anwendungs¬

spezifische Entwurfsprobleme besprochen.

Die vorliegende Dissertation wird durch eine Zusammenfas¬

sung der erzielten Resultate und Vorschläge für weitergehende

Forschungsprojekte im Bereich der analogen Dekodierung ab¬

gerundet.

Stichwörter: Iterative Dekodierung, Kodes mit dünn besetz¬

ter Paritätsprüfmatrix, Repetitions-Anhäufungs-Kodes, Trellis-

Kodes, Turbo-Kodes, Maximum-a-/?o5ter/or/-Wahrscheinlich-
keits-Dekoder, Maximum-Likelihood (ML)-Sequenzdetektion,

Summe-Produkt-Algorithmus, Viterbi-Algorithmus, Wahr¬

scheinlichkeitsfortpflanzung, Faktorgraphen, analoge VLSI-

Technik, bio-inspirierte Netzwerke.

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Outline of this Thesis 3

2 Background Information 5

2.1 About Coding 5

2.1.1 General Communication System
5

2.1.2 Types of Codes 6

2.1.3 Hamming Codes 10

2.1.4 Low-Density Parity-Check Codes ...
11

2.1.5 Trellis Codes 11

2.1.6 Turbo Codes 16

2.1.7 Channel Models 17

2.1.8 Types of Errors 22

2.2 Analog Viterbi Decoding 23

2.2.1 Computational Considerations on the

VLSI Implementation of Viterbi De¬

coders 23

2.2.2 Circuit Implementation of Analog and

Mixed-Signal Viterbi Decoders
....

24

2.3 Network Decoding 26

2.3.1 Non-Algorithmic Diode Decoding ...
26

2.3.2 Neural Network and Fuzzy Logic De¬

coding 27

2.3.3 Analog Network Decoding 29

2.4 Bio-Inspired Networks 29

3 The Probability-Propagation Algorithm 31

3.1 Problem Statement 31

3.1.1 Basic Decision Theory 31

3.1.2 MAP Decision Rule 33

3.1.3 ML Decision Rule 34

3.1.4 Decoding Rules 35

3.2 Factor Graphs 37

3.2.1 Definition of Factor Graphs 37

3.2.2 Examples of Factor Graphs 40

3.3 The Sum-Product Algorithm 46

3.3.1 The Sum-Product Update Rules
....

48

3.3.2 Message Passing Schedules 49

3.4 Probability Calculus Modules 52

3.4.1 Soft-Logic Gates 54

3.4.2 Building Blocks with Multiple Inputs .
55

Circuit Implementation 59

4.1 Basic Circuit 59

4.1.1 Signal Summation 59

4.1.2 Basic Translinear Network Theory ...
60

4.1.3 Core Circuit for Matrix Multiplications 62

4.1.4 Log-Likelihood Interpretation of Input
and Output Distributions 66

4.2 Soft-Logic Gates and Trellis Modules 66

4.3 Connecting Building Blocks 72

4.3.1 Current-or Voltage-Mode Connections? 72

4.3.2 Stacking and Folding Building Blocks .
75

4.3.3 Scaling Probabilities 76

4.4 Implementation Issues 79

4.4.1 Device Matching Considerations
. ...

80

4.4.2 Finite Current Gain 84

4.4.3 Finite Output Resistance 85

4.4.4 Thermal Effects 85

4.4.5 Other Implementation Issues 89

Decoder Examples 91

5.1 Decoder for a Simple Trellis Code 91

5.1.1 Code Description 91

5.1.2 Implementation Using Discrete Tran¬

sistors 96

5.2 Decoder for a Tail-Biting Trellis Code 101

5.2.1 General Description 101

5.2.2 Circuit Design 107

5.2.3 Simulation Results 108

5.2.4 Test Setup 112

5.2.5 Measurement Results 115

5.2.6 Power/Speed Comparison 119

5.3 Decoder for a Turbo-Style Code 122

5.3.1 General Code and Decoder Description 122

5.3.2 Circuit Design 124

5.3.3 Automating the Design Process
....

132

5.3.4 Simulation Results 135

5.3.5 Test Setup 140

5.4 Probability-Based Analog Viterbi Decoder
. . .

143

5.4.1 Reformulation of the Viterbi Algorithm 143

5.4.2 Proposed Implementation 148

5.5 High-Level Study of Plain CMOS Implementa¬
tions 151

5.5.1 Continuous CMOS Model from Weak

to Strong Inversion 153

5.5.2 Redundant Equations and Code Real¬

izations 154

5.5.3 High-Level Simulation Results 157

5.6 Appendix — Schematics of the Tail-Biting
Trellis Decoder 159

5.7 Appendix — Schematics of the Turbine Decoder 163

6 Concluding Remarks 171

6.1 Summary of the Results 171

6.2 Ideas for Further Work and Outlook 172

A Selected Circuit Structures 175

A.l Transistor Terminals and Voltages 175

A.2 Cascode Structures 176

A.3 Current Mirrors 178

List of Abbreviations 181

List of Symbols 183

Bibliography 187

xii Contents

Chapter I

Introduction

Motivation I. I

In the last few years the demand for efficient and reliable dig- Coding why, where,

ital data transmission and data storage has tremendously in- and now

creased. This trend has been accelerated by the emergence of

high-speed data networks even at the local-area scale. Already
in 1948, Shannon [1] showed that it is possible, by proper en¬

coding of the information source, to reduce errors induced by a

noisy channel to any desired level, without sacrificing the rate

of information transmission or storage of a given channel, as

long as the rate is below the so-called channel capacity. The

term encoding in this context means that we add redundant in¬

formation to our data stream. This type of coding is generally
called channel coding.1 The redundancy introduced by channel

coding will help the decoding block of a receiver with finding
the best decision for the sent data sequence. Decoding can be

regarded as a projection of the possibly infinite number of re¬

ceived messages of the channel-output vector space onto the

channel-input vector space of the codewords. As a very simple

example we could analyze the situation as shown in Fig. 1.1.

Every mark is assumed to be a valid configuration or code¬

word of our code whereas the received data can be any point
in the plane. The individual codewords are schematically sep¬

arated by decoding-region border-lines. The decoder block in

the receiver path tries to match the incoming data, which is cor¬

rupted by channel noise, symbol interference, or other destruc¬

tive events, to the nearest valid configuration, i.e., it will create

The two other main types of coding are source coding (or data com¬

pression), where we try to reduce the redundancy of the data source, and

cryptography which modifies the characteristic of the data-source such that

unwanted observers cannot see the information content

2 Chapter I. Introduction

Figure I.I A simple code viewed as discrete points in the plane ofall

messagespossibly received by a data communications receiver.

Complex coding

gives more protection

an estimate of the most probable codeword. This is a very sim¬

plistic picture of the purpose of coding, but it will help to see

how coding transforms an arbitrary channel into an almost reli¬

able bit pipe.

In general, we can state that the more complex our coding
scheme is constructed, the more protection we get from cod¬

ing. On the other hand, decoding will become more compli¬
cated. The computational complexity of decoding for codes

that try to reach the theoretical limits defined by Shannon [1] is

growing more than linearly, i.e., quadratically or even exponen¬

tially. Today's state-of-the-art codes such as Turbo codes [2-4],

low-density parity-check codes [5-8], and other similarly built

codes need huge computational power to deliver real-time re¬

sults.

Rapidly growing

complexity seeks for

new decoding
techniques

Because of this rapidly growing computational effort, new de¬

coding techniques and technologies are investigated. The prob¬
lem can be tackled in different ways. The first and most obvious

approach is to boost processing speed by using more sophis¬
ticated semi-conductor processes. Unfortunately, unless more

parallelisms are introduced in the decoding system, the process¬

ing speed is just increasing linearly with the clock frequency.
Alterations of the decoding system on the algorithmical level is

a second and generally more successful approach to the com¬

plexity dilemma. But these alterations are in most cases made

at the cost of precision, i.e., the decoding is no more ideal. This

can be seen as a loss in the bit error-rate (BER). But for prac¬

tical solutions, a trade-off can be found in many cases which

satisfies more or less both parts, decoding speed and precision.
The third approach, which gains more and more momentum, is

the bio-inspired network-decoding approach.

1.2. Outline of this Thesis 3

Today's comprehension of the functioning of the human brain Bio-inspired circuits

is that it consists of an agglomeration of neurons [9-11], each maYsolve dilemma

having a relatively poor precision, but highly interconnected.

Comparable to this understanding, one can think of highly con¬

nected electrical networks consisting of very simple local pro¬

cessors which globally exchange imprecise information. Inter¬

estingly, both 'networks' can reach outstanding precision on

the system level through a high degree of interconnectivity. In

the case of the human brain, learning modifies and even den¬

sities the connection pattern between the individual neurons.

Thus, information storage seems to be a matter of a three-

dimensional arrangement of individual cells far more complex
than any known standard computer hardware. But nevertheless,
electrical networks inspired by its biological counterparts and

relatively simple compared to them promise achieving a very

fast and robust systems behaviour. Thus, one of the sources that

had the greatest influence on our motivation and inspiration is

the bio-inspired background in general and Mead's outstand¬

ing work on neuromorphic systems in particular [11]. Mead's

work showed clearly the direction to take if very efficient elec¬

tronic solutions for processing analog signals are demanded.

Beside a large academic interest, we find the bio-inspired de¬

sign approach also in industrial products such as Logitech's
trackball marble [12], OCR readers for banking applications

[13], and combined angle/torque sensors for automotive appli¬
cations [14].

Outline of this Thesis 1.2

The present thesis is divided into six chapters. This chapter

gave some introductory comments on the general motivation of

the implementation of analog decoders. Chapter 2 is devoted

to a short review of the basic notions of coding theory, and the

presentation of some inspiring sources with many citations of

interesting literature. In Chapter 3, we present the algorithmic

background and propose a new dissection of the general sum-

product algorithm into generic trellis computation modules. In

the fourth chapter, we fill the gap between the mathematical

representation of the building blocks and their VLSI imple¬
mentation. Thereby we introduce the generic transistor-level

implementation of these modules, and we discuss many prac¬

tical design aspects of large probability propagation networks

Chapter I. Introduction

composed of such modules. Then in Chapter 5, we present and

discuss five designs of decoders for error-control codes. They

represent the practical part of the thesis. The examples are com¬

pleted and are discussed in various depth, mainly due to some

time constraints ofthe whole research project. Beside an imple¬
mentation using discrete BJT devices, we have designed two

complete decoders in BiCMOS technology which have been

tested partly. Additionally, we discuss a Viterbi-decoder design

using our generic trellis calculation modules. Finally, we pro¬

pose a plain CMOS implementation and discuss its properties

by using high-level simulations. The content ofthe fifth, as well

as of the fourth chapter are mainly results of original work.

We conclude the thesis by a summary of the results achieved

during the whole research and give some comments on where

future work may be directed and on where we see the future of

analog probability calculation networks.

Chapter 2

Background Information

About Coding 2.1

In this section, we will briefly introduce some terms and defini¬

tions of coding theory. The section primarily addresses circuit

designers to help them understand what follows. We will re¬

strict ourselves to the binary case, i.e., codes over the Galois

field GF(2). This means that our information unit is the binary

digit orbit. The extension to codes over GF(q) for q > 2 is gen¬

erally possible and straightforward, but is omitted for the sake

of brevity.

Terms and definitions

for the binary case

General Communication System 2.1.1

Text-books on coding such as [15, 16] often start with what

is commonly known as 'Figure 1' in information theory [1].

Fig. 2.1 shows this system overview of a data communication

(transmission or storage) system. An information source emits

a sequence of binary digits (bits), called the uncoded sequence

u. This sequence is transformed into the coded sequence x by
an encoder. We assume that during transmission over the chan¬

nel (or the storage medium), the coded sequence x is corrupted

by a noise vector n. This assumption is correct if the noise is of

additive nature and no inter-symbol interference is present, i.e.,
the channel is without a filter transfer function. Thus we will

observe a noisy sequence y at the input of our decoder. The

decoder then estimates the most probably sent data sequence û

using y.

'Figure 1' of

information theory

6 Chapter 2. Background Information

Digital
source

u

Encoder
X

û

n

Noise —

"

Coding
channel

Digital
sink

Decoder
y

Figure 2.1 Simplified model ofan encoder/decoder system.

2.1.2 Types of Codes

Different types of In general, we distinguishbetween two main types of codes that

c°dmg are of common use today, block codes and convolutional codes.

The output of a block encoder is strictly block oriented and is

generated by combinatorial operations, whereas the convolu¬

tional encoders create data streams of possibly infinite length.

Additionally, the output of a convolutional encoder is created

by a finite state machine, i.e., the encoder incorporates memory
that tracks the history of the incoming data bits. In the follow¬

ing we will briefly discuss the two cases and introduce some

terms related to coding.

Block Codes

Definition of a block A binary block code is defined as an algebraic mapping from

code the vector space Fk over the Galois field F = GF(2) into the

vector space F", i.e., a data sequence of length k is mapped
onto a codeword of length n. If this mapping from one vector

space to another is linear we speak of a linear code; otherwise

the code is non-linear. We restrict ourselves to the most impor¬
tant concepts and thus omit intentionally the detailed presenta¬
tion of the non-linear case.l

Notation [n,k] block The encoder for a block code cuts the incoming datastream into

code blocks of length k. In the binary case 2k possible messages

are encoded into n bit long codewords. Thus we speak of an

1 One can show that capacity is actually achieveable with linear codes

2.1. About Coding 7

[n,k] block code. A linear block code is entirely described by
its generator matrix G. A codeword is built using the relation

u G, (2.1)

where x and u are assumed to be row vectors. This assumption

commonly used in coding theory is in contrast to the general
notation in linear algebra. By using (2.1) we observe immedi¬

ately that linear codes transform the all-zero input vector into

the all-zero codeword. Equivalently, the codeword x always has

to satisfy the relation

H :01 (2.2)

where H is a parity-check matrix. The rows of this matrix con¬

tain the information of which bits are checked by a given parity
check, and the columns describe in which parity checks a given
bit is involved. The parity-check matrix can be derived from

the generator matrix G

The code rate of a block code is defined as the proportion of

the number of information-carrying bits compared to the total

code-word length. If the generator matrix is a k x n matrix with

full rank then the rate is given by

Code rate of a block

code

R=k/n. (2.3)

Convolutional codes

Like block codes, convolutional codes are defined as mapping
from one vector space to another. But this time, the incoming
and the outgoing data streams of an encoder can be of infinite

length. An encoder for a convolutional code is shown in Fig. 2.2

as afinite-state machine, i.e., a sequential logic circuit, with a

memory order ofm. The generator matrix G of a convolutional

encoder has a general form of

Definition of

convolutional codes

G(D):

'Gn(D) Gn(D) ••• Gln(D)

G2i(D) G22(D) ••• G2n(D)

Gki(D) Gk2(D) ••• Gkn(D)

(2.4)

8 Chapter 2. Background Information

*(\n» ' s

u

D D

i

\
*vJD

D e

Shift register stage XOR gate Multiplexer

Figure 2.2 Binary convolutional encoder with rate R = 1/2 and memory

order m = 2.

where each element G„(D) represents a transfer function

(Kronecker-delta response) of a linear discrete-time system

(LDS) of order m:

G„(D):
amDm+am-1Dm-1-

bmD" -bn-xD-1-

-ao
(2.5)

Code rate of a

convolutional code

Increased complexity
by higher-order

memory

High code rates for

better efficiency

In the case of the encoder of Fig. 2.2, we observe two polyno¬
mials Gn(D) = l + Z)2andGi2(£>)= l + D + D2. The code

rate of a convolutional code is defined by the input bits divided

by the number of outcoming code bits or equivalently

R=k/n, (2.6)

where k and n are the dimensions of G(D). In the example of

Fig. 2.2, we have R = 1/2.

Typically, the code rate R is kept constant, whereas the memory

order m is increased in order to combat channel noise. This

means that the complexity of the code is increased to obtain

more redundancy.

In general, one wishes to keep the code rate close to unity, but

still have strong error-protection capabilities. This creates con¬

straints in the process of finding appropriate codes. Large code

2.1. About Coding 9

rates, i.e. larger than 0.9, are normally used for storage applica¬
tions such as magnetic recording, where the information density
on the storage medium is mainly limited by the used material

and by the transmission speed. Note that the capacity (in bits

per use) of a magnetic-recording channel and binary signaling
in general is limited to unity. For data communication applica¬

tions, the constraint on the code rate is somewhat less stringent,

although one wishes to have good error-correcting capabilities
without sending too much redundant information. But finally

only the achievable throughput of the communication system
is interesting for us. So often we encounter code rates of 1/2

and less for very noisy channels. Under these circumstances

we may transmit the data symbols at a higher speed in order to

achieve the desired communication rate. By doing so we inten¬

tionally allow the channel to make a certain amount of errors

that can later be corrected by the decoder. Note also that the

code rate can be greater than 1 if the transmitted code symbols
are m-ary symbols and not binary any more. This is often the

case in modem technology such as in the V34, V.90 and xDSL

standards [17-19].

Capacity of the channel

According to Shannon's 1948 pioneering paper [1], the capac- Defimton of the

ity C of a given noisy channel is defined as the maximum pos-
channel capacity

sible transmission rate, i.e., the rate at which the source is prop¬

erly matched to the channel. This abstract definition has very

deep significance. It is always possible to send information at

a rate lower than C through a channel with an error probabil¬

ity as small as desired by properly encoding the information

source. This statement on controlled error probability is not

true for rates above C. Shannons theorem on error-free trans¬

mission does not tell us how to make good codes, it only tells

us the limit. Practical error control schemes have long been

far away from this theoretical limit. Only the advent of the

complex Turbo codes [2,3] and their iterative decoding by be¬

lief propagation has brought us to some tenth of dBs above the

Shannon limit. An even higher rate has been reached using very
large low-density parity-check codes [20], which were invented

by Gallager [5].

10 Chapter 2. Background Information

Systematic codes

Definition of a Often, the uncoded data sequence is part of the codeword. If

systematic code
me uncoded information bits are transmitted together with the

parity-check bits over the channel, the code is called systematic.
But this must not be necessarily the case. The code can consist

equally well of parity information only. In order to improve
the code rate of a given code, sometimes a different approach
is chosen: first the data sequence is encoded as usual, but then

some bits are pruned and thus not transmitted over the chan¬

nel. This encoding procedure can often be observed in Turbo

coding.

Hamming distance

Definition of the

Hamming distance

The Hamming
distance is called free

distance for

convolutional codes

The distance between two codewords is the number of posi¬
tions where they differ. The minimum distance d of a code is

then defined as the minimum of all distances between any two

codewords of the code. A code with minimum distance d is

capable of correcting [(d — 1)/2J errors, where |xj denotes the

greatest integer less than or equal to x. If dis even, the code can

simultaneously correct (d — 2)/2 errors and detect d/2 errors.

This statement is strictly true for block codes. In the case of

convolutional codes, the decoder may be confused if more than

(d — 2)/2 errors are present and may not recover anymore until

the decoder is resynchronized with a known state.

The definition of the previous paragraph is only strictly valid

for block codes. In the case of convolutional codes, we speak
of the free distance of a code, but the meaning of this distance

measure is basically the same [21].

2.1.3 Hamming Codes

Definition of a

Hamming code

Hamming codes are a whole class of linear block codes that can

correct single errors. The error-correcting capability is givenby
its Hamming distance as defined before.

According to [15], Hamming codes of length« = 2r - 1 (r > 2)
are defined as having a parity-check matrix H whose columns

consist of all non-zero binary vectors of length r, each used

2.1. About Coding I I

once. A Hamming code is thus an (n = 2r — 1, k = 2r — 1 —

r, d = 3) block code. The Hamming code as it was first defined

is the [7,4,3] block code with the parity-check matrix

H =

0 0 0 1111

0 110 0 11

10 10 10 1

(2.7)

Any code consisting of rows that are created using linear com¬

binations and column permutations of the original matrix H is

said to be equivalent. There exist several extensions of the orig¬
inal Hamming code using redundant equations, for example the

[8,4,4] extended Hamming code. They generally perform bet¬

ter because of their larger minimum distance d.

Equivalence of block

codes

Low-Density Parity-Check Codes 2.1.4

Low-density parity-check (LDPC) codes have a parity-check
matrix H that is very sparse, i.e., there are only a few 1 's in the

matrix. According to Gallager's initial definition in 1963 [5],
the parity-check matrix contains a small fixed number j of l's

in each column and another small fixed number k of 1 's in each

row.

For good performance, large block lengths are required.

MacKay [22] has shown recently that the number of 1 's in the

columns has not necessarily to be constant. Even better results

are obtained by statistically varying the number of 1 's within

a column but still keeping the total number small. Recently, it

has been shown by Richardson et al. [20] that very long low-

density parity-check codes outperform comparably long Turbo

codes by a distinct margin and come even closer to the theoret¬

ical capacity of a given channel.

Defintion of an

LDPC code

LDPC codes may

outperform Turbo

codes

Trellis Codes 2.1.5

In what follows, we will briefly present two different ways

of temporally describing a convolutionally encoded sequence.

The two graphical representations completely define the code.

The code-tree representation graphically explodes for large

12 Chapter 2. Background Information

1/01

0/00

Figure 2.3 The state-transition diagramfor the convolutional encoder of

Fig. 2.2.

code sequences. Thus the more condensed trellis diagram is

a solution to that representation problem.

Assume the convolutional encoder of Fig. 2.2 and the corre¬

sponding state-transition diagram of Fig. 2.3. The initial con¬

tent of the encoder memory is assumed to be 00. We may now

draw a tree, as in Fig. 2.4, with branches labeled according to

the outcoming bits of this encoder for any incoming data se¬

quence u. The boxed nodes of the tree denote the content of

the encoder memory and will be called the state ofthe encoder.

Following the upgoing branch at a given node means that we

have encoded a binary 1, and a 0 otherwise. Going through
the entire tree we can on the one hand read off the information

sequence and on the other also collect the encoded sequence.

... or a trelhs diagram Because the size ofthe tree representation is rapidly outgrowing
standard papersizes for larger code lengths, we might look for

a more compact image of the code that is more quickly cogniz¬
able. The trellis representation is the solution to this problem.
Since the output at time t + 1 is simply defined by the state (i.e.
the encoder memory) of time t and the new input digit, we can

collapse all nodes showing the same state memory content at

a given time instant. For our simple example of Fig. 2.4 this

means that we have only 2m = 1? = 4 different states to depict.

Convolutional code

represented by a code

tree...

2.1. About Coding 13

11

01

10

00

'

oU'-'.'J. ii

10

iojv;.__oi

ii

'

oo [--'.y, oo

01

nf-V./io
oo

'

oU'-'.'J. ii

10

iojv;.__oi

ii

'

oo "1 oo [--'.";_ oo

01

10

oo

ii

ii

01

ii

The code treefor the convolutional encoder ofFig. 2.2. Figure 2.4

As shown in Fig. 2.5, the name choice seems to be obvious: the

look of the graph is the same as the trellises we find in our gar¬

dens to fasten tall flowers and espalier trees to the wall. After

having left the initial transitional trellis sections, the trellis of

the code is simply built by concatenating identical trellis sec¬

tions. Compared to a block code, the convolutional code has

possibly infinitely long codewords. But often the code is manu¬

ally terminated to the zero state by adding an appropriate num¬

ber of zeros at the input of the encoder after a certain number of

bits. By doing so, we may transform a convolutional code into

a block code.

A single section of the complete trellis diagram is caracterized

by the left states St, the right states St+\ and the branches con¬

necting the left states and the right states with a characteristic

pattern (Fig. 2.6). A branch between a left state and a right
state indicates an allowed state transition of the encoding state-

machine ofFig. 2.3. The labels on the branches directly indicate

the incoming data and the encoder output.

Trellis codes represent a huge class of codes that can be de¬

fined by trellis diagrams as defined above. The encoding of any

trellis code can be done by a finite-state machine. The general
trellis code may consist of many different trellis sections [21].

Description of a

trellis section

General trellis codes

14 Chapter 2. Background Information

Figure 2.5 Trellis representation ofthe code tree ofFig. 2.4.

1/01

Figure 2.6

0/00

s,

left states uncoded/coded

One trellis section ofthe code ofFig. 2.2.

right states

2.1. About Coding 15

Formation ofa tail-biting trellis. Figure 2.7

Thus, the finite-state machine may be very complex and consist

of interconnected simpler finite-state machines. In contrast to

the general trellis codes, convolutional codes represent only a

sub-class of trellis codes. The convolutional codes are linear

codes since the output sequence is found by convolving the in¬

put sequence with the Kronecker-Delta response ofthe encoder.

Convolutional codes have therefore a limited number of states

and state transitions which are the same for all time instances.

Hence, the finite state-machine is generally simple.

Tail-Biting Trellis Codes

A sub-class of the trellis codes are the so-called tail-biting trel¬

lis codes. This type of code is defined by the concatenation of a

certain number of individual trellis sections. But instead of ter¬

minating the overall trellis at the beginning and at the end, the

tail-biting trellis is formed by connecting the outgoing states of

the last trellis section to the incoming states of the first trellis

section. Fig. 2.7 shows such a tail-biting trellis which forms a

closed ring structure. A valid codeword is then defined by a

path starting in any state at a certain point, i.e., not necessarily
the zero state, and terminating in the same state after one turn.

Encoding by a convolutional encoder is somewhat more diffi¬

cult than for the non-tail-biting case, since an additional condi¬

tion for the closed path has to be met. The benefit of this closed

structure is that no termination information, which can cause

much overhead for convolutional codes of small blocklengths,
has to be added.

Definition of a

tail-biting trellis

16 Chapter 2. Background Information

2.1.6 Turbo Codes

Parallelly A recently discovered new class of concatenated codes, the so-

concatenated Turbo called Turbo codes, has turned the view of coding theory upside
down. In fact, until 1993, all types of codes known up to then

were separated from Shannon's limit by well over 1 dB. Even

the most advanced coding schemes, as for example the serial

concatenation of constituent codes that has been used for state-

of-the-art satellite communications, struggled with this imag¬
ined boundary. In 1993,Berroue/a/. [2] presented their first ar¬

ticle on Turbo codes. The imagined boundary was overstepped

by the introduction of this new coding scheme that consists

of two parallelly concatenated convolutional codes C\ and C^

connected by a bit-interleaving structure or permutation n, as

schematically presented in Fig. 2.8. The excellent performance
of Turbo codes is rooted in both the construction of the code

and the corresponding iterative decoding techniques.

In fact, the high complexity of Turbo codes is distributed both

over the constitutent convolutional codes and the interleaver.

As we will see in Section 3.2.2, the interleaver can be seen as

a complex connection pattern between the two parallelly con¬

catenated convolutional codes. If we cut this connection pat¬

tern vertically at a given position and count the number of lines

crossed by this section, we directly get the number of states

of an equivalent convolutional code. As an example, we could

assume that the section crosses m pattern connections of the in¬

terleaver. Under these conditions, an equivalent convolutional

code would have at least 2m states, since we did not take into

account the number of states of the constituent convolutional

codes so far. Hence, very complex concatenated codes can

be constructed even if relatively low-complexity convolutional

codes are used for their constituent codes. Furthermore, the

interleaver allows, by spacial (or temporal, depending on the

point ofview) decorrelation of adjacent information pieces, the

control of hard-to-correct errors. However note that interleav¬

ing structures for decorrelating error bursts are also used for

other data transmission schemes, but there they are a pre-step
before decoding, and hence, they are not involved in the de¬

coding itself. This decorrelation is most important in the case

of burst errors which are, for example, present in the case of

mobile communication very close to a base station.

Functioning of Turbo

codes

2.1. About Coding 17

u

code Ci
Xl

»
"

7T interleaver

code C2
x2

Principal ingredients ofa Turbo code. Figure 2.8

Convolutional codes with the same complexity as Turbo codes

are very difficult to decode by standard means (e.g., the Viterbi

algorithm [23,24]), since the number of states grows exponen¬

tially with the memory order m. Using iterative decoding tech¬

niques significantly lowers the computational complexity. This

is mainly due to the interleaver which creates most of the com¬

plexity in Turbo codes, and is a simple permutation operation.

The characteristic of Turbo codes is a very steep curve of bit-

error rate (BER) versus signal-to-noise ratio (SNR). Such char¬

acteristic curves are also known as water-fall curves. In the case

of parallel concatenation of constituent codes, the BER versus

SNR curve flattens at higher SNR values to an error floor. This

is due to the small minimum distance of parallely concatenated

Turbo codes. Serially concatenated codes, in contrast to paral-

lelly concatenated codes, have a higher free distance, thus the

error-floor phenomenon is not present in this case. A compari¬
son ofBER curves of several typical parallelly and serially con¬

catenated codes is shown in Fig. 2.9 (see also [21,25]).

A note on decoding
of Turbo codes

Turbo codes show

steep waterfall curves

Channel Models 2.1.7

Up to here, we have treated the coding channel of Fig. 2.1 as

a black box. Actually it consists of a modulator, the physi¬
cal channel, and a demodulator as shown in Fig. 2.10. In the

context of this thesis we introduce two simple channel models

of interest, the additive white gaussian noise channel (AWGN

channel) and the binary symmetric channel (BSC). Although

18 Chapter 2. Background Information

0.4 0.6

SNR [db]

Figure 2.9 A comparison ofserially (SCCC) andparallely (PCCC)
concatenated Turbo codes. Parallel concatenated Turbo codes

show their characteristic error-floor behaviour [25].

neither represents the actual situation of most of today's main¬

stream applications with any accuracy, they are well-suited for

our presentation of analog decoders. Complex situations such

as a mobile radio channel incorporate, in addition to the AWGN

element, also problems like inter-symbol interference (ISI) due

to multipath transmission, and fading [26]. We will intention¬

ally omit these complex channel situations from the presenta¬
tion to keep it simple.

AWGN channel

BPSK modulator The modulator of Fig. 2.10 adapts the discrete-time, binary se¬

quence to the continuous-time, analog, physical channel. Gen¬

erally, this is done by so-called pulse-shaping filters. In the

binary case, the output of such a modulator is built out of two

signals so(t) and si(t) for an encoded 0 and 1, respectively. In

terms of simple detectability, a good choice of these signals for

2.1. About Coding 19

Discrete memoryless channel

Digital
source

u

Encoder
X

Modulator

-

y

s(t)

j

n(t)
^
AWGN

channel

E

r(t)

)emodulator
V

Digital
sink

û
Decoder

ß-level

quantizer

-
P

sampler
Matched

detector

A more detailed view ofFig. 2.1 for a coded system on an Figure 2.10

additive white Gaussian noise (AWGN) channel.

a wideband channel is

sin

sin

(2JT/Ö/+I), o</<7;

(infQt - |), 0<t<Ts

(2.8)

where Ts is the duration of one symbol (or the sampling pe¬

riod), /o is a multiple of l/Ts, and E0 is the energy of each

symbol. This is called binary-phase-shift-keyed (BPSK) modu¬

lation. The transmitted signal is a sine-wave pulse whose phase
is either +jt/2 or —tt/2 depending on the encoder output. Since

we have si(t) = —so(t) we speak of antipodal signaling. The

two signal forms allow us to send one channel bit per symbol
and time T..

If we assume that the physical channel is memoryless, i.e.,
the channel output depends only on the presently transmitted

symbol, a common form of disturbance of the channel can be

AWGN. If we assume the transmitted signal as s(t), the re¬

ceived signal is

Continuous AWGN

definition

r(t) = s(t) + n(t), 0<t<Ts (2.9)

20 Chapter 2. Background Information

BPSK demodulator

where n(t) denotes a sample function of the additive white

Gaussian noise process with power spectral density (PSD)

*(/) = No/2.

The demodulator has to produce an output corresponding to the

signal received in each time interval Ts. This output may be a

real number or one symbol from a discrete set of preselected

symbols, depending on the demodulator design. An optimum
demodulator always includes a matched filter or a correlation

detector followed by a sampling process. For the BPSK-case

with coherent detection, the sampled output of the demodulator

is the real number

f
Jo

KO, sin (2*/of-4) dt. (2.10)

Demodulator for

M-ary signals

Discrete AWGN

definition

For the M-ary case, the demodulator decomposes the received

signal and the noise into TV-dimensional vectors, where N <M.

This means that the signal and the noise are expanded into a

series of linearly weighted orthonormal basis functions {/„(/)}
as is shown, for example, in [26]. It is assumed that the N

basis functions {/„(/)} span the signal space, so that each of the

possible transmitted signal waveforms can be represented as a

weighted linear combination of {/«(/)}•

In contrast to the continous-time AWGN channel definition

of (2.9), we can define an equivalent discrete version of the

AWGN channel whose samples at time instance /' are charac¬

terized by

yI=x,+n,, (2.11)

where n, is a white Gaussian random process, and x, was ob¬

tained by mapping the binary bits of the codeword to an an¬

tipodal signal with amplitude *JTTa: x, i-> x, = ±s/E^. The

Gaussian random process is white in the sense that each sam¬

ple is independent of any other sample. The probability density
function of each sample of such a process is defined by

/»CO :

1

V27ro»2
(2.12)

where a„ is the variance of the zero-mean white Gaussian noise

n(t). This variance o^ is related to the the one-sided PSD No

2.1. About Coding 21

The transition diagram ofa binary symmetric channel (BSC) Figure 2.1 I

with cross-over probability e.

by

2
' (2.13)

In fact, we can think of the output y, of the discrete AWGN

channel as of an unquantized demodulator output p of the con-

tinous time AWGN channel. By doing so we can treat both of

the channel models equivalently. Hence, the sequence of un¬

quantized demodulator outputs can be passed on directly to an

analog decoder. Today, a much more common approach to de¬

coding is to quantize the continuous detector output p into one

of a finite number Q of discrete symbols. In this case, the digi¬
tal decoder has discrete inputs.

Analog-input and

discrete-input soft

decoders

Binary Symmetric Channel

If we assume a memoryless physical channel enclosed by an

M-ary modulator and a ß-ary output demodulator, a discrete

memoryless channel (DMC) can be modelled. The most im¬

portant case in the context of this thesis is the binary symmetric
channel (BSC) withM = Q = 2. This configuration can be rep¬

resented by a channel diagram and is completely described by
the transition probability e. The probabilities on the branches

ofFig. 2.11 represent the conditional probabilities p(y, \Xj) with

i,je{0,l}.

A decoder following a DMC with M = Q is generally called

hard-decision decoder or hard decoder. Through the quantisa¬
tion of the channel output which can be relatively coarse, these

decoders perform generally worse than those in conjunction
with soft-output channels such as the AWGN channel. Note

DMC and BSC

definitions

DMC and hard

decoders

22 Chapter 2. Background Information

BPSK transition

probability expressed
by the

complementary error

function Q

that in the case of a hard decoder, the input can be still a real-

valued number but the possible number of symbols or values is

limited.

The transition probability e can be calculated from the know¬

ledge of the signals used, the probability distribution of the

noise, and the output quantization threshold of the demodula¬

tor. In the case of BPSK modulation on an AWGN channel

with optimum coherent detection and binary output quantiza¬
tion, the transition probability e is just the bit error probability
for a signal sequence with equally likely symbols given by

(2.14)

where Q(x) = (\/*j27T)f^° e y ^2dy is the Qfunction of Gaus¬

sian statistics [26].

2.1.8 Types of Errors

Random-error

channels

Burst-error channels

On memoryless channels, the noise affects each transmitted

symbol independently. As an example, consider the BSC with

a transition diagram as shown in Fig. 2.11. Each transmitted bit

has a probability e of being received incorrectly and a proba¬

bility 1 — e of being received correctly, independently of other

transmitted bits. Hence transmission errors occur at random in

the received data sequence. Therefore memoryless channels are

called random-error channels. Typical examples of such chan¬

nels are the deep-space channel and many satellite channels, as

well as most line-of-sight transmission systems [16].

On the other hand, on channels with memory, noise is not inde¬

pendent from transmission to transmission. A very simple ex¬

ample is a model with two states: a 'good' state in which trans¬

mission errors occur infrequently and a 'bad' state in which

transmission errors are highly probable. Both of them may

be modeled according to Fig. 2.11 but with different e's. The

channel is in the good state most of the time, but occasionally
shifts to the bad state due to a change in the transmission char¬

acteristic of the channel induced, for example, by 'deep fading'
caused by multipath transmission. As a consequence, transmis¬

sion errors occur in clusters or bursts because of the high tran¬

sition probability in the bad state. Such channels are thus called

2.2. Analog Viterbi Decoding 23

burst-error channels. Typical examples include radio channels,
where the error bursts are caused by signal fading due to multi-

path transmission, wire and cable transmission that is subject to

impulse switching noise and crosstalk, and magnetic recording,
which is subject to tape dropouts due to surface defects and

dust particels [16]. For this type of errors, codes with error-

decorrelation capabilities, such as e.g. Turbo codes, are espe¬

cially suitable. The interleaver separates the error burst which

then can be corrected on a local scale. Large LDPC codes have

comparable capabilities (see also Section 2.1.4).

Finally, combinations of both channels with random errors and

burst errors can be found. We call these channels compound
channels. For each of the above cases, codes especially adapted
to their environment may be constructed.

Compound channels

Analog Viterbi Decoding 2.2

Computational Considerations on the VLSI

Implementation of Viterbi Decoders

2.2.1

The common basic digital circuits with binary memory cells

and logic gates are ideally suited for finite-field arithmetic

which is the mathematical basis for algebraic coding and de¬

coding theory. This happy match has been exploited for a long
time to build efficient VLSI implementations of decoders for

such codes. Codes constructed according to algebraic coding

theory are best used in applications that have a sufficient mar¬

gin to the theoretical performance limit. Typical examples of

such codes are BCH codes and Reed-Solomon codes [15,27],
which provide strong error protection against low noise levels.

In contrast to the algebraic approach, probabilistic techniques
like the maximum-likelihood (ML) sequence detection using
the Viterbi algorithm [23,24] and decoding techniques based

on probability calculus, such as the sum-product algorithm that

we use in the context of this thesis, are best suited for appli¬
cations that have to operate near the theoretical performance
limit. However, the match of these techniques to digital VLSI

is less than perfect. In fact, the implementation of a high-speed
Viterbi decoder takes considerably more chip area than, say, a

Happy match

between algebraic
coding theory and

digital circuit

primitives

Probabilistic coding
techniques are less

ideal for a VLSI

implementation

24 Chapter 2. Background Information

ACS feedback loop

received

channel

information

1
BMC -* ACS SSM -*

Figure 2.12

decoded

information

Simplified block diagram ofa Viterbi decoder with its main

constituents branch-metric computation (BMC) unit,

add-compare-select (ACS) unit and storage-survivor-memory

(SSM).

Partly analog Viterbi

decoders are a

solution to the

high-speed and

low-power dilemma

BCH decoder achieving the same bit rate. This is mainly due

to the binary number system of today's computers which cre¬

ates a considerable overhead in the implementation of floating¬

point arithmetic units and thus needs a significant amount of

chip area. Approximations to the floating-point number repre¬

sentation using equivalent fixed-point units can be made, but

the binary system still introduces a large amount of redundancy
in terms of the data representation at the cost of higher power
consumption and larger chip area.

Because of the ever growing transmission-speed and power-

efficiency requirements for both fixed and mobile communica¬

tion devices, some researchers have recently become interested

in analog decoding techniques. Many analog or hybrid imple¬
mentations of the Viterbi decoding algorithm for trellis codes

have been proposed [28-40]. All of them simply replace the

most critical parts of the Viterbi decoder of Fig. 2.12, generally
the add-compare select (ACS) unit and its feed-back loop, by

analog circuit implementations. But still, the whole decoder

remains a sequential machine that performs one trellis compu¬

tation after the other. Therefore, the time needed for one trellis

computation limits the speed of the overall system.

2.2.2 Circuit Implementation of Analog and

Mixed-Signal Viterbi Decoders

Distinction between

voltage-mode and

current-mode

implementations

Regarding the different circuit implementations, we can dis¬

tinguish between voltage-mode and current-mode implementa¬
tions. These two terms are generally used to classify whether

2.2. Analog Viterbi Decoding 25

the information-carrying signals are mainly of current nature

or of voltage nature. This distinction is in practice not so ob¬

vious. For example the input information of a simple current

mirror can be seen as the current passing the diode-connected

input transistor as well as the gate-source voltage of the same

transistor driving the second transistor. A more appropriate
means to identify voltage- and current-mode circuits is the cri¬

teria whether currents are driving mostly high-impedance nodes

(voltage-mode) or low-impedance nodes (current-mode) at the

input of a building block [41,42].

A second classification criteria of the different analog and

mixed-signal implementations of Viterbi decoders are their

mode of operation in time. We can mainly distinguish between

continuous time circuits and switched or discrete time circuits.

For the overall decoding function to be implemented it does

not matter at all which of the two operation modes is used. The

main classes ofthe discrete-time circuits are switched-capacitor

(SC) circuits [43,44] and switched-current (SI) circuits [45]. In

that sense this classification criterion is orthogonal to the dis¬

tinction between voltage-mode and current-mode circuits.

From the point of view of the impedance criteria, the imple¬
mentations described in [28-32] are clearly continuous-time

voltage-mode circuits using SC cells to store the analog state-

metrics and feed them back to the input of the ACS unit. They
all use opamp-based adders and comparators to implement the

ACS unit. With the evolution in time, they have consecutively
reached higher operational speeds starting from some 10 Mbit/s
to over 200 Mbit/s. The solution described in [38] uses SC

techniques for both, metric calculation and storage and is there¬

fore also a pure voltage-mode circuit implementation. A pro¬

cessing speed of 500 kbit/s at a power consumption of less than

8mW has been demonstrated by this technique. The approach
in [33, 34] is one of mixed current- and voltage-mode. The

metric calculations are accomplished partly in the current do¬

main [33], whereas the comparison and the storage of the state

metrics (SC sample-and-hold (S/H) circuits) are in the voltage-
mode. The realization of the ACS function is implemented by
a new diode network using threshold-programmable diode de¬

vices. Hence this part of the Viterbi decoder is a continuous-

time circuit. Very high operational speed of over 300 Mbit/s
has been reported in [32]. Pure current mode implementations
are reported by Demosthenous and Taylor in [35-37]. The ad-

Distinction between

continuous-time and

discrete-time circuits

Discussion of analog
and mixed-signal
Viterbi decoders

26 Chapter 2. Background Information

dition and comparison oftwo current signals are simple tasks in

continuous-time current-mode circuits. The storage of current

signals can equally well be accomplished by SI memory cells

compared to SC techniques. Decoding speeds of > 100Mbit/s
are expected using the fully-current-mode approach. But al¬

though the calculations in the current domain are very promis¬

ing regarding their simplicity, the fully-current-mode approach
is still in its feasability-study state, whereas voltage-mode cir¬

cuits are already considered for use in practical applications.

2.3 Network Decoding

In order to meet the ever growing demand in decoding speed,
several methodologies for creating network decoders have been

proposed so far. Most ofthem are based on sequential machines

or are some other kind of discrete-time signal processors. But

there exist also continuous-time processors which, as we will

see later on in this thesis, come most closely to our approach
of probability-based analog, continuous-time networks. In this

section we revise the most important examples of the network

decoding approach.

2.3.1 Non-Algorithmic Diode Decoding

Shortest-path Minty [46] described an elegant solution method to the shortest

problem pam problem: assume a net of flexible, variable length strings.
In that scale model of the network you wish to find the shortest

path. If you now pick up the source node and the destination

node and pull the nodes apart until the net is tightened, you di¬

rectly find the solution along the thightened path as in Fig. 2.13.

Note that Minty's solution applies to non-directed graph mod¬

els only. It is thus not directly applicable to trellis decoding.
The decoding of a trellis code is equivalent to the shortest path

problem in a directed graph [24,46].

Diode decoder An analog circuit solution to the shortest-path problem in di¬

rected graph models has been found independently by Davis

and much later by Loeliger [48,49]. It consists of an analog
network using series-connected diodes. According to the indi¬

vidual path section lengths as in Fig. 2.14 a number of series-

connected diodes are placed. The current / will then flow along

2.3. Network Decoding 27

The shortestpath problem solved using a rope net [47] Figure 2.13

(©1999 IEEE).

the path with the least number of series-connected, forward-

biased diodes. Note however that the sum of the diode thresh¬

old voltages fundamentally limits practical applications. Very

high supply voltages will be needed for larger diode networks,
which makes this elegant solution useless for VLSI implemen¬
tations.

A similar method to Davis' diode decoder has recently been

presented by Bu et al. [47]. The basic network elements are

variable threshold-voltage diode-devices connected to an ana¬

log network. For each branch of the network, exactly one de¬

vice is introduced for each variable parameter. Instead of as¬

sembling more or fewer diodes in series for one branch, the

threshold voltage can be tuned continuously within a certain

range. Fundamentally, this solution suffers from the same lim¬

itations in terms of supply voltage as the solution of [49]. The

idea of variable turn-on voltages however offers a possibility
to build soft-input decoders. This idea can also be found in

the analog Viterbi decoder implementation of Shakiba et al.

[33,34].

Diode decoder with

variable threshold

voltage

Neural Network and Fuzzy Logic Decoding 2.3.2

Classifying signals is a task to which neural networks are Neural networks and

often applied. This approach can be found in various do- decoding

mains of signal and information processing as for example
in optical character recognition (OCR) [50-53], handwriting

recognition [54-56], voice recogniton [57,58] and general pat¬
tern recognition and classification [59, 60]. The mapping of

28 Chapter 2. Background Information

r2 r3 r4 r5

Figure 2.14 Hard-decision decoderfor a very simple trellis code. The

received bits r, control directly the switches as indicated by the

dashed lines.

the high-dimensional received input-signal space to the lower-

dimensional space of valid codewords can also be seen as a

'simple' classification problem. Hence, it is not astonishing
that several attempts to solve the decoding problem with neu¬

ral networks have been proposed [39,40,61-63]. Wang and

Wicker [39] and Verdier et al. [40] even proposed an analog

implementation of a neural network for decoding purposes.

Fuzzy sets for Related to the neural network decoding approach is the fuzzy
classifiers logic decoding idea. In 1965, Zadeh proposed thefuzzy set con¬

cept [64] as a means of handling unreliable information. Based

on these mathematical foundations, Wu et al. [65] introduced

a hybrid fuzzy-neural-network decoder. The proposed fuzzy
neural classification network basically consists of a three-layer
neural network. To enhance the associative capability of the

network, fuzzy membership functions were defined for each

hidden node.

Analog Network Decoding

With the advent of computationally demanding iterative de¬

coding techniques, several researchers started to look for non-

2.4. Bio-Inspired Networks 29

traditional representation and implementation methods of algo¬
rithmic decoding networks. Wiberg et al. were the first to spec¬

ulate on analog implementations of the so-called sum-product

algorithm [66]. Inspired by the analog diode network decoders

presented in Section 2.3.1 and Wiberg's work on iterative graph

decoding [67], a new analog implementation approach for the

maximum-a posteriori (MAP) decoding has recently been pre¬

sented independently by Hagenauer et al. [68-70] and by us

[71-79]. This work is also the basis for the present thesis,
which deals mainly with design aspects and implementation
issues of analog VLSI iterative decoders based on the sum-

product algorithm. For a long time, Hagenauer et al. did not

consider the actual transistor implementation oftheir non-linear

networks at all. Only very recently they became interested

in chip implementations of their networks [70]. They finally
came up with the same generic transistor modules as we had

before [71], with only a slight difference in the way of connect¬

ing individual circuit blocks.

Bio-Inspired Networks 2.4

Mead championed a completely new analog VLSI design style

[11]. The neuromorphic approach for analog signal processing
circuits mimics in many ways the function ofthe biological ner¬

vous system. This design style is characterized by exploiting,
rather than fighting, the fundamental nonlinearities of transis¬

tor physics. Precision is achieved on the system level despite

low-precision components. Mead suggests in [80] that "adap¬
tive analog systems are 100 times more efficient in their use of
silicon, and they use 10'000 times less power than compara¬

ble digital systems." Many practical examples such as building
blocks for neural networks [81-86], artificial cochleas [87-91],
silicon retinas [92-94], and motion detectors [12,95] have been

successfully fabricated. They show indeed astonishing system-
level performance compared to traditional analog and digital

systems.

In the context of decoding of digital codes, 'neuromorphic cir¬

cuits' does not seem to be the correct term. In fact, we do not

want to copy the function of the nervous system. The aim is

rather to have an electronic system that has advantages com¬

parable to its biological counterpart. Thus we speak of bio-

Adaptive analog

systems are far more

efficient

neuromorphic vs

bio-inspired

Chapter 2. Background Information

inspired circuits instead of neuromorphic circuits to make this

difference clear. Key-features of bio-inspired circuits are low-

power and high-speed operation on system level. They benefit

from collective computation, its precision is gained on the sys¬

tem level despite the use of low-precision components, and they
are small in size. A further key-feature of the bio-inspired de¬

sign approach is that one exploits, rather than fights against,
the inherent nonlinearities of the basic semiconductor devices.

This means that in contrast to a conventional analog circuit-

design approach, the bio-inspired approach uses the devices 'as

is' and does not try to implement 'linear' transfer characteristics

out of linearized non-linearities by relying on the small-signal

concept.

Chapter 3

The

Probability-Propagation

Algorithm

Problem Statement 3.1

In this section, we will review the basic decision theory and its

application to the decoding problem. Several standard decod¬

ing criteria such as the maximum-likelihood (ML) rule and the

maximum-a posteriori (MAP) rule are discussed for both bit-

and block-wise decoding.

Basic Decision Theory 3.1.1

Basically, decoding is a decision-making process. Based on Decoding is a

the observed data vector, the decoder tries to figure out which decision process

actual information bit or information vector has been generated

by the information source.

Recalling our data transmission system of Fig. 2.1, we assume

in the following that the data source is an independently and

identically distributed (i.i.d.) source, so that we can write

k-i

Pv(u)=Y\Pu(u,) (3.1)

i=0

32 Chapter 3. The Probability-Propagation Algorithm

generator

Noise

transformation

i Li Li Li Li L

decision
â(R)

Bh...,BL

generators

Figure 3.1 A general model ofthe decision problem. Using observation R

one wants to decide on A without having direct access to it.

with Pu(Ui) having the same distribution for all z.1 The data

transmission is assumed to be over a time-invariant, memory-

less and feedback-less channel. Under these conditions we are

allowed to write the probability of the received values condi¬

tioned on the sent values as a product of conditional probabili¬
ties:

k-\

PYV&*)=Y[PY\x{y,\x,). (3.2)

i=0

Decision model

Quality measure for

decisions

A general model of a decision2 problem is shown in Fig. 3.1,
with A being a random variable or random vector with finite

alphabet A, B\ e !B\,...,Bl e Bl some additional random

variables we are not directly interested in, and observation R

a continuous or discrete random variable or random vector. For

reasons of convenience, in the further derivations, we assume

R to be a finite discrete random variable with alphabet Si.

A good quality measure of a decision is the probability of mak¬

ing a correct decision. This probability PCorrect = P[Â(R) = A]

The subscript U of the probability function P denotes the investigated
random variable, whereas the argument u is a concrete realization of this

random variable U. To have a more condensed writing, one often writes

simply P(u). A more detailed description of the random variable concept
and stochastic processes can be found in [96].

2It is important to note the difference between decision and estimation.

While in an estimation problem a value close (according to a certain dis¬

tance measure) to the actual occurred value is headed for, in a decision

3.1. Problem Statement

can be calculated in a general way as

Correct = J^ p(Ä(r) = A\R = r)PR(r)

reM

= J2pA\R(à(r)\r)PR(r). (3.3)

reM

The aim of a decision-making process is then to maximize this

probability. The two most popular rules, the MAP and the ML

decision rules, are discussed in the following subsections.

MAP Decision Rule

By definition, probabilities are non-negative numbers in the

range [0..1], and the decisional) ofA can be defined freely for

each outcome r of R. Hence Pcomxt is maximized by choosing

â(r) for each r suchthat PA\n(a\r) is maximized. This follows

directly from (3.3), and thus we define

àuAp{r) = axgvasKPA\R{a\r) (3.4)
aeA

= argmax V PAB]R(a,b\r), (3.5)
aeA *—'

bS!X y.SL

where the function argmaxx f(x) returns the particular x that

maximizes f(x)? This decision rule is called maximum-a pos¬

teriori (MAP) decision rule to express that it maximizes the a

posteriori probability P(a\r) forr.

problem one looks for the exact value Therefore, an estimation can be

more or less good, whereas the decision is either right or wrong

3In general, argmax is a function that returns a set of all maxima Of

course, this set has more than one element if the maximum is achieved for

different values, but here we assume that arg max returns only one value

34 Chapter 3. The Probability-Propagation Algorithm

3.1.3 ML Decision Rule

In the previous subsection we have seen that the maximization

of Correct is independent of PR(r), and so we can write (3.4) as

PAR(a,r)
a{r) = argmaxP^Calr) = argmax

asA asA PR(r)

= argmax PAR(a,r) (3.6)
aeA

= argmaxPR{A(r\a)PA(a).
aeA

However, PA(a) is often unknown, so one assumes that A is

uniformely distributed, i.e., PA(a) is constant for all a e A.

With this assumption we can postulate a new decision rule:

âML(r) = argmaxPi?|y4(r|a). (3.7)
aeA

This decision rule is known as the maximum-likelihood (ML)
decision rule. We immediately verify the equivalence between

the ML-case on the left-hand side of (3.8) and the MAP-case

on the right-hand side of the equation of (3.8), when A is uni¬

formely distributed:

argmax PR \A (r \ a) = argmaxPR\A(r\a)PA(a), (3.8)
a£A a£A

again using the fact that the maximization is independent of

Pair).

We have observed that the MAP decision rule and the ML de¬

cision rule are equivalent if the condition that A is uniformely
distributed is met. In the general case, however, the ML deci¬

sion does not necessarily maximize ^correct, since the distribu¬

tion of A can rarely be guaranteed to be uniform. For practical

applications, where PA(a) is often unknown, the ML decision

rule is used regularly despite its non-optimum character. This is

not a limiting drawback as the aim of possible source encoding
is to modify the probability distribution ofA to have as uniform

a distribution as possible.

Equivalence and

optimahty ofMAP

and ML

3.1. Problem Statement 35

Decoding Rules 3.1.4

In order to match the terminology of Fig. 2.1 and Fig. 3.1, we

have first to find correspondences. Two different cases have to

be distinguished in the context of decoding: block- and bit-wise

decoding.

Block- and bit-wise

decoding

Block-Wise Decoding

For block-wise decoding, the translation is as follows:

i^U

unknown information vector

received data vector

reconstructed information vector

The random variables B, are not used in this case. Starting MAP block decoding

with these definitions and using a simplified notation, the MAP

decison rule is then given by

ÛMAp(y) = argmaxP(uly)
u

= argmaxP(u,y).

(3.9)

(3.10)

MAP block decoding maximizes ^correct = P[Û = U]. This

is equivalent to the minimization of the block error probabil¬

ity ^Blocken- = P[U ^ U]. This kind of block decoding is also

known as sequence estimation, although the term estimation is

somewhat misleading in the context of decoding. More appro¬

priate is the term sequence detection.

Equivalently, the ML decision rule is defined as

ÛML(y) = argmaxP(ylu) (3.11)

ML block decoding

if P\](u) is assumed to be uniformly distributed.

An example for such an ML decoder is the well-known Viterbi

sequence detector used in harddisc drive applications (see e.g.

[29]). Note that a MAP-version of the Viterbi algorithm is pos¬

sible as well, as we will see in Section 5.4.1.

36 Chapter 3. The Probability-Propagation Algorithm

Table 3.1

Decoding type Decision rule

(block-) MAP û(y) = argmaxuP(u|y)

(block-) ML û(y) = argmaxuP(y|u)

symbol-MAP ûk(y) = argmaxu/cP(uk\y) Vk

symbol-ML ûk(y) = argmaxMi P(y\uk) Vk

Decision rulesfor the main decoding types.

Bit-Wise Decoding

Bit-wise decoding uses a somewhat different assignment of ter¬

minology:

A±Uk

Â±Ûk

B,±U,

unknown information bit

received data vector

reconstructed information bit

V/ j-k

MAP bit-wise for each k = 0,...,K — l. With these definitions, the MAP rule

decoding for bit-wise decoding is given by

â^(y) = argmaxP(w^|y)

argmax Y^ i3 (Ü | y)

üeVk ük=uk

argmax Y^ ^(ü,y)

üsU ük=Uk

(3.12)

(3.13)

(3.14)

for all k = 0,... ,K - 1. The MAP decision rule for bit-wise

decoding maximizes ^correct = P[Uk = Uk]. At the same time

it minimizes the symbol error probability Psymboierr = P[Uk =/=

Uk\. Likewise we define the bit-wise ML decoding rule. Ta¬

ble 3.1 summarizes all four cases.

3.2. Factor Graphs 37

Factor Graphs 3.2

After having laid out the decision-theoretic background of de¬

coding, we will briefly have a look at an important graphical
model which is used afterwards to describe both code and de¬

coding system.

Definition of Factor Graphs 3.2.1

According to the definition in [97], afactor graph is a bipartite Factor graphs

graph that expresses how a "global" function of many variables represent the

factors into a product of "local" functions. This generaliza-
factorization of a

_„ , r^^n . . .• . • . . • . . . global tunction

tion of Tanner graphs [98] by adding hidden state variables has

been introduced in [66] and in Wiberg's doctoral thesis [67].
Factor graphs subsume many other graphical models such as

Markov randomfields, and Bayesian networks. To see the rela¬

tionship between these graphical models and the factor graphs,
the reader may consult [97] and the references therein.

To introduce the factor-graph concept, let us start with a A very simple

very simple example [97]. Take a real-valued function factor-graph example

g(xi,X2,X3,X4,X5) of five variables that can be written as the

product

g(Xl,X2,X3,X4,X5)

= fA(X\)fB(X2)fc(X\,X2,X3)fD(X3,Xlx)fE(X3,X5) (3.15)

of five functions f\, /b, /c, fo, and fiz.

The factor graph corresponding to (3.15) is shown in Fig. 3.2.

We can identify a circle for each variable x, representing vari¬

able nodes and a filled rectangle for each factor / representing

function nodes, respectively. The variable nodes for x, are con¬

nected to the function node for / by means of edges if and only
if x, is an argument of /. A third type of node, not actually

present in Fig. 3.2, is the class of auxiliary variables or state

nodes which are drawn as double circles (see e.g. Fig. 3.5).

They form a subset of the variable nodes and are often used to

shape the factor graph. They are not observable from the out¬

side of the system.

Graphical ingredients
of factor graph

38 Chapter 3. The Probability-Propagation Algorithm

Figure 3.2 A factor graph expressing that a globalfunction

g(xi,X2,xj,X4,xs) factors as the product ofthe localfunctions

/a(*i), /b(*2), fc(x\,x2,X3), /d(x3,x4), and fE(x3,x5).

Forney's Normal Graphs

Definition of

Forney's normal

graphs

Node splitting

The original definition of factor graphs allows only the con¬

nection of nodes of different type [67]. As we will see in

Chapter 5, it might be interesting to allow direct connections

between function nodes. By doing this, the factor graphs and

the sum-product algorithm that runs on these factor graphs can

directly be transformed into an analog transistor-level descrip¬
tion. In [99,100], Forney takes the original definition of fac¬

tor graphs and applies some modifications to allow direct con¬

nections of function nodes. He calls these new graphs normal

graphs. He uses the convention that the degree of a variable

node has to be less or equal to 2, i.e., variable nodes have at

most two connections. By doing this, he can separate external

variables (I/O nodes observeable from outside) very easily from

internal variables or state variables. State-variable nodes have

degree two whereas external variable nodes have only degree
one. As we will see in the introduction to the sum-product al¬

gorithm, a variable node with two connecting edges has no pro¬

cessing task to fulfill since it passes the messages right away to

the next function node. Since the internal variables have no ex¬

plicit function anymore, they are not needed anymore and can

be safely omitted. Thus internal variables, i.e., what we called

states in the original factor-graph definiton, appear as the edges

only between function nodes. Forney even modifies the origi¬
nal graphical representation by introducing so-called stub nodes

for the I/O-nodes. In the context of this thesis, we do not apply
the whole notational rigorosity and just use the node-splitting

property in factor graphs for our implementation purposes.

The transformation of an original factor graph into the new

Forney-style factor graph can be carried out easily by node

splitting. Variable nodes with a degree higher than 2 can be

3.2. Factor Graphs 39

Ja Jb Je Ja Jb Je

a) b)

a) originalfactor graph, b) node-splitting procedure to keep Figure 3.3

the degree ofvariable nodes below or equal to 2.

replaced by the special function 'equal' and variable nodes of

degree 2 as in Fig. 3.3. The 'equal' function node assures that

y',y" and y'" are kept at the same value. For a formal definition

of the 'equal' function see Section 3.2.2.

Function Summaries

Recalling the simple example of Fig. 3.2, we suppose that we Marginal and

are interested in determining the influence on one specific vari- function summaries

able by the rest of the global function. To find the solution

to this problem, we need to compute a function summary or

marginal. According to the slightly unconventional summation

notation of [97], the 'summary for x2' of a function h of three

variables xi, x2, and x3 is denoted by a 'not-sum' of the form

y^ Â(xi,x2,x3) = ^^Â(xi,x2,x3). (3.16)

~{x2} x\ x3

Therefore by using the notation of (3.16) we have the general
/th marginal function associated withg(xi,... ,x„) denoted by

gi(x,)= J]g(xi,...,x„), (3.17)

which is the summary for x, of g. To get the marginal func¬

tion, we thus sum over all possible configurations of g other

than x,. The need for marginal functions will be clearer in the

following subsection, where a specific decoding example will

be described.

40 Chapter 3. The Probability-Propagation Algorithm

3.2.2 Examples of Factor Graphs

Factor graphs appear

in various fields

The application range of factor graphs is very broad. Fac¬

tor graphs can be applied to both set-theoretic and probabilis¬
tic modeling. Examples for set-theoretic modeling include

code description and state-space models, whereas typical ex¬

amples for probabilistic modeling include Markov chains, hid¬

den Markov models. Furthermore, factor graphs can even be

used to describe fast transforms, which has been demonstrated

by Kschischang et al. in [97] for the case of the Fast Fourier

Transform (FFT). We will restrict ourselves in this subsection

to the presentation of very simple, but important examples in

the context of coding and decoding.

Linear Block Codes

Iverson's notation Let us begin with the description of linear codes by factor

graphs. For every code, one or even more than one factor graph

representation can be found. In the case of linear codes, it is

convenient to start with the parity-check matrix as for exam¬

ple in (2.7). The Hamming code C is defined over GF(2) and

each binary 7-tuple x = (xi,X2,X3,X4,X5,xe,xj) has to satisfy
HxT = 0T. Each row of the parity-check matrix gives us an

equation that has to be satisfied by x, and simultaneously, all the

equations have to be satisfied to form a valid codeword. Now,
"Iverson's convention" [101] is very useful to assist behavioural

modeling. If P is a predicate, i.e., a Boolean proposition, then

[P] is the binary function indicating truth of P :

[P]
|1 ifP;

10 otherwise.
(3.18)

Code membership
function

For each equation ofthe code C, a binary indicator function can

be defined which describes the satisfaction of the check equa¬

tion. The product of these functions indicates then the mem¬

bership in the code. Therefore, the three rows of the considered

code C can be used to derive the code membership indicator

3.2. Factor Graphs 41

Thefactor graph ofthe binary Hamming code defined by the Figure 3.4

parity-check matrix (2.7).

function g(xi,X2,... ,x-i) as the product of three local functions:

g(xi,x2,...,x7) = [(xi,x2,...,x7)eC] (3.19)

= [(x4ex5ex6ex7) = o]

•[(X2 0x3ex6ex7) = o]

•[(xiex3ex5ex7) = o], (3.20)

where © denotes the sum operator (or XOR function) in GF(2).

Using (3.20) we can draw the corresponding factor graph as

shown in Fig. 3.4. Therein, instead of the black square used

in general factor graphs, we have inserted the special symbol
EH to indicate the actual parity-check function. We will freely
use symbols for function nodes, depending on the type of the

local function. However, variable nodes will always be drawn

as circles; sometimes though double circles will be used for

auxiliary variables (states) as in Fig. 3.5.

Convolutional Codes

We can draw a factor graph for a convolutional code in the same

style as in Fig. 3.4. The membership functions are somewhat

different this time: as we have seen in Fig. 2.5, a valid code¬

word of a convolutional code can be read off as a path in the

corresponding trellis diagram. At each time step, a new trel¬

lis section is added. Thus not suprisingly, the factor graph of a

convolutional code is rectilinear, i.e., a straight line, as is shown

in Fig. 3.5. Each function node is characterized by a binary in¬

dicator function which can be drawn as a trellis diagram where

edges exist only for valid state transitions. For a non-terminated

Rectilinear factor

graphs for

convolutional codes

42 Chapter 3. The Probability-Propagation Algorithm

Figure 3.5 Thefactor graph representation ofa terminated trellis code.

Figure 3.6 Thefactor graph ofa very short turbo code.

convolutional code, the length of the factor graph is, like the

trellis diagram, possibly infinite. The factor graph of a tail-

biting code is formed by identifying the first and the last state

node of the factor graph of an ordinary convolutional code and

thereby forming a ring structure.

Turbo Codes

Interleaver of Turbo

codes is visible in

factor graph

Turbo-style codes

have a similar

connection pattern

Taking again the turbo encoder of Fig. 2.8, we can easily draw

the factor graph using the knowledge of the form of convolu¬

tional codes. The concatenation of the two constituent codes

C\ and C2 of a turbo code as shown in Fig. 2.8 is realized by
the interleaver. This permutation n can be identified as the con¬

nection pattern in the middle row of Fig. 3.6. Obviously, to get

a good code according to Shannon [1], the codes have to be

much longer than those of Fig. 3.6.

The connection pattern is the main feature of the factor graph
of a turbo code. Apart from the original turbo codes, a whole

class of similar codes has been identified. The so-called turbo-

style codes also have a highly connected pattern as their key
features. As a beautiful example, we redraw the factor graph
of the [22,11,7] subcode of abinary Golay code inFig. 3.7 (see

[26,67]). The membership indicator function of the function

nodes on the main ring structure is again characterized by a

trellis diagram as shown in the inset of Fig. 3.7. Note that the

3.2. Factor Graphs 43

ö

o o

o o

o o

Q

^O-
"O-*-©'

-CT

Thefactor graph ofa turbo-style code. Figure 3.7

aesthetically very pleasing appearance of this factor graph is

mainly due to the introduction of additional state variable-nodes

which let us factor the overall function in the desired way.

Probability distributions and decoding

Probability distributions are another important class of func¬

tions that can be represented by factor graphs. Since condi¬

tional and unconditional independence of random variables is

expressed in terms of a factorization of their joint probabil¬

ity mass function or joint probability density function, factor

graphs for probability distributions appear in many different

Factorizations ofjoint

probability mass
functions appear in

many situations

44 Chapter 3. The Probability-Propagation Algorithm

situations. As we saw in Section 3.1.1 discussing the basic de¬

cision theory, decoding is one of the many applications where

exactly this kind of functions arises.

MAP decoding is a A situation that is often modeled in coding theory is as follows :

situation that is often seiect a codeword (xi,...,x„) with uniform probability from a

m
code C of length n which is then transmitted over a discrete

memoryless channel without feedback that has a corresponding

output (Vi,...,y„). Since we assumed a memoryless channel,

by definition the conditional probability mass function or con¬

ditional probability density function evaluated at a particular
channel output is given by the product form

n

p(y\,...,yn\xi,...,xn) = Y[pY\xiyi\x,). (3.21)

i=i

The a priori probability of selecting a particular codeword is

constant. Thus the a priori joint probability mass function of

the codeword is proportional to the code set membership func¬

tion. Using (3.21) we can therefore write the joint probability
mass function of {x\,.. .,xn,y\,.. .,y„} as

p(xu...,x„,yi,...,y„)
n

= y • [(xi,...,x„) e C] Y\pY\x(yi \x,), (3.22)

i=i

where y is a constant, positive scale factor. The code member¬

ship indicator function [(xi,... ,x„) e C] itself may factor into

a product of local indicator functions as we have seen in (3.20).

Reusing the Hamming code example, we can write the joint

probability mass function according to

p(xu...,x7,yi,...,y7)

= Y [(*4 ©*5 ©X6 0X7) = 0] • [(X2 0X3 0X6 0X7) = 0]

7

• [(Xi 0X3 0X5 0X7) = 0] •]~[/>y|xO; M,
1 = 1

(3.23)

which can be easily described as the factor graph shown in

Fig. 3.8.

3.2. Factor Graphs 45

AAA

Factor graphfor the joint probability densityfunction of Figure 3.8

channel input and outputfor the Hamming code ofFig. 3.4.

Compared to the factor graph of the code (see Fig. 3.4), the fac¬

tor graph of the joint probability mass function of codeword

symbols and channel output symbols is obtained simply by aug¬

menting the factor graph of the code. This is done by adding
a channel function and the corresponding channel-input vari¬

able for each I/O variable node of the factor graph as demon¬

strated in Fig. 3.8. This is a very interesting observation, since

we realize that the factor graph of the code and the factor graph
of a possible decoding scheme are tightly related. In general,
one possible decoder can directly be derived knowing the code

structure.

Logic functions

Surprisingly, even if you did not hear of factor graphs ex-

plicitely before, you may be already quite familiar with certain

types ofthem. The local functions ofFig. 3.9 are drawn as logic

gates and remind us of the definition of the corresponding bi¬

nary indicator function. For example the OR gate with inputs

u\ and U2 and output xi represent the binary indicator function

f(u\,U2,x\) = [xi = (U1ORU2)]. The global function of the

factor graph representation of the logic circuit of Fig. 3.9 can

be written as

g(Ui,U2,U3,U4,Xi,X2,yi)

= [xi = (uiORu2)][x2 = («3XORM4)][yi = (xiNANDx2)].

(3.24)

Getting a factor graph
of the decoder by

augmenting the factor

graph of the code

Logic circuit

diagrams are very

popular factor graphs

46 Chapter 3. The Probability-Propagation Algorithm

>1

Figure 3.9 A logic circuit is also afactor graph.

The global function g takes the value of 1 if and only if all its

arguments form a valid configuration which is consistent with

the logic circuit of Fig. 3.9. In general, every block diagram

may be viewed and drawn as a factor graph.

3.3 The Sum-Product Algorithm

Generic sum-product
algortihm calculates

function summaries

in a distributed

Exercise example of

calculations...

The sum-product algorithm is a generic algorithm that oper¬

ates on a factor graph via a sequence of local computations at

every factor-graph node [97]. The computation rules consist

only of multiplications and additions, hence the name 'sum-

product algorithm'. The local results are passed as messages

along the edges of the factor graph. The algorithm can be used

to compute the exact function summary, as defined by (3.17),
in a factor graph that forms a tree, i.e., has no loops. But the

sum-product algorithm can also be applied to factor graphs with

cycles where it results in an iterative algorithm without a nat¬

ural termination. This makes the function summary non-exact.

But decoding of turbo codes or low-density parity-check codes

are some of the most exciting applications that reflect precisely
this situation with a factor graph having cycles. And with some

precautions, the algorithm performs very well.

To formally start the mathematical presentation of the sum-

product algorithm, we would like to make a short example

[102]. Let us consider the specific case with the real-valued

global function defined in (3.15) that may represent a condi¬

tional joint probability mass function of a collection of discrete

3.3. The Sum-Product Algorithm 47

A Ol)

/b 02)

Gathering separate product terms in thefactor graph to Figure 3.10

compute the marginal g\(x\).

random variables, given some observation y. We are then inter¬

ested in the function summary

P(xi\y) = ^Y^Y^2,g(xl,x2,x3,xi,x5) = gl(xl). (3.25)

X2 X3 X4 X5

Using the factorization given by (3.15), we derive

P(X\\y) = J]J]J]J]/a(Xi)/b(X2)/c(X1,X2,X3)/d(X3,X4)/e(X3,X5)
X2 X3 X4 X5

= /a(Xi)^/b(X2)^/c(X1,X2,X3)^/d(X3,X4)^./e(X3,X5) (3.26)

X2 X2 X4 X5

fb /e

/de

/bcde

We observe immediately that gi(xi) can be calculated by only

knowing f\ and /bcde- The latter can be computed by just

knowing fy, /c, and /de- Finally, /de can be calculated by

just knowing fy and /e- The products can be assembled in the

factor graph as shown in Fig. 3.10.

With each node in the factor graph we can now imagine an as¬

sociated processor which is capable of doing local products and

local function summaries. They may communicate together by

sending and receiving messages from neighbouring nodes. The

The meaning of

messages and

message passing

48 Chapter 3. The Probability-Propagation Algorithm

messages are whole distributions, i.e., the outcome of the func¬

tion nodes, which are passed from one factor graph node to an¬

other connected by an edge. In general, they represent discrete

probability mass functions, but also continuous probability dis¬

tributions are included in the framework. Through the message

passing behaviour, all information needed to calculate gi(xi)
becomes available at xi. Hence, the information is distributed

fully bi-directional on all branches of the network if we calcu¬

late the function summary for all variables.

3.3.1 The Sum-Product Update Rules

The sum-product The simple computational update rule of the sum-product algo-
algonthm uses very nthm can be described, in all generality, as follows [97] :

simple update rules

The message sent from a node v on an edge e is the

product of the local function at v (or the unit function

if v is a variable node) with all messages received at

v on edges other than e, summarized for the variable

associated with e.

Thus after calculating the product of all incoming messages in¬

cluding the local function, a summary function with respect to

the considered node or the variable to which the resulting mes¬

sage is sent, has to be applied.

Let us denote iiv^v, as the message sent from node v to node

w. Then, as illustrated in Fig. 3.11, two different computations
can be expressed for the update between a variable node and a

function node and vice-versa:

variable-to-function update:

ßx^f(x)= Y[lxh^x(x) (3.27)

hen(x)\{f}

function-to-variable update:

lif^x(x)=Yd\f(XnV)) fi ^/ÜO) (3-28)

~{x] \ yen(f)\{x} I

3.3. The Sum-Product Algorithm 49

n{f)\{x}

M/-*(*) -^

v_,'„(j()\{/}

TTze sum-product algorithm update rules illustrated in a

fragment ofafactor graph.

Figure 3.1 I

The set n(v) denotes the neighbours of node v, i.e., n(f) =

{x,y\,y>2, • •} and n(x) = {/,Ai,A2,• • •}• The particularly sim¬

ple form of (3.27) is due to the fact that there is no local function

to include, and the summary for x of a product of functions of

x is simply the product itself. Equation (3.28) on the other hand

generally involves complicated function multiplications and the

summary operator application afterwards.

Special cases arise when a variable node has only degree 2, i.e.,
it has only two neighbours. Then the message is just passed
on. Leaf nodes, i.e, nodes with only one neighbour send the

following messages:

and

ßx^f(x) = 1

IXf^x{x) = f(x)

(3.29)

(3.30)

respectively, where, by a slightly abused notation, 1 denotes the

unit function.

Simplified update
rules for leaf nodes

Message Passing Schedules 3.3.2

So far, we have discussed the update rules of the sum-product

algorithm in detail. So we know exactly how to calculate the

messages. But then the question of how to initiate the updates
and how to sequence the updates arises immediately. In fact,

finding the optimal update schedule with respect to the least

number of calculations is a non-trivial problem.

How should we

schedule the updates?

50 Chapter 3. The Probability-Propagation Algorithm

Initialization of the

algorithm by unit

messages

It is not clear how message passing is initiated, since a message

generally depends on messages that have been sent before. Ini¬

tially we thus suppose that a unit message is present on every

edge on any given vertex. This means that every node has sent a

unit function to all of its neighbours. With this convention, ev¬

ery node is in a position to send a message at any time starting
from its equilibrium state.

Assume a

synchronized

message passing

scheme

A second assumption is that of the synchronized message pass¬

ing schedule, i.e., we assume a discrete time signal processing
automaton synchronized with a global clock. Although this is

not necessarily the case in practical implemenations (as we will

see with the case of asynchronous analog VLSI networks de¬

scribed later on in this thesis), it is a fairly reasonable assump¬

tion that simplifies the understanding of the problem consider¬

ably. Thus only one message may be passed on any given edge
in any given direction during one clock cycle, and this message

replaces any previous message passed on that edge in any di¬

rection. We say that a vertex v has a message pending at an

edge e if the message that v can send on e is potentially differ¬

ent from the previous message sent on e. For example, variable

nodes initially have no messages pending, since they would ini¬

tially only send a unit message, and this is exactly what they are

supposed to send. On the other hand, function nodes will cre¬

ate pending messages at the beginning. In general, whenever a

message arrives at a vertex v, it will create a pending message

at every edge other than the one where the message has arrived.

Thus, a message that arrives at a leaf node will not cause any

other pending message, since there are no edges other than e.

Thus leaf nodes absorb pending messages, whereas non-leaf

nodes distribute pending messages.

Abundantly many
different update
schedules

Although we make the assumption of a synchronized automa¬

ton, there is a huge number of different message passing
schemes possible. Fortunately, this is not a limiting problem.
We only need to ensure a possible schedule to be nowhere idle

to terminate the sum-product algorithm of a cycle-free factor

graph. We call a schedule that sends at least one pending mes¬

sage at each clock tick nowhere idle. If the cycle-free factor

graph has a finite number of nodes, i.e., it is a finite tree, the

calculations of the sum-product algorithm are terminated in a

finite number of steps. This is easily unterstood if one remem¬

bers that leaf nodes absorb pending messages and that in a fi¬

nite tree every path eventually reaches a leaf. Conversely, factor

3.3. The Sum-Product Algorithm

a) b)

Two message passing schedulesfor a simple factor graph: a)
theflooding schedule and b) a two-way schedule.

graphs with cycles never have a nowhere-idle message-passing
schedule. The termination of the calculations is done in these

cases arbitrarily by truncation or by a suitable stopping rule.

The number of iterations to be performed to get satisfying re¬

sults is generally determined by simulation.

Two examples of possible message passing schedules are

shown in Fig. 3.12 where the flow of pending messages is vi¬

sualized. A pending message is shown as a dot near the given

edge, whereas the transmission of a message is indicated by
an attached arrow to the dot. Time-flow is also indicated, with

messages sent at non-negative integer times /. Figure 3.12a)
shows the so-called/7oo<i/«g schedule in which all pending mes¬

sages are sent during each clock cycle, starting with the pending

messages at function nodes. Having in mind the original factor-

graph formulation, one could equivalently say that first all vari¬

able nodes are updated and then a time step later all function

nodes are updated and so on. As there are no direct connec¬

tions between two variable nodes of an original factor graph,
the order of calculation of the different variable nodes is not

important. The same applies also to the function nodes. This

alternative formulation of the flooding scheme is not correct if

Forney's normal graphs are used. Though not optimal in the

52 Chapter 3. The Probability-Propagation Algorithm

The

forward-backward

update schedule for

trellises

The fully parallel

update schedule for

asynchronous
networks

sense of the least number of computations, it is the most sim¬

ple message passing scheme to implement in software since no

special attention has to be paid to the order of the update. As

a second example, Fig. 3.12b) shows a two-way schedule. Un¬

der this schedule we will have exactly one pending message that

passes in each direction over a given edge for all time instances.

A third update schedule that is particularly suitable for recti¬

linear factor graphs, e.g. the factor graph of a trellis, is the

forward-backward scheme. As the name already states, one

first needs to calculate in the forward direction of the rectilin¬

ear factor graph and then in the backward direction. A variable

node and a function node is updated alternately until the end

of the factor graph is reached. Then the whole process is re¬

versed for the backward direction. Note that this is independent
of the forward propagation and can be done at the same time.

The forward-backward update schedule is a special case of the

two-way schedule and uses the least possible number of cal¬

culations to build the function summary in a rectilinear factor

graph. In fact, the forward-backward update schedule is es¬

sentially equivalent to the calculations sequence of the BCJR

algorithm or forward-backward algorithm [103].

Having in mind the application of the sum-product algorithm
to the decoding of error-correcting codes using large asyn¬

chronous analog networks, none of the previously mentioned

message passing schedules is appropriate. In fact our previous

assumption of synchronicity is not met and the update schedule

can not be controlled directly. If the calculation speed of all

network nodes is equal, the scheduling scheme can be seen as

a fully bi-directional asynchronous flooding scheme. Messages
are transmitted at any time in every direction.

3.4 Probability Calculus Modules

Dissect the

sum-product
algonthm into

building blocks

In the previous sections of this chapter we have introduced the

basics of factor graphs and the sum-product algorithm which

can be run on these graphs. We have also seen in the factor

graph examples in Section 3.2.2 that the messages passed from

one node to another often have the meaning of probabilities or

probability density functions. To construct probability propaga¬
tion networks, we consider in the following building blocks as

3.4. Probability Calculus Modules 53

Pr(yù PrM

Px(x\) -

Px(xm) >

The building block ofprobability propagation networks. Figure 3.13

in Fig. 3.13. The building blocks compute a discrete probability
mass function pz from the discrete probability mass functions

px and py as follows: let X, %, and Z be finite sets. Let px

and py be the input probability mass functions defined on the

sets (alphabets) X and %, respectively. Let pz be the output

probability mass function on Z defined by

pz(z) = yJ2 L/tfto/rOO/C*,:^), Vz e Z, (3.31)

where / is a function from X x y, x Z into {0,1} and where y is

an appropriate scale factor that does not depend on z. The scale

factor y is mathematically required to yield a probability distri¬

bution pz(z) at the output whose sum is Y,i Pz(?i) = 1- Equa¬
tion (3.31) can be identified as the function-to-variable update
of the sum-product algorithm as defined by (3.28). This pro¬

cessing step is used to build summary functions or marginals as

defined by (3.17). Note that compared to the notation of (3.28),
the different terms of (3.31) are slightly rearranged.

The {0,1}-valued functions / can be illustrated by trellis mod¬

ules as in Fig. 2.6, the inset in Fig. 3.7 and Fig. 3.14. Such a

trellis module is a bipartite graph with labeled edges as intro¬

duced in Section 2.1.5. The set of left-hand vertices is X, the

set of right-hand vertices is Z, and an edge between x e X and

z e Z with label >> e % exists if and only if f(x,y,z) = 1. Con¬

versely, the trellis module uniquely defines /. In the context

of coding theory, the binary indicator functions / are known

as local indicator functions of the factorized global code mem¬

bership indicator functions as we have seen in the factor graph

examples in Section 3.2.2.

,/%
Ax,y,z)

Pz(zi)

Pz(zk)

Indicator function /
represented by trellis

diagrams

Chapter 3. The Probability-Propagation Algorithm

-•1

-•0

y

a)

y

b)

y

c)

14 Trellis representations ofa) the equal gate, b) soft-XOR gate,
and c) the backward reasoning on a soft-AND gate.

Soft-Logic Gates

Equal Gate

In Section 3.2.1, we encountered the 'equal' function to allow

node splitting. We will now have a closer look at this special
function. The function f(x,y,z) for this particular case is equal
to 1 if and only if x = y = z and f(x,y,z) = 0 otherwise. The

corresponding trellis module is shown in Fig. 3.14(a). The in¬

dicator function / can be substituted in (3.31) to calculate the

probability formulation ofthe output distribution which is given

by

Pz(P)

PzO)
Y

Px(0)pY(0)

Px(\)Py(\)
(3.32)

where y is a scale factor to satisfy />z (0) + />z (1) = 1
•
Thus the

computations of the equal gate reduce to the component-wise

product of px and py. Such computations appear whenever in¬

dependent information of some random variables is combined.

Soft-XOR Gate

Another common function / is defined as f(x,y,z) = 1 if and

only if z = x © y with © denoting the standard modulo-2 ad¬

dition and f(x,y,z) = 0 otherwise. The corresponding trellis

diagram is depicted in Fig. 3.14b). With this function / the

module of Fig. 3.13 becomes a soft-XOR gate: if px and py are

the distributions of two independent binary random variables X

and Y, respectively, then the distribution ofX© Y is pz given

3.4. Probability Calculus Modules 55

by

Pz(P)

PzO)

Px(0)Py(0) + Px(1)Py(1)

Px(0)Py(1) + Px(1)Py(0)
(3.33)

Soft-AND Gate in Backward Direction

As a generalization of the soft-XOR gate, "soft" versions of all

standard logic gates can be constructed by a suitable choice of

/. But not only the standard forward-functioning direction of

logic gates can be considered. Recall that soft-logic versions

of factor graph nodes work fully bi-directionally. Thus, back¬

ward reasoning, i.e, from one of the inputs and the output to

the other input, is possible, too. For example assume the logic
AND function with inputs y and z and output x in the back¬

ward direction from x and y to z which is shown by the trel¬

lis diagram of Fig. 3.14(c). If we substitute the corresponding
characteristic indicator function / into (3.31) we get

Pz(0)

PzO)
Y

Px(0)py(0) + Px(0)py(1)

Px(0)py(0) + Px(1)Py(1)
(3.34)

where again y is needed to ensure a probability distribution pz

at the output. This module is very unlikely to occur in coding,
but would naturally appear in many applications of Bayesian
networks.

Backward-reasoning
on soft-logic gates is

also possible

Building Blocks with Multiple Inputs 3.4.2

The building block of Fig. 3.13 takes two input probability dis¬

tributions and calculates one output probability distribution. In

general however, factor graph nodes have a degree of more

than three, which implies that building blocks with more than

two inputs are needed. This is not an actual problem, since

every building block with more than two input distributions

can be dissected into a cascade of two-input building blocks as

shown in Fig. 3.15b). This approach is also consistent with For¬

ney's definition of normal graphs [99] where internal degree-
2 variable nodes do not modify the messages from the in¬

coming branch to the outgoing branch and can therefore be

omitted from the drawing. Alternatively to the partitioning of

Dissection property

using Forney's
normal graphs

56 Chapter 3. The Probability-Propagation Algorithm

2\
i

/',
n-\

^

4
5 n-\

a) b)

c)

Figure 3.15 A factor graph representation ofthe dissection property of

building blocks with n-inputprobability distributions to make

them compatible to 2-input building blocks ofFig. 3.13. The

figure shows a) an n-input block, b) a cascade structure, and

c) a tree structure. State nodes are intentionally omitted

(see [99]).

Fig. 3.15b), we might draw a tree structure which is an inter¬

esting option from the point of view of the signal delays. Be¬

cause every processing node adds some delay due to parasitic
effects in the transistor circuits we want to implement, the dis¬

section solution of Fig. 3.15b) adds much more delay from port
1 to port n than to a port in the middle of the cascade, than the

structure of Fig. 3.15c). By applying a tree structure the delay
from one port to any other port is partly equalized.

Fully bi-directional

building blocks can

be constructed

Fully bidirectional factor graph calculation nodes for probabil¬

ity propagation networks can be constructed by using building
blocks as in Fig. 3.13. To optimize the number of operations, in¬

termediate results from certain building blocks may be reused.

As an example we look at a soft-XOR gate of degree 4, i.e., a

soft-XOR gate with four neighbours as shown in Fig. 3.16b).

3.4. Probability Calculus Modules 57

input 1

output

input 3

output

a) b)

A fully bidirectionalfactor graph node ofa soft-XOR gate

implemented using 2-input building blocks: a) factor graph
node and b) calculations implemented using 2-input building

blocks. The inputs and outputs denote the incoming and

outgoing messages (probability distributions), respectively

Figure 3.16

The actual transistor level implementation of the building
blocks in Fig. 3.13 is described in the following chapter. There

we explore how a schematic of an actual probability gate can

directly be generated by simply knowing its corresponding in¬

dicator function /.

58 Chapter 3. The Probability-Propagation Algorithm

Chapter 4

Circuit Implementation

In Chapter 3 we learnt how to build a factor graph description
of a given code, and how to augment it into the factor-graph

description of a decoder, on which the sum-product algorithm
can be applied to find a symbol-wise MAP solution of the de¬

coding problem. Now we will present a generic solution for the

transistor-level implementation of these building blocks. Fur¬

thermore, practical design aspects and design issues are dis¬

cussed.

Basic Circuit 4.1

The underlying equations of the general building block of

Fig. 3.13 can be separated into two main computational parts:

first, component-wise products of the incoming discrete proba¬

bility distributions have to be built. Second, product terms that

belong to the valid configurations, i.e., fulfill the binary indi¬

cator function /, are summed for the appropriate terms of the

discrete output probability distribution.

Main operations of

the building blocks

multiplication and

summation

Signal Summation 4.1.1

Summing signals is easily accomplished in the current domain,

i.e., when signals are represented by currents. This is due to

Kirchhoff's current summation law, which states that the sum

of all currents along the incoming branches to a given node is

equal to the sum of all currents of the outgoing branches. If

only one outgoing branch exists, it automatically carries the

sum current of all incoming branches. This means that current

summation is simply done by connecting wires. As in the trel¬

lis diagram, the selective sum needed for the implementation of

Summation is easy in

current domain

60 Chapter 4. Circuit Implementation

(3.31) can be built connecting the appropriate wires (terms) of

the pair-wise products. Doing the same operation in the voltage
domain would definitively need more circuitry. Most of the tra¬

ditional voltage-adder circuits, such as for example the opamp

based voltage adders (see e.g. [104]), are anyway based on the

principle of current addition, but additionally they need domain

transformation from voltage to current and back. Furthermore,
also the discrete-time switched capacitor (SC) adders are not di¬

rect voltage adders. The voltage signals applied to SC circuits

are inherently transformed to a charge representation on the ca¬

pacitors. Hence, the addition is based on a charge transfer from

one capacitor to another, and finally the charges are inherently
transformed back to a voltage. A comprehensive overview of

the general SC techniques can be found in [43,44]. Note that

the SC-based circuits are not anymore continous-time, asyn¬

chronous circuits and thus not suitable for our intended asyn¬

chronous networks. But still, this principle is extensively used

in SC filter circuits.

4.1.2 Basic Translinear Network Theory

The term 'translinear' Building the outer products ofthe incoming discrete probability
was coined by Bame distributions is a more complex task than doing the summation

1 ert in
of currents. But luckily, Gilbert coined the term translinear net¬

work in 1975 [105]. This thinking style is also current-based

and thus fits well to our extremely efficient current addition

primitives described in the previous subsection. The translin¬

ear networks (TN) are based on an astonishingly simple the¬

ory [106,107]. The heart of translinear networks are bipolar

junction transistors (BJT). These transistors exhibit an expo¬

nential characteristic of the collector current in forward active

mode according to

Ic = AEJs(T)eVBE/"UT = /s(Z,)/be/"c/t, (4.1)

where AE is the emitter area, J$ is the saturation current den¬

sity, and Is is the saturation current. The absolute temperature
is T and Uj denotes the thermal voltage kT/q. The factor n is

the 'emission coefficient', an indicator of imperfect emission of

electrons, generally close to unity. We use the standard notation

for the transistor terminals (see e.g. [108,109]). A similar char¬

acteristic can be found for the drain current of a weakly inverted

4.1. Basic Circuit 61

MOS transistor with

ID = —J0(T)e(VG-nVs)/nUT = Io^e(VG-nVsVnUT^ (4 2)

where W and L are the width and the length of the transistor,

respectively, Jo is a specific current density comparable to the

one in the BJT case, and Iq is the corresponding specific cur¬

rent. The slope factor n falls in the range of [1... 2], generally
close to 1.5. Note that the mechanisms leading to n in the case

of a bipolar transistor and a MOS transistor are not the same,

although the effects thereof are comparable.

With these definitions in mind, we assume the circuit configu¬
ration of Fig. 4.1. Furthermore, we assume that all transistors

have identical geometric dimensions. According to the translin¬

ear theory, we can form a closed loop of an even number N

of base-emitter junctions (gate-source steps), 7V/2 in each di¬

rection (clock-wise (CW) and counter-clock-wise (CCW)) and

arbitrarily ordered. According to Kirchhoff's voltage law, we

write

£>BE,= £FBE,. (4.3)

Kirchhoff's voltage
law applied to a

special arrangement
of transistors

CW CCW

Inserting (4.1) into (4.3) leads to the conclusion that the voltage
sum over all Fbe, corresponds to the product of the collector

currents Iq, normalized to 7s, :

A voltage sum

corresponds to

current

multiplications

CW ' CCW '

(4.4)

This result is totally independent of the temparature T and (at
least on the level of principle) also independent of the current

gain ß of the transistors. Several distinct loops may share some

of their base-emitterjunctions. The results, as presented for the

bipolar case, are also fully valid for weakly inverted MOS tran¬

sistors [110]. The generalized translinear principle for quadrat-

ically behaving MOS devices leads to somewhat different, but

also very useful expressions [111-113]. The MOS translinear

principle expresses that the sum of the square-rooted currents

from the clock-wise oriented transistors equals that of the op¬

posite direction.

The translinear

principle is also valid

in MOS technology

62 Chapter 4. Circuit Implementation

Figure 4.1 A simple translinear loop.

4.1.3 Core Circuit for Matrix Multiplications

A transistor matrix

inspired by the

translinear principle

Using (4.4), it is relatively easy to construct a circuit that cre¬

ates pair-wise products of two incoming probability distribu¬

tions. The fundamental circuit that underlies the realization of

all the building blocks is shown in Fig. 4.2. Its inputs are the

currents/*,,, / = 1,2,...,m and the currents Iyj, j = 1,2,...,«.
Its outputs are the currents IU1. All transistors in Fig. 4.2 are as¬

sumed to be ideal voltage-controlled current sources according
to (4.1) and (4.2) for BJT and weakly inverted MOS transistors,

respectively. Our terminology and notation correspond in the

following to the weakly inverted MOS case. As we will see

later in this section, the function of the circuit is then given by

/,
>,j Wx./IxWyJIy) (4.5)

i h,j >
and Iz =

computes the

with ix 4 £r=i'*,.> iy 4 Y?r_
T7=iT"=ih,j = Ix. The circuit thus

scaled pairwise product of the two probability mass func¬

tions px(i) = Ix,i/Ix, i = l,...,m, and pY(j) - Jy,j/Jy
J = 1,...,«.

Matnx multiplication
for two discrete

probability
distributions

The application of the circuit of Fig. 4.2 to the computation
of (3.31) is now straightforward. Let X = {x\,...,xm} and

y, = {yi,...,y„}. The input terminals of the circuit are fed

with the currents IXyl = Ixpx(x,) and Iyj = Iypyiyj), respec¬

tively, where the sum currents Ix and Iy can be chosen freely
in the range where (4.1) and (4.2) hold for all transistors in the

4.1. Basic Circuit 63

1y\

Ft

Ti:
xl à

i

X.
xm A

Fundamental circuit using two input distributions, each Figure 4.2

represented as a current vector

ly\

o-*-

fi:
xl ,Jj

X.

X.

Fundamental circuit with (n — \)m independent translinear Figure 4.3

loops Two ofthe loops are shown by the dashedpolygons

64 Chapter 4. Circuit Implementation

circuit. The output currents then equal IU} = Izpx{xi)PY(yj),
i = \,...,m, j = \,...,n.

The computation of (3.31) is completed by summing the cur¬

rents I,j for each z e Z for which f{xl,y],z) = 1. If a term

Px(x,)pY(yj) is used more than once, the corresponding cur¬

rent I,j must first be copied a corresponding number of times.

Translinear Network Interpretation

The circuit may be analyzed by first drawing all (n — Y)m in¬

dependent translinear loops in the circuit of Fig. 4.3 and writ¬

ing down the corresponding loop equations. Second, the con¬

straints on the three sum-currents of the individual distribu¬

tions can also be stated immediately. Finally, the system of

(n — \)m + 3 equations can be brought to the form of (4.5).

Standard Large-Signal Analysis

Large-signal proof of The result of (4.5) may also be verified by standard large-signal
the basic function analysis as given in the following proof using the first order

approximations ofthe drain (or collector) current givenby (4.2)
and (4.1), respectively.

Proof of (4.5): Let Vx,, and Vyj denote the potentials at the

input terminals for IXyl and Iyj, respectively. On the one hand,

we have

(4.6a)7^ =WE^
lx>'

t=\

vyj-nVx,,
"

yy,i-nyx,,
= he "ut /2_,he bC/t (4.6b)

Im. A hA.
— enUT j \enUT _ (4.6C)

1= 1

4.1. Basic Circuit 65

The principle ofa log-domain signalprocessor. Figure 4.4

On the other hand, we have

(4.7a)

vy,j-"vief
"

vy,l-"vief

I0e "ut l\^he nUj

i=i

(4.7b)

Im. A hA.

1=1

(4.7c)

Combining (4.6c) and (4.7c) finally yields (4.5). D

Log-Domain Signal Processing Interpretation

A third interpretation of the circuit functioning of Fig. 4.2 can

be given by the log-domain signal processing concept. In this

technique, the input signals are compressed by the logarithm
function, then the actual processing task is fulfilled in the com¬

pressed signal domain and finally the signal is again expanded

by the inverse function (exponentiation) as shown in Fig. 4.4.

This concept was first introduced by Adams in 1979 [114] to

achieve electronic gain and cut-off frequency control in fil¬

ters. It was afterwards extensively developed by different re¬

searchers [115-118] in its main application field of filtering.

Log-domain signal processing is also very attractive for low-

power and low-voltage applications [119,120]. The main as¬

pects of log-domain signal processors (or generally speaking:

companding signal processors) are low-voltage operation, en¬

hanced dynamic range and high-frequency operation. Further¬

more, filters exhibit a wide frequency tuning range. The is¬

sues of companding signal-processors such as signal-dependent
noise, distortions due to device mismatch, intermodulation pro¬

duction by interference and increased bandwidth requirements

66 Chapter 4. Circuit Implementation

are mainly a problem in linear circuits. Non-linear processors

such as decoders are much more robust against these problems.

4.1.4 Log-Likelihood Interpretation of Input and

Output Distributions

Log-likelihood ratios

appear between the

gate voltages of the

diode-connected

transistors

The circuit of Fig. 4.2 can be operated differently, if we omit

the input diode-connected logarithm transistors on the left¬

most column as in Fig. 4.5. Instead of using the input currents

Iy,i — lyPY (yt) we apply the voltages equivalent to the different

gate voltages Vy,, =nUjln[pY(y,)] -

voltage difference

- const. If we consider the

VyyA-
V,

y,n -nUT(ln[pY(yi)] -ln[pY(y„)]) = nUjln
Priyi)

pr(yn)
(4.8)

we immediately recognize the log-likelihood ratio representa¬
tion of inputs 1 and«. Through the thermal voltage Uj, this log-
likelihood-ratio representation by (n — 1) voltage differences is

temperature dependent. The representation is equivalent to the

probability representation by n currents if we know exactly the

absolute temperature T (see Section 4.4.4 for a detailed analysis
ofthe temperature dependence). In principle, we can thus freely
choose the input representation of pY. By the same means of

a battery of diode-connected transistors, the input and output

probability distribution px and pz, respectively, can be trans¬

formed into a log-likelihood-ratio representation.

4.2 Soft-Logic Gates and Trellis Modules

Main pitfalls appear

already in very

simple modules

Butterfly trellis is

visible in the circuit

diagram

We will now recall the examples of Section 3.4.1 and construct

the corresponding circuit diagrams. In many ways, they exhibit

the main problems that may arise during the construction of

such trellis modules. We will discuss these issues during the

presentation of the individual examples.

Soft-XOR gate. Let us start with the most simple module, the

soft-XOR gate. It can be drawn directly using its butterfly trellis

section that has been derived from its binary indicator function

/. This circuit module is shown in Fig. 4.6. Like all modules

4.2. Soft-Logic Gates and Trellis Modules 67

x o-

s
II

> K,

ry,i

L

T ? /
9

X.

V

The generic multiplication matrix with voltage inputsfor the Figure 4.5

Py distribution representing log-likelihood ratios.

with binary input distributions, it consists of 6 core transistors

forming the multiplication matrix and its characteristic connec¬

tion pattern of the trellis. In fact the trellis pattern will be di¬

rectly visible on silicon if the devices are properly arranged.
This fact may be helpful in order to create automatic tools for

generating such building blocks in a chip-design environment.

All product terms are used to build the output probability dis¬

tribution pz. The output terms are mirrored by the current mir¬

rors on top of the kernel circuit. The input currents IXyl are

also passed through an input current mirror. By doing this, the

module gets freely cascadable by simply connecting the output
current vector Iz to one of the input current vectors Ix and Iy,
respectively, of the next circuit section. This method marks the

most simple way of interconnection of several building blocks.

Note also that all the current mirrors may equally well oper¬

ate in the strong inversion region of MOS transistors, thereby

having a standard quadratic behaviour.

By defining a proper data representation (different from our

probability mass functions), the soft-XOR circuit can be iden¬

tified as a version of the so-called Gilbert multiplier [121] for

two real-valued differential inputs. But in Gilbert-multipliers,

Soft-XOR gate is a

version of the Gilbert

multiplier

68 Chapter 4. Circuit Implementation

l2p(z=0)°

IyP(y=0)°

IxP(x=0)o

oI2p(z=l)

°I p(y=l)

4X*=1)

Figure 4.6 Transistor-level implementation ofthe soft-XOR building
block.

Other multiplier
implementations exist

Dummy paths need a

proper termination

the inherent scaling of the output signal by the sum of the cur¬

rent inputs 7X;, is generally not wanted. Furthermore, the output
values are limited to this current sum which limits the appli¬
cation of the Gilbert multiplier for general-purpose real-value

multiplications even more.

Beside the Gilbert multiplier [121], many other forms of solid-

state multipliers have been developed since. Some of them

rely on cross-coupled transistor pairs both in MOS and bipo¬
lar technology [122-124], but also different approaches exist

such as the quadratic-translinear principle [125], the quarter-

square principle [126, 127] and floating-gate MOSFET tech¬

niques [128,129]. But none of them reaches the outstanding

simplicity of doing a multiplication matrix with only one tran¬

sistor per multiplication. Thus, it is hard to see such bulky mul¬

tiplier circuits in very large analog probability propagation net¬

works where thousands if not even millions of such multipliers
are needed.

Equal gate. The second example is identical to the previous

example, except for the two special signal paths that attract our

attention. The two outputs of the transistors in the middle of

4.2. Soft-Logic Gates and Trellis Modules 69

I,P(*=0)°-

IyP(y=0)o

IxP(x=0)o

°I,p(z=l)

°Iyp(y=l)

Ixp(x=l)

Transistor-level implementation ofthe equal gate building Figure 4.7

block.

the circuit diagram of Fig. 4.7 are not used for the computa¬
tion of the output distribution of the equal gate. Thus they rep¬

resent dummy paths. They are terminated in order to ensure

the correct operation of the two transistors of the kernel circuit.

In practical circuits, one tries to keep the drain voltage levels

of the output transistors of the computation kernel at the same

level. This reduces the effect of the finite output resistance of

these transistors which is largely drain-voltage dependent. One

possible solution could be to pass the dummy currents through
a diode-connected p-type transistor as in the input section of

a current mirror. Through its heavy compression, the voltage

swing is kept minimal at this point. A more effective, but also

costly solution in terms of circuit overhead would be the addi¬

tion of cascode stages for each output transistor of the kernel.

Let us come back to the dummy product terms. The corre¬

sponding transistors cannot simply be omitted because for a

correct operation, the multiplication matrix has always to en¬

close allnm transistors. By omitting certain transistors in the

multiplication matrix, the input distributions would be changed

by building them only on a subset ofthe terms. The observation

that all product terms have to be present in the multiplication

Asymmetric trellis

diagrams have to be

expanded for

a clean circuit

implementation

70 Chapter 4. Circuit Implementation

»1

»dummy

»0

x y z x y z

a) b)

Figure 4.8 Trellis expansion operation for a correct circuit

implementation. Fig. a) shows the original trellis ofthe equal

gate and b) the expanded trellis ofthe same gate, readyfor
transistor implementation.

matrix can also be illustrated on the trellis diagram level of the

binary indicator function /. At every left state of the incoming
distribution pz, branches for every incoming symbol ofy have

to be drawn. Valid configurations, i.e., branches actually drawn

in the final trellis diagram, lead to the right states, whereas non-

valid configurations lead to some dummy right state. Exactly
these branches leading to the dummy state represent the dummy

paths that are afterwards present in the circuits. As a general
statement we can say that every state of the trellis diagram has

to carry the same number and the same type of the outgoing
branches to enable the correct circuit implementation. This ex¬

pansion, sometimes necessary for a circuit implementation, is

shown schematically in Fig. 4.8 for the equal gate.

Backward reasoning AND gate backwards. In our third example, the backward rea-

through logic gates soning of a soft-AND gate, we encounter again a speciality. As

already shown in the trellis diagram of Fig. 3.14c), the product
term px(®)Py(®) is used twice. Compared to a voltage dupli¬
cation, current duplicates are not for free. Thus instead of first

adding product terms according to the binary indicator function

/, we first have to copy the currents of the individual product
terms by means of a current mirror and build the sum only af¬

terwards. The product term px(l)py (0) is not used at all in this

case. This leads to the circuit implementation of Fig. 4.9.

4.2. Soft-Logic Gates and Trellis Modules 71

l,p(z=0)°-

IyP(y=0)<y-

IxP(x=0)c

}>M

-* •—

H

HH

ljivj

K

wÎ

-m *-

H

-oI2p(z=l)

-oIyp(y=l)

-~oIxp(x=l)

Transistor-level implementation ofthe backward reasoning of
anAND gate building block, i.e., from one input and the output

back to the other input ofthe AND gate.

Figure 4.9

72 Chapter 4. Circuit Implementation

Any trelhs diagram General Trellis Diagrams. The implementation of a general
can be implemented trellis diagram is straightforward if one thinks of the previous

three examples. All the ingredients necessary for the circuit

implementation are presented therein. For a trellis module with

n and m elements of the incoming probability distribution, an

nxm transistor matrix is drawn. Additionally, for the distribu¬

tion py ,
n diode-connected transistors are drawn and connected

to the matrix according to Fig. 4.2 for current inputs. If the log-
likelihood representation is chosen, these transistors are omit¬

ted. The inputs for px are completed by current mirrors and the

outcoming product terms of the transistor matrix are then con¬

nected according to the trellis diagram. Unused product terms

are connected to a dummy node. Finally, for each term of the

output distribution pz, a current mirror can be added to allow

cascading the module directly with other modules.

4.3 Connecting Building Blocks

In order to build large probability propagation networks, many

building blocks have to be cascaded. Since the input and output

signals can be represented by current vectors or voltage vectors,

many different possibilities for cascading single stages may be

considered. The easiest solution has already been shown in the

examples of Section 4.2. Solutions different from the one previ¬

ously shown are presented in the following. Another issue may

be the current loss by unused product terms of the multiplica¬
tion matrix. If many stages are cascaded, the currents may tend

to zero and vanish in the noise floor of the electronic circuit.

Therefore, the current levels have to be brought to a reasonable

level from time to time. Solutions to that problem are presented
in the Section 4.3.3

Current- or Voltage-Mode Connections?

The debate between voltage-mode adherents and current-mode

supporters is going on for already a few years. Both of them

think that their thinking-style is the most appropriate for high-

performance integrated-circuit design. But in our opinion, it

does not matter whether one wishes to implement a voltage

Large networks need

the connection of

many building blocks

4.3.1

Ongoing debate

voltage mode vs

current mode

4.3. Connecting Building Blocks 73

1y\ O-

Current Mirrors

n

Current Mirrors

ly2 0-

Current Mirrors "Of

n

Current Mirrors

Interconnection ofseveral modules by simple current mirrors. Figure 4.10

mode circuit or a current-mode circuit. It is much more im¬

portant whether the circuit fits in the overall system or not.

It is even shown in [42] that no fundamental difference exists

between the two domains. Thus we will look at the question
of choosing voltage-mode or current-mode interconnects only
with respect to the best fit in the complete system.

As we have already seen in Section 4.2, the most simple solu¬

tion for cascading our basic building blocks is to pull out the

currents at the output by simple current mirrors and feed them

directly to the input of the following building block. This in¬

troduces the least circuit overhead in terms of transistor count.

Extra transistors can be added to the current mirrors to dupli¬
cate the currents several times if they are needed. By doing this,

no superfluous domain-changes have to be made. One module

just smoothly connects to another as is shown in Fig. 4.10.

Connecting building
blocks is most simple
with current mirrors

In the eyes of traditional IC-designers, this whole circuit is a

real nightmare. Generally, they argue that there exist paths that

may have probablity values of zero, thus conduct almost no cur¬

rent, and therefore are infinitely slow. Their solution would be

to add bias current-sources to turn the whole circuit into a full

class-A circuit. If we keep in mind the application field of our

circuits, this would add a non-tolerable overhead to large net¬

works of our building blocks. Fortunately, such a traditional

design approach is not needed in our case. We can even argue

intuitively that the large currents, i.e., the large probabilities,
determine the transient behaviour of our circuits mostly, as is

the case with digital simulations. Small currents (or probabil¬

ities) are not negligible, but far less important in the case of

decoding.

The building blocks

may be analyzed with

non-traditional

approaches

74 Chapter 4. Circuit Implementation

-W-

v

yA
' core

transistor 2
matrix

core

transistor \
matrix

Figure 4.1 I

Uii

KK

<Jh
©

-w-

core

transistor 2
matrix

core

transistor \
matrix

Fz,l

Interconnection ofseveral modules by level-shifter circuits as

described byMoerz et al. [70].

Voltage-mode
connections are also

possible

One can think of voltage-mode circuits as interconnects be¬

tween voltage output modules and voltage input modules. In

this case we save one connection because of the definition of

the log-likelihood ratios of (4.8). The actual voltage-mode con¬

nection is established by level-shifters. The most simple im¬

plementation of such a level-shifter would be a source-follower

circuit (see e.g. [130]). Unfortunately, the outputs of the source

followers cannot be connected directly to the inputs of the fol¬

lowing stage. Additional domain transformations have to be

added by means of long-tailed pairs operating in the linear re¬

gion and a linear back-transformation to voltage mode. In con¬

trast to the actual computation circuit, the interconnection cir¬

cuits are then fully class-A. Moerz et al. [70] have chosen this

approach in their chip implementation as shown in Fig. 4.11.

The diode-connected transistors in the interconnect circuit are

designed to work in the linear region and act as resistors. Note

also that the circuit has to be designed with transistors larger
than minimum size to obtain the desired performance. The in¬

terconnect circuit works well for small alphabet sizes of the

input distributions but is a potential source of severe signal er¬

rors due to the many domain changes. A careful design will

eliminate these problems, but at the cost of a larger circuit area.

Additionally, the voltage-mode connections suffer from inher-

4.3. Connecting Building Blocks 75

Current Mirror

1yL OH

1y\ OH

n

n

CunentMmor

Stacking several core circuits to get more than two input Figure 4.12

distributionsfor one building block.

ent temperature tracking problems as we will discuss in Sec¬

tion 4.4.4.

Stacking and Folding Building Blocks 4.3.2

Beside simply cascading building blocks by current mirrors,
there exist two other schemes which may save transistors un¬

der certain circumstances. As a first possibility, circuit modules

may be stacked. This avoids the use of additional current mir¬

rors. The number of stacked modules is thereby strictly limited

by the available headroom left by the supply voltage. Generally,
the stacking technique is not possible for low-voltage applica¬
tions, i.e., below 5 V, using state-of-the-art silicon technologies.

Apart from the area savings, the main advantage of stacking is

a reduced power consumption. The current mirror sequence for

a whole discrete probability distribution represents a dummy

path in the sense that the vertical current through that path does

not contribute to the actual computation. By omitting as many

of these paths as possible, the total power consumption may be

drastically reduced.

Stacking circuits for

multiple-input
building blocks

A second solution to the unwanted vertical current dissipa¬
tion problem is creating folded building blocks as shown in

Folding reduces the

current-mirror count

76 Chapter 4. Circuit Implementation

Current Mirrors

-type n

«-type Y\

Current Mirrors Current Mirrors /„

Figure 4.13 Folding n-type and p-type building blocks saves halfofthe

current mirrors.

Fig. 4.13. Hereby, the outputs of a first, normal «-type mod¬

ule, i.e., a module with «-type transistors, are passed by current

mirrors to a second, /»-type module. A /»-type module is just
built by exchanging all «-type transistors by /»-type transistors.

From its appearance point of view, it may also be called the

'head-over' version of the building block. By cascading folded

versions of the building block, half of the current mirrors are

saved. Additionally, no superfluous vertical currents are flow¬

ing. Unfortunately, this interconnecting technique is not suit¬

able for BiCMOS technology, since generally no good-quality
vertical BJTs are available. A second drawback of this folding

technique is its heavy use of /»-type MOS transistors which are

by a factor of about 3 larger than their «-type counterparts (due
to slower mobility of holes, etc.). This makes /»-type circuits

considerably larger than «-type circuits.

4.3.3 Scaling Probabilities

Underflows in data

representation may
occur in the

sum-product

algorithm

The second issue in interconnecting many building blocks, be¬

sides choosing the right topology, is induced by the current loss

of unused product terms. The problem is inherent to the sum-

product algorithm, since the multiplication of a huge number of

positive real values below unity tends towards zero. Thus one

has to pay attention to underflows in data representation even

in digital floating-point implementations. This issue is gener¬

ally resolved by scaling up the terms of the discrete probability
distributions from time to time to values acceptable in the data

representation.

4.3. Connecting Building Blocks 77

m,l

£

dx

A vector normahzer circuit according to Gilbert [131]. Figure 4.14

In analog implementations of large probability propagation net¬

works, the fading problem of the probability values is even

more pronounced. The noise floor of the electronic circuits puts

a lower limit on the minimal currents representing the signals
in analog electronic systems. As a rule of thumb, current-signal
levels should not fall below a few 10~13 A. This limit is about

in the same region where the exponential law of (4.1) and (4.2)
is not valid anymore. So the probability mass functions repre¬

sented by current vectors have to be scaled up electronically.
In [131] Gilbert has presented an array-normahzer circuit that

implements exactly the needed scaling function. The circuit of

Fig. 4.14 can easily be explained by using the translinear prin¬

ciple [107].

The scaling circuit of Fig. 4.14 is actually a degenerate version

of the fundamental circuit of Fig. 4.2 with m = 1 and 7X;i fixed

to some constant current. Its function is given by

Signals may fade into

the noise floor

Very efficient scaling
circuit

^outj
— ^refAnj/ / ,-hml- (4.9)

i=\

The scaling operation can be integrated into the building blocks.

Whether it is at the output of the current module (Fig. 4.15a) or

at the input of the next stage (Fig. 4.15b) does not matter at first

glance. Scaling at the output has the advantage that small cur¬

rents are brought back to a nominal level immediately after the

block that caused the current loss and therefore speeds up the

Adding scaling
circuits at the output

eliminates current

fading

Chapter 4. Circuit Implementation

Scaling circuits with a) scaling at the output and b) scaling at

the input.

overall network. Unfortunately, BiCMOS technologies gener¬

ally provide fast vertical NPN transisitors and only relatively
slow lateral PNP transistors, which would have to be used for

the scaling circuits located at the output of a module. Thus, for

practical reasons, scaling in high-speed circuits using BiCMOS

technology will mainly be accomplished in the input stage of

the following module as in Fig. 4.15b). An example of a mod¬

ule with scaling at the output is shown in Fig. 4.16. For this

we have retaken the equal gate of Fig. 4.7 and added a scaling
circuit using weakly inverted pMOS transistors.

By adding current mirrors at the outputs, the scaling circuit can

even be expanded into a building block of its own. This so¬

lution is better suited for low-voltage implementations, since

only three transistors are stacked in any given module. But this

is at the cost of increased power consumption, since additional

modules are introduced. In many applications, scaling after ev¬

ery module is not necessary. It suffices to scale only after every

third or fourth module, or even later. But this is highly appli¬
cation specific and has to be investigated for every considered

case or code.

4.4. Implementation Issues 79

Lp(z=0)o— 1

M

iyp(y=0)°

lxp(x=0)o

M

L?i U

! ^3/ />(*=!)

o/yi?0=l)

°IxP(x=l)

The equal gate circuit ofFig. 4.7 with scaled-up outputs. Figure 4.16

Implementation Issues 4.4

Both simulations and physical implementations of our decoding
networks have shown a high immunity against non-ideal circuit

behaviour. The decoder of Fig. 5.3, which we will discuss in

Chapter 5, has been implemented using discrete BJT transistors

out ofthe box, i.e., without any preliminary matching selection.

Nevertheless the overall precision for this decoding network is

within 5% of the theoretical values. This result should give a

first impression of the robustness of the new technique. In the

following subsection, we will give deeper insight into several

non-ideal effects that may occur during physical implementa¬
tion of the proposed analog probability propagation networks,
such as device matching, temperature matching, and finite input
resistance and output conductance of the transistors. Appropri¬
ate countermeasures against these effects are given if available.

Several problems
arise in an actual

implementation of a

probability-
propagation

network

80 Chapter 4. Circuit Implementation

4.4.1 Device Matching Considerations

Mismatch of transistors usually affects the functionality of ana¬

log circuits more than digital ones. Correct operation can often

only be guaranteed by choosing large device sizes, which slows

down the operation speed of the circuit. Fortunately, systems

following the bio-inpired design style [11] seem to possess one

big advantage over conventional analog systems: precision is

gained on the system level by a parallelization of many compu¬

tational units which are not inherently precise by themselves.

In such systems, small device sizes do not degrade the overall

precision significantly, which makes high-speed operation pos¬

sible.

In a first attempt, we try to quantify the correspondence be¬

tween errors in the probability representation (current domain)
and the errors in the log-likelihood representation (voltage do¬

main). To do this we recall the collector current equation (4.1)
of a single bipolar junction transistor. A relative collector cur¬

rent error e is introduced. Through some mathematical oper¬

ations, this error on the left-hand side of (4.10) is then prop¬

agated until its influence on the input base-emitter voltage is

visible:

/c(l + e)=(Vc/T J.(l+e) (4.10)

= /0e7^-eln(1+£)
FBE+C/Tln(l+e)

= he ui (4.11)

VBE+UTe

fvl0e ui
, (4.12)

where (4.12) has been derived from (4.11) by using the Tay¬
lor approximation ln(l + e) «a e for small e. This approxima¬
tion actually over-estimates the influence of relative current er¬

rors on the the base-emitter voltage for larger e. We observe

in (4.12) that relative errors e in the collector currents can be

equivalently expressed as absolute errors on VBE. If we assume

a voltage swing of A VBE = 300 mV corresponding to a usable

current of about 5 decades (actually A Fbe = 60 mV/dec in the

case of BJTs), we can put the absolute error on Fbe in rela¬

tion to the total swing. For example, given a relative collector

current error e = 10%, which results in a voltage error 5 Fbe of

about 2.59 mV, this ratio is then 300/2.59 = 116. This corre-

In bio-inspired
circuits, precision is

gained on system
level

Quantification of the

current errors of a

single bipolar
transistor

4.4. Implementation Issues 81

sponds to an equivalent resolution of Fee of about 7 bits. Ta¬

ble 4.1 summarizes the relationship between the dynamic range

of the circuit and the achievable resolution at the voltage level

(log-likelihood ratios) for a given allowed collector current er¬

ror e. Exactly the same results are obtained if a MOS tran¬

sistor in weak inversion instead of a BJT is considered. The

resolution may be reduced by higher circuit temperatures, since

Uj is directly proportional to the absolute temperature. From

information-theoretic considerations we know that an equiva¬
lent internal resolution of the log-likelihood ratios of about 4 to

6bits is often sufficient for Turbo decoding applications [132].
For the external channel information, even a resolution of 3 to

4 bits are generally sufficient for almost negligible degradations
in the BER characteristic [133,134]. Thus, matching problems

resulting in current errors should not fatally corrupt the overall

circuit behaviour, even if small devices are used in the circuits.

£ 5 FBE resolution @ DR = 4 dec resolution @ DR = 5 dec

AFBE = 240mV AFBE = 300mV

1% 0.258 mV 9.9bits 10.2bits

5% 1.26mV 7.6bits 7.9bits

10% 2.47mV 6.6bits 6.9bits

25% 5.78mV 5.4bits 5.7 bits

50% 10.5 mV 4.5 bits 4.8bits

Relation between dynamic range and resolution ofa single

bipolar transistor or a single MOS transistor in weak

inversion.

Table 4.1

Since the analytical mismatch analysis for a complete decoding

system is intractable at the present time, extensive Monte-Carlo

analyses of several output parameters have been carried out for

various decoder implementations. An example of such a simu¬

lation record is given in Fig. 4.17 and Fig. 4.18 for the tail-biting
trellis decoder described in Section 5.2. Bit 1 and bit 3 have

been toggled during their transmission and thus need to be cor¬

rected. Therefore they have been chosen in this particular code¬

word configuration. The decoding delays, i.e., the time needed

by the decoder to change the output bits to correctly sliced out¬

put state, are denoted DD1 for bit 1 and DD3 for bit 3. The

statistical simulations show that the behaviour of the networks

is indeed inherently robust. All simulations have shown that the

Analytical mismatch

analysis of a

complete decoder is

intractable

82 Chapter 4. Circuit Implementation

Decoding Delay of ûy (DD1)

#samples
Decoding Delay of w3 (DD3)

#samples

300

mu = 23 9197n

sd = 3 8591n

N = 765

200

mu = 27 5378n

sd = 3 44699n

N = 765

50 [ns]

Figure 4.17 Typical statistical distribution ofthe decoding delay ofbit 1

(DD1) and bit 3 (DD3) affected by device mismatch.

decoder converges to the correct ouput state. The robustness of

the networks can even be increased by a proper description on
the system level, e.g. by the choice of an adequate equation set

which describes the code (see Section 5.5.2).

Monte-Carlo

simulations show

only a slight
degradation in

decoding speed

The only effects of the transistor mismatch observed in the sim¬

ulation results is a variation of the decoding time. As shown

in Fig. 4.17, the additive white Gaussian noise which models

the variations in the device geometries and parameters in the

Monte-Carlo simulation is clearly visible in the distribution of

the decoding delays. This effect can be modelled to a first

approximation by additional Gaussian noise added during the

transmission of the symbols over the channel. For a given SNR

in the received symbols, i.e., the a priori input probabilities, the

decoder takes some amount of time to converge to the correct

4.4. Implementation Issues 83

DDlvs DD3

DD3 [ns]

38 r

36 '-

34 :-

32
;

30 :

28
:

26
;

24
:

22 :

20 L

10 20 30 40

DDl [ns]

The correlation between the decoding delay ofbit 1 (DDl) and Figure 4.18

bit 3 (DD3) affected by device mismatch.

output state. The smaller the SNR is, the longer it takes the de¬

coder to correct the error bits. Taking the mismatch effects into

account, the SNR is slightly modified according to the simple
model. Since the changes of the device parameters are stochas¬

tic, the decoding time gets shorter or longer, depending on the

applied codeword (Fig. 4.17). As is shown in Fig. 4.18, the

correlation between the decoding delay variations is not very

strong (correlation r below 0.5). Thus it may be assumed that

the transistor variations are independent.

84 Chapter 4. Circuit Implementation

"/in |/i I/; \l, •'In

Q.^H^ ^ Q^

"/in"

HtMi5

a) b) c)

Figure 4.19 .Base current compensationfor thefundemental multiplier
matrix circuit: a) initial input connection, b) with an ideal

voltage unity gain buffer, c) simple transistor implementation
with one MOS transistor (source follower circuit).

4.4.2 Finite Current Gain

The sum of all base

currents may exceed

input current in

BiCMOS

A second implementation issue, which can seriously affect the

performance of the proposed circuits, is the finite current gain
of bipolar transistors. Compared to the almost infinite input
resistance of MOS transistors, BJTs in a BiCMOS technology
exhibit a current gain ß of a few tens or hundreds and thus a

much smaller input resistance than the MOS counterparts. In a

BiCMOS implementation, each >--input to the core circuit has

to drive m + \ bases of the n x m transistor array. If we con¬

sider trellis sections with two or four states (less than ten states

in general), this would not affect the overall performance too

much. But with ß = 100 and a trellis section of a thousand

states, which is quite usual in channel equalization applications,
we would need 10 times the input current to only drive the bases

ofthe transistors. This is clearly not possible without additional

circuitry. Note that even in the 16-state case we encounter a sys¬

tematic loss of about 16% in precision compared to the ideal

case. Therefore we need a mechanism to compensate this loss.

The basic diode-connected BJT Qi of Fig. 4.19 a) has to be re¬

placed with a buffered version as shown in Fig. 4.19b). The

simplest circuit to implement the unity gain voltage buffer is the

source follower circuit in Fig. 4.19c). The design of the voltage
buffer is a trade-off between speed and voltage overhead intro¬

duced by the additional gate-source voltage of transistor Mi.

4.4. Implementation Issues 85

Finite Output Resistance 4.4.3

The impact of the finite output resistance of both MOS transis¬

tors and BJTs is far lower than expected. As has been observed

in transient simulations of a complete decoder, the finite output
resistance even helps to partially compensate the finite current

gain of the BJTs. Once again, the highly connected structure of

the analog decoding networks helps to recover from implemen¬
tation non-idealities. In CMOS versions of the circuits, how¬

ever, the finite output resistance overestimates the desired out¬

put probabilities, i.e., it compresses the probability ratio and

thus reduces the log-likelihood ratios. In case of very clear

differences, this is not a problem anyway, since decisions are

made easily under these circumstances. On the other hand, if

the probabilities are almost equal, then the output probability
ratios are far less disturbed by finite output resistances, since

the drain-source voltages are at almost the same levels. In sum¬

mary, the finite output resistance of both BJT and MOS tran¬

sistors is not a big issue. On the contrary, it may even help to

compensate other effects in the circuits of large networks.

If high-precision output values are required, standard tech¬

niques for improving the output resistance such as cascode

structures can be applied [135-137]. But this extra transistor

circuitry has to be replicated many times in order to improve
the whole network, and the increase in chip area may be unac¬

ceptable. It may be more economical in terms of chip area to

spend only a few extra transistors for compensating the finite

current gain as seen in the previous subsection.

Finite output
resistances may even

compensate other

problems

Use cascode circuits

for higher-precision

outputs

Thermal Effects 4.4.4

An important performance issue of analog circuits is the ther¬

mal behaviour of different devices. The controlling base-

emitter voltage of BJTs, for example, is known to show a

-2mV/K temperature gradient (see e.g. [138]). Similar prob¬
lems arise in weakly inverted MOS transistors where a temper¬
ature dependence of the drain current with respect to the source

voltage can be observed [109]. This may cause severe prob¬
lems if thermal matching cannot be guaranteed. We will dis¬

cuss two different cases, namely the effects of temperature on

probability-based and on log-likelihood-ratio-based analog net¬

works.

86 Chapter 4. Circuit Implementation

Temperature Dependence in Probability-Based
Networks

Three common In the following, three thermal situations will be discussed: a) a

thermal situations uniform temperature distribution over the whole chip, b) a tem¬

perature gradient over the chip but a uniform temperature distri¬

bution within one building block, and c) a temperature gradient
within one of the building blocks. They may affect the tem¬

perature behaviour of probability based networks, i.e., the basic

information exchanged between the basic building blocks are

current vectors representing discrete probability distributions.

a) A uniform temperature distribution affects all devices

in the same manner. Since the information travelling

through the decoding network has the form of current

ratios, the temperature, which mainly affects the ther¬

mal voltage Uj = kT/q, has no effect. As an exam¬

ple, consider the current ratio of two perfectly matched

bipolar transistors in a current mirror. No influence of

temperature on the current ratio can be observed in this

case. Reasoning with translinear circuit principles [105],
we see immediately that this simple example completely
describes the temperature tracking behaviour within one

circuit module of our considered networks.

b) If the temperature within one module is approximately

constant, but the entire chip is affected by a slight tem¬

perature gradient, the solution is identical to the one in

a), by following the same argumentation.

c) A temperature gradient within a circuit module is the

most difficult case to handle. Depending on the nature

of the temperature gradient, and depending on the lay¬
out chosen for the implementation, different values for

the temperature tracking error are obtained. To estimate

the maximum temperature difference within one module,

we can make the following calculation. According to the

thermal conductivity law, the temperature difference in¬

side a slice of semiconductor with area A and thickness s

is given by
Ps

AT =
—,

(4.13)

XA
'

with the dissipated power P and the thermal conductivity
coefficent A..

Applying (4.13) to the implemented decoder modules

with A = 100 • 200 |im2, s = 100 (im, P = 3 mW, and

4.4. Implementation Issues 87

A. = 1.5 W/(m- K) for a silicon substrate, the maximum

temperature difference will be AT =0.1 K. For such a

small value, the error introduced by thermal mismatch is

negligible compared to the device matching error:

£rei(AT) = -1 + exp
Vee_

n+Ar

(4.14)

At room temperature (300 K) and Fbe = 0.7 V, the error

is approx. 1%. Although this type of error is not strictly
random, it can well be approximated by additional noise,

similarly as in the device-matching case.

It is most likely that we will encounter a mix of cases b) and

c) in our circuit chips, because the body of the package induces

a uniform temperature over the entire integrated circuit. Under

these assumptions, thermal effects will not have a noticeable

impact on the function ofthe probability-propagation networks.

Temperature Dependence in Log-Likelihood-Ratio
Based Networks

The second case, where the information exchanged between

the different circuit modules is represented by voltages corre¬

sponding to log-likelihoods (or voltage differences for the log-
likelihood ratios as introduced in Section 4.1.4), is more prob¬
lematic. As we have noticed in analyzing (4.2), the drain cur¬

rent of a weakly inverted MOS transistor is temperature depen¬
dent through the thermal voltage Uj and the slope factor n. For

the following temperature analysis, we can rewrite (4.2) as

The log-likelihood
ratio representation

appears as

temperature-

dependent

voltages...

It. : h{T)e(VG-nVs)/UT hwy{aVG-ßVs)/UT (4.15)

where a(T) and ß(T) are arbitrary parameters, introduced for

the sake of simplicity in the following mathematical analysis.
If we use this notation of the drain currents, we can describe

the voltages Vyj, no matter whether implicitly present at inputs
of the circuit of Fig. 4.2 or applied to the inputs of the circuit of

88 Chapter 4. Circuit Implementation

Fig. 4.5, by

a \ I0
-ßvref

Uuj \nPY (yj) + UT In^ + ß Fref

1

-UTlnpY(yj)+Vos(n

(4.16)

(4.17)

(4.18)

where Vrsf is the source reference potential of the diode-

connected transistors at the input of the transistor matrix and

Vos(T) is a temperature-dependent offset voltage which can be

freely chosen (corresponding to the free choice of the sum cur¬

rent ly in (4.18)).

...
hence do not

consider voltage-
mode-connections for

large probability-

propagation
networks

Now assume a voltage mode connection situation, i.e., the prob¬
abilities are transformed to log-likelihoods by means of a log¬
arithm circuit at the output of the circuit modules, and further

assume two different temperatures 7\ and T2 at the output and

the input of the two modules to connect. Then the tempera¬
ture dependent offset term cancels smoothly if we use a dif¬

ferential signal representation, i.e., assuming log-likelihood ra¬

tios, But unfortunately we observe that the temperature depen¬
dent term Uj/a introduces a non-recoverable error in the core

transistor matrix, although the differential data representation
would allow error-free signal transmission in theory. The volt¬

age error proportional to the absolute temperature T is even

amplified on the drain-current level by the inherent exponen¬

tial VI-characteristic of the transistor. Hence, the main con¬

clusion from the above reasoning is that it is not advisable

to use voltage-mode connections for global connections on a

large analog network, where the temperature cannot be guar¬

anteed the same on the whole circuit chip. However, for very

small networks, such as for example the one presented by Mo-

erz et al. [70], the temperature effects seem to be negligible.
The same temperature problem also affects the BJT case, where

we observe the famous -2 mV/K temperature gradient on the

base-emitter voltage of the transistor.

4.4. Implementation Issues 89

Other Implementation Issues

Topology-Induced Problems

4.4.5

Besides issues directly related to individual circuit devices, we

also encounter topology-induced problems. By this we mean

that, for example, biasing a large probability propagation net¬

work may cause severe problems since no local matching can be

guaranteed for a distributed biasing networks (e.g. distributed

current mirrors for the current sources needed in each cell).
Since the geometrical dimensions may get very large, addi¬

tional effects such as non-zero resistance of long metal wires

show up. This may affect signal tracks as well as power-supply
lines. It must be kept in mind during the design phase that a dis¬

tributed bias-network implemented with BJTs draws a consid¬

erable amount of base current which causes large voltage drops
on long metal tracks. In the extreme, these voltage drops may

prevent the whole network from working correctly. Compara¬
ble problems arise in digital circuits for the clock distribution.

There the solution is to balance the load in different branches

of a clock distribution tree instead of having one large single
track. Adapted to our networks, this would mean using local

repeaters for the biasing circuits. Errors introduced by these

circuits are not critical, since all calculations rely on relative

signal strength.

Biasing large analog
networks requires

careful design and

layout

Construction of Large Analog Networks

A second, more general implementation issue is how to con¬

struct large analog computational networks. Up to a few hun¬

dred transistors, an analog system may be drawn very easily if a

hierarchic design approach is chosen. But imagine a large fac¬

tor graph of several hundreds or thousands of individual nodes.

How do you want to make sure that, after a long day of drawing
interconnection lines between the individual building blocks,

you do not make drawing mistakes? It is certainly a good idea

not to rely on your own drawing capability if a schematic can be

generated by a computer program. In the context of coding, the

structure of a block code is for example described by its parity-
check matrix H. This matrix may serve as basis for many dif¬

ferent design steps: the code's performance may be evaluated

by using the matrix in a simulation program, but it may also

Large analog

probability
propagation networks

are built by
construction

90 Chapter 4. Circuit Implementation

serve as the basis for our schematic generation program. This

approach has been demonstrated in the decoder example of Sec¬

tion 5.3. In general, it will not be possible to design a large ana¬

log network first-time-right without computer aided design. By
this we subsume not only computer-aided drawing (CAD), but

also computer-aided engineering (CAE), which includes much

more than only the sketch of schematics.

Testability

Another big issue of such large networks is testability. How

can we guarantee that a circuit leaving the waferfab works as

expected? Rudimentary tests such as checking the supply cur¬

rent or verifiying individual test blocks are generally not suffi-

cent to guarantee the overall functionality. Testing large digital
circuits is much easier than doing the same thing for analog
networks. Boundary scan and JTAG test access ports are com¬

monly used today for looking inside the working digital circuit.

They mostly rely on digital registers that can be adressed and

read out serially on certain circuit chip pins. Testing large ana¬

log systems is much more difficult. The measuring circuitry
should not modifiy (by creating additional loads on the inter¬

esting nodes) the overall behaviour. Additionally, the resolu¬

tion of measured values should be better than the resolution of

the actual circuit under test. This means that the circuits for

measuring have to be more precise, and are thus in general also

more complex and space consuming, than the circuit to verify.
Even if a measurement circuit can be shared among many cir¬

cuit nodes to test, it may add a considerable overhead to the

overall network. So it would be desired that the circuit's func¬

tionality could be guaranteed by design. One approach to this

may lie in an information-theoretic approach that tries to quan¬

tify the impact of individual error sources to an overall proba¬

bility propagation network. Unfortunately, we did not have the

time yet to investigate such an approach, but it will be subject
to future research.

Design analog
networks for

testability

Chapter 5

Decoder Examples

In this chapter, we describe several decoder designs. The de¬

coder examples are discussed on various levels of completion.
First we will discuss an implementation of a very simple trel¬

lis code using discrete bipolar transistors. The result of this

effort is a demonstration unit giving static output results. The

second example consists of the complete VLSI implementation
of a short tail-biting trellis code. For this example we are able

to present dynamic measurement results. The third example
has actually not been tested, since bad bonding contacts made

by a subcontractor prevented us from measuring the chip. The

two examples at the end represent design studies that we will

use as the basis for further projects at our lab. Note that large
schematics are placed in the appendix at the end of this chapter
to simplify the reading of the text.

Five decoder

examples are

discussed on various

levels of completion

Decoder for a Simple Trellis Code 5.1

Code Description 5.1.1

As a first complete decoder example, we examine a decoder for

a binary [5,2,3] block code, i.e., 2 databits ut are encoded into

codewords x of length 5 and with Hamming distances between

different codewords being at least 3. The code consists only
of the four codewords [0,0,0,0,0], [0,0,1,1,1], [1,1,0,1,1],

[1,1,1,0,0]. The first and third bit (underlined), x\ and x3 re¬

spectively, are considered as information bits. The considered

[5,2,3] block code is systematic, since uncoded information bits

are also present in the codeword. The code can be represented

by a 5-section trellis diagram as given in Fig. 5.1. Hence, a

valid codeword is indicated by one of the four paths through
that trellis diagram.

Simple binary [5,2,3]
block code described

as trellis diagram...

92 Chapter 5. Decoder Examples

X\ X2 XT, X4 X}

Figure 5.1 A simple trellis code consisting only of4 codewords.

© © © © ©

© © © © ©

Figure 5.2 Factor-graph representation ofthe binary [5,2,3] trellis code.

...
and as factor graph Corresponding to the trellis diagram of Fig. 5.1, we can directly

draw the augmented factor graph as shown in Fig. 5.2. It di¬

rectly describes the topology of the decoder. Each function

node in the lower part of the factor graph (black rectangle) cor¬

responds to one trellis section of the code. State variables are

drawn as double circles, whereas the observable variables are

shown as single circles.

The block diagram of the decoder network is shown in Fig. 5.3

with trellis modules as in Fig. 5.4. It is a direct implementa¬
tion of the forward-backward algorithm [103] which is a spe¬

cial adaptation of the general sum-product algorithm to codes

described by trellis diagrams. In principle we may draw a cor¬

responding building block for each function node in the block

diagram. Since the building blocks are only uni-directional,

we draw them separately for both directions: the upper row

of the decoding network implements the forward part and the

middle row the backward part of the forward-backward algo¬
rithm. The soft-output decoder network of Fig. 5.3 computes
the a posteriori probabilities ofthe information bits only. Hard-

decisions of the information bits can easily be formed from

Block diagram of the

analog decoder

circuit

5.1. Decoder for a Simple Trellis Code 93

Ai
1 2" 3 4

rr TT
M-i(0) M-iCl) ^(0) m(l)

ii ii
3 42

B2
J 6

n

63 42

i-<

,pOi=0|y),pOi=i|y)

m(0) m(i) |i4(0) mO) m(0) m(i)

ii ii ii
63 42

c
59 8 10 71

vwir

63 42

B
41 2

3 4 5 6

D
7

n

A decoderfor the code ofFig. 5.1. The trellis implementation Figure 5.3

ofmodules A-D are given in Fig. 5.4.

94 Chapter 5. Decoder Examples

module A

1 •-

0«-

-•1

-•0

module B

Figure 5.4

module C ^^«01 module D

Trellis modulesfor the decoder network ofFig. 5.3.

these a posteriori probabilities by using a bit slicer. The dashed

boxes in Fig. 5.3 correspond to those computations in the gen¬

eral forward-backward algorithm which are not used in this ex¬

ample, since they do not contribute to the final result.

Messages that are

passed in the decoder

are discussed

individually

In the following paragraphs, all messages passed from block to

block in the decoder (or from node to node in the factor graph)
will be deduced step by step to point out the underlying algo¬
rithm. We assume that a codeword is transmitted over a BSC

with transition probability p(y\x). Let y = [yi,...,^5] be the

received channel output. Furthermore, we assume that the a

priori probability is uniform over the codewords. Introducing
the abbreviation ß,(b) = p(y, \x,=b), the a posteriori probabil¬

ity of a codeword x = [xi,X2,X3,X4,X5] can be written as

P(*\y) = Y ßl(Xl) ß2(X2) ß3(X3) ßi(X4) ß5(X5l (5.1)

where y is a scale factor that does not depend on the codeword.

In our example, the aposteriori probabilities ofthe information

5.1. Decoder for a Simple Trellis Code 95

bits are thus given by

p(xi=0\y) = K-(Mi(0)M2(0)M3(0)M0)/X5(0)

+ Mi(0)M2(0)/X3(1)M1)M5(1)) (5.2)

p(xi=My) = k-(mi(1)m2(1)m3(0)m4(1)m5(1)

+ /xi(1)/x2(1)/X3(1)M4(0)/X5(0)) (5.3)

p(x3=0\y) = K-(/xi(0)M2(0)/X3(0)/X4(0)/X5(0)

+ /xi(1)/x2(1)/X3(0)/X4(1)M5(1)) (5.4)

p(x3=l\y) = y-(/xi(0)/X2(0)/X3(l)/x4(l)/x5(l)

+ /xi(l)M2(l)M3(l)M4(0)/x5(0)). (5.5)

These quantities, up to the scale factor y, are computed by the

decoding network of Fig. 5.3.

We begin the detailed description with the middle row (the
backwards computation) of Fig. 5.3. Module A2 simply scales

the input vector [/Z5(0),/Z5(l)]r to some fixed level. For the re¬

maining part of this section, we shall not distinguish between

differently scaled versions of a vector. Then module B4 com¬

putes the vector [/z4(0)/z5(0),/z4(l)/z5(l)]r. Module C com¬

putes the vector

Backward

computations of the

forward-backward

algorithm

M3(0)/M(0)M5(0)

/x3(l)/x4(0)/x5(0)

M3(0)M4(1)M5(1)

_
/X3(l)/Z4(l)/Z5(l)

(5.6)

and from that the vector

M3(0)/M(0)M5(0) + M3(1)M4(1)M5(1)

/X3(l)/X4(0)/X5(0) + /X3(0)/X4(l)/X5(l)

From the latter, the module B3 computes the vector

M2(0)f/X3(0)/X4(0)/X5(0) + /X3(1)M4(1)M5(1)

M2(1)(M3(1)M4(0)M5(0)+ /X3(0)/X4(1)M5(1)

From that, the module B2 computes

Ml(0)M2(0)fM3(0)M4(0)/X5(0) + /X3(l)M4(l)M5(l)

/xi(1)/x2(1)(/X3(1)/x4(0)/X5(0)+ /X3(0)/x4(1)/x5(1)

which is proportional to [p(xi=0\y),p(xi=\\y)]7

96 Chapter 5. Decoder Examples

Figure 5.5 Schematic ofmodule A: a simple scaling circuit.

Forward

computations of the

forward-backward

algorithm

In the upper row (the forward computation) of Fig. 5.3, the

module Ai scalestheinputvector[/zi(0),/zi(l)]r tosomefixed

level, and the module Bi computes [/xi(0)/z2(0),/zi(l)/z2(l)]r.
In the bottom row (combination), the module D computes from

Bi's output and (5.6) the vector

/"-l (0)/U-2(0) ^3(0)^4(0)^5 (0)-

Mi(0)M2(0)/X3(1)M4(1)M5(1)-

-/Xl(l)/X2(l)/X3(0)/X4(l)/X5(l)

-/xi(l)/x2(l)/X3(l)/X4(0)/x5(0)

which finally is proportional to [/?(x3=0|y),/?(x3=l|y)]7

5.1.2 Implementation Using Discrete Transistors

Circuits implemented
with discrete BJTs

Demonstration

purpose of the

decoder circuit

The decoder of Fig. 5.3 was implemented on a printed circuit

board (PCB) using discrete bipolar transistors. We selected the

CA3096 transistor array [139] for both NPN and PNP transis¬

tors. On top of each generic module, an output current scaling
circuit using PNP transistors was added to prevent the proba-

blity signals fading into the noise floor. Fig. 5.5 to Fig. 5.8 show

the individual circuit schematics. The numbers near the input

pins and output pins correspond directly to the ones found in

the block diagram of Fig. 5.3.

The purpose ofthis simple decoder was purely demonstrational.

Thus LED bargraph displays were added to monitor both input
and output values in a linear scale and a logarithmic scale. Ad¬

ditionally, easy-to-use Potentiometrie input-probability value

5.1. Decoder for a Simple Trellis Code 97

Schematic ofmodule B: the equal gate. Figure 5.6

controls were used. They allow to preset the probabilities from

0.5 to 0.999 and the sign, i.e., the choice of either a T or a

'0', for each input value \xt individually. A photograph of the

demonstration unit built at our electronics laboratory is shown

in Fig. 5.9.

The readout of the output values is purely static. No transient

information can be obtained from the built demonstration unit.

The comparison of the measured a posteriori probabilities with

the theoretic values (using the calculations of the previous, in¬

troductory section) showed a remarkably close agreement, al¬

though no preselection of the individual bipolar transistors was

carried out. Harris' transistor array CA3096 contains 3 NPN

and 2 PNP BJTs. These transistors were partitioned automati¬

cally among the modules on the schematic by the packager of

the PCB design software. Even if one had taken into account

that two matched transistor pairs are present on each array, we

could not have assured that all transistors to be matched in the¬

ory would be in the same package. For the assembly, the tran¬

sistor arrays were just taken out of the box and soldered on the

PCB. Hence, one would expect a very bad matching behaviour

Readout values are

displayed by linear

and a logarithmic
LED bargraph

display

Chapter 5. Decoder Examples

®4f(D4

*£c~ Yh1

JSW

/•-r^

W~
Schematic ofmodule C: butterfly connection with previous

current duplication.

5.1. Decoder for a Simple Trellis Code 99

©4

out

5
,

in

M m

\

1
,

in

out

n H

4

in

2

in

Schematic ofmodule D: combiningforward and backward Figure 5.8

computations.

_0)
Q.

E

X

o
o
u

<u

Û

a-

U

o
o

Figure 5.9: Demonstration unit ofa MAP decoderfor the [5,2,3] block code The LED bargraphs on the bottom ofthe front

panel represent the probabilities p(Xl = 1 |y) and p(X3 = 1 |y) on a linear scale The display section on the
right haldsideTa

logarithmic-scale display ofthe selectable input and outputvalues
igni nana siae is a

5.2. Decoder for a Tail-Biting Trellis Code 101

ofthe overall system. Additionally, the transistors are on differ¬

ent substrates and thus may also experience different tempera¬
tures. Despite these harsh conditions, an overall static precision
of about ±5 % was measured using both the linear scale and the

logarithmic scale outputs.

Decoder for a Tail-Biting Trellis Code 5.2

Our second example of a complete decoder was implemented
on silicon using the 0.8 p,m double-poly, double-metal BiC-

MOS process ofAMS [140]. We discuss the code description of

the tail-biting trellis code, the simulation results, the test setup,
and the measurement results, and do a coarse comparison to an

equivalent digital implementation.

A first chip-level
implementation

General Description 5.2.1

Description of the Code

The considered binary [18,9,5] code is a tail-biting trellis code

as introduced in Section 2.1.5. The trellis diagram for the code

consists of nine equal sections as the one shown in Fig. 5.10.

First, these nine equal trellis sections are cascaded like an or¬

dinary trellis. Then the outgoing states of the last section are

identified with the starting states of the first section to form this

closed structure. A valid codeword is a path that starts in an

arbitrary state, goes through the entire trellis one time and ends

in the same state.

The tail-biting trellis

code

The encoding of the dataword needs some special attention due

to the tail-biting nature of the code. It can be carried out with

the convolutional encoder of Fig. 5.11. First, the convolutional

encoder is reset to the all-zeros state. Second, 9 information bits

u\,... ,H9 are fed, one by one, into the convolutional encoder;
in this process, 18 output bits (9 pairs) are generated, which we
will refer to as x[, x'2,..., x'n. Third, two dummy zero bits are

fed into the convolutional encoder to drive it back to the all-zero

state and thereby generating four extra output bits x[9, ...,x'22.

102 Chapter 5. Decoder Examples

1/01

Figure 5.10

0/00

left states uncoded/coded right states

One section ofthe binary [18,9,5] tail-biting trellis code.

r\\\
x2i-\

K.)

Ul
D D —i i

-< y- -< y-
x2i

Figure 5.1 I A convolutional encoderfor the binary [18,9,5] tail-biting
trellis code.

5.2. Decoder for a Tail-Biting Trellis Code 103

Finally, the codeword x = [xi,X2,...,xig] is formed by the rule

(5.7)v/+18 1,...,4;

5,..., 18.

Note that we could also encode the information bits differently:
first we initialize the encoder state with the two last information

bits, then we apply successively information bits for k = 18

time-steps. The output of the encoder is then directly the de¬

sired codeword. However, a disadvantage of this method is the

necessary initialization of the encoder, but one needs less clock

steps for the encoding process.

For any closed path in the tail-biting trellis, both the informa¬

tion bits and the corresponding coded bits can be read off the

edge labels along the path.

Factor Graph and Block Diagram of the Decoder

Having the examples from Section 3.2 in mind, sketching the

augmented factor graph of Fig. 5.12 for the tail-biting trellis

code is straightforward. The tail-biting nature of the code is

clearly visible in this drawing.

In the following, it is assumed that the codewords are trans¬

mitted over a memoryless channel with transition probabilities

p(y\x), x e {0,1}. A complete decoding network for this code

is given in Fig. 5.13, with the computation modules defined in

Fig. 5.14. Each signal line in Fig. 5.13 represents a whole prob¬

ability mass function. The inputs and outputs of the decoder

are probability mass functions defined on a two-letter alphabet,
whereas the remaining signals represent probability mass func¬

tions that are defined on a four-letter alphabet. Therefore, we

have drawn the latter with heavier lines to make a clear distinc¬

tion.

The inputs to the decoder are the probabilities p(y,\0) and

p(y,\l), i = 1,...,18, where y = [yi,...,.yi8] is the channel

output data. The outputs of the decoder are approximate a pos¬

teriori probabilities p(u, |y) for all information bits u,. A final

decoding decision may be obtained by comparing p(u, = 1 |y)
with p(u, = 0|y).

The factor graph of

the tail-biting trellis

code has a ring

structure

Data transmission is

assumed on a BSC

104 Chapter 5. Decoder Examples

Figure 5.12 Factor graph representation ofthe binary [18,9,5] tail-biting
trellis code.

5.2. Decoder for a Tail-Biting Trellis Code 105

XVil*i) P^iVi) P(y?\xi) PfaM p(ys\xs) PfyeM P(yn*n) XViskis)

A A A A

B «-»> B •- B •- B

C C

D

C

D D

C

D

i>(«ily) p(u2\y) p(»3\y)

Decoding networkfor the binary [18,9,5] tail-biting trellis

code.

piu9\y)

Figure 5.13

106 Chapter 5. Decoder Examples

module A module B

module C module D

Figure 5.14 Trellis representation ofthe binary indicatorfunctions to be

implemented in the decoder modulesfor the binary [18,9,5]

tail-biting trellis code.

5.2. Decoder for a Tail-Biting Trellis Code 107

Again, this decoder network is a direct implementation of the

forward-backward algorithm [103] (adapted to a tail-biting trel¬

lis). The type-B modules in Fig. 5.13 perform the "forward"

computation and the type-C modules perform the "backward"

computation on the tail-biting trellis. The type-A modules pre-

compute the branch metrics and the type-D modules compute
the final probabilities for each information bit.

A direct

implementation of the

forward-backward

algorithm

The outputs of the network are only approximate a posteriori

probabilities, because the forward-backward algorithm com¬

putes exact a posteriori probabilities only for ordinary (not tail-

biting) trellis codes. On the level offactor graphs, we should re¬

call that the sum-product algorithm produces only exact a pos¬

teriori output probabilities if the code is a cycle-free factor

graph, i.e., if it has the form of a tree. The approximation need

not be very good, since finally only the sign of the difference

p(u, = l|y) -p(u, = 0|y) matters.

Sum-product

algorithm on factor

graphs with cycles
delivers only

approximate

probabilities

Note that this decoding network contains two loops that corre¬

spond to the forward and the backward computations. In gen¬

eral, networks with multiple loops may not always converge to

a stable state. However, networks as in Fig. 5.13 with no in¬

teracting loops are guaranteed to converge unless some of the

input probabilities are zero [141].

Always convergence

if only one loop exists

in the factor graph

Circuit Design 5.2.2

The decoder network for the binary [18,9,5] tail-biting trellis

code was designed as an analog network with about 940 BJTs

and 650 pMOS transistors in the AMS 0.8 (xm double-metal

BiCMOS technology [140]. Fig. 5.15 and Fig. 5.51 to Fig. 5.53

show the circuit implementations ofthe modules oftype A to D.

Circuits designed
with AMS 0 8 (xm

BiCMOS process

Representatively, we discuss the type-B module: the core tran¬

sistors for the multiplication part of the circuit are minimum-

size BJTs (3 x 0.8 p,m2). Each BJT sits in its own well, which

has to be separated from any other well by 7 \iva on each side.

This will create much unused active area on the chip layout
which can be used for routing the interconnects. In fact, the

size of the BJTs are the main factor determining the area of a

building block.

Sizing of the bipolar
transistors

108 Chapter 5. Decoder Examples

Sizing of the pMOS
transistors

The remaining transistors, located in the current mirrors on the

top of the circuit of Fig. 5.51, are pMOS FETs with almost

minimal size (12 x 1.6 |im2). They were designed for maxi¬

mum speed in a 5 V design and Fosat = 2 V. Hence, the current

mirrors operate in the strong-inversion region for the nominal

currents. The current error was roughly estimated according
to the Pelgrom formula [142]. Hand calculations showed that

the standard deviation will then be far below 1 % at the nom¬

inal current of 200 |xA, but the error will go up to about 33 %

for very low currents. This is a minor problem, since the de¬

termining factor will be the error at equal current levels for all

the elements of the probability distribution. Under these condi¬

tions, the matching is still reasonable if the discrete probability
distributions have not too many elements, i.e. less than 10 el¬

ements. If this does not hold, the circuits have to be designed
more carefully for the desired matching in the uniformly dis¬

tributed situation.

Other modules are The other modules in Fig. 5.14 shown in Fig. 5.51 to Fig. 5.53

built similarly gj-g built similarly. For each edge in the trellis representation, a

transistor can be identified in the middle row of the circuit dia¬

gram. Additionally, dummy transistors are introduced such that

each state has the same number and the same types of outgoing
branches.

Back-to-back layout The layout of the individual building blocks was made with the

aim to allow direct back-to-back connections on every edge. By

doing this, only the connections to close the tail-biting structure

have to be drawn. Fig. 5.16 shows one vertical slice containing,
from top to bottom, modules of type B, A, C, and D. A consid¬

erable part of the area is used by the power supply stripes.

5.2.3 Simulation Results

Transient simulation

of the decoding

process

The analog network of the whole decoder chip has been simu¬

lated using Cadence's Spectre simulation tool. For MOS tran¬

sistors, the BSim 3v3 model was used. A typical simulation

response is shown in Fig. 5.17. It demonstrates the correction

of two toggled bits for a binary symmetric channel (BSC) with

crossover probability 0.05. We have chosen the configuration
with the two toggled bits separated by 3 correct bits because

it is hardest for the decoder circuit to recover the correct in¬

formation in this case. The transient curves in Fig. 5.17 show

5.2. Decoder for a Tail-Biting Trellis Code 109

4hW Wntl)hU Wnt!
o o

<§>• c§5-

L2_0 o-

L2_l o

Vreffl

VrefA o-

^
rt r<

i- , i- r

O O O O

0/ \ \ 0/

LI 0«

£3

~~k ~~k

w 1

o o

V V

LI lo

^W

3)4

Circuit implementation ofthe type-A module: branch-metric

precomputation.

Figure 5.15

MO Chapter 5 Decoder Examples

Figure 5.16 A vertical slice ofthe layout containing, from top to bottom,

modules oftype B, A, C, and D

5.2. Decoder for a Tail-Biting Trellis Code I I I

A typical simulation responsefor the decoder ofFig. 5.13:

transient curves ofthe approximate a posteriori probabilities

p(Uj \y)for j = 1,2,..., 9 given the transmitted all-zero

codeword and two bit errors in the received channel

information. (Probability 1 corresponds to 50 u-A.,)

Figure 5.17

the computed approximate aposteriori probabilities p(u, |y) for

all nine information bits. In this example, it takes about 30ns

until the sign of all output probabilities have reached their final

value. The bias current of each module was chosen to be 50 u,A.

A probability of 1 corresponds to a current value of 50 u. A, a

probability of 0 corresponds to 0 u,A. A single 5V supply was

used, and the total (static and dynamic) power consumption was

measured to be 50 mW.

To show the effects of different cross-over probabilities, i.e.,
different strengths of the conditional input probabilities, on the

error-correcting capabilities, we made a sequence of five simu¬

lations with different e. The circuits were biased this time with

a current of 200 u,A for each section, and we used also a dif¬

ferent uncoded dataword u = [1,0,1,1,0,1,1,0,1] but left the

two toggeled bits at the same position. Fig. 5.18 to Fig. 5.21

show the plots for BSCs with e = {40%,25%,5%,2.5%} re¬

spectively, whereas Fig. 5.22 represents the case with 4 era¬

sures, i.e., the conditional input probability of the toggeled bits

is 0.5. As we observe in the five plots, the case with 4 erasure

Effects of different

cross-over

probabilities

112 Chapter 5. Decoder Examples

t[ns]

Figure 5.18 Simulation ofa decoder correcting two bit errors and

e = 40%.

bits is the fastest one, since actually no error-correcting action

was done. In the remaining four plots we observe that very

strong errors make the decoding time considerably longer. On

the other hand, very weak errors are easily corrected as we have

seen before for the special case of erasures.

5.2.4 Test Setup

HP 83000-based For testing the implemented circuit chip, an HP 83000 digi-
testing tal circuit tester was used as shown in Fig. 5.23. The tester

commands the 18 off-chip high-speed D/A converters on the

DUT adapter board for generating the input voltage waveforms.

These input voltages are proportional to p(y, \x,). In the com¬

plete transmission system, these probabilities stem from the

output of the demodulator as shown in Fig. 2.10. Since the

voltage signals have to be applied in parallel during the de¬

coding process, the converters act as external analog memory,

too. The input voltages are converted on chip into the current

signals as needed by the decoder core. Additionally, the DUT

adapter board generates bias currents and reference voltages for

the test chip. And finally, the DUT adapter board contains nine

5.2. Decoder for a Tail-Biting Trellis Code 113

t[ns]

Simulation ofa decoder correcting two bit errors and Figure 5.19

e = 25%.

t[ns]

Simulation ofa decoder correcting two bit errors and e = 5 %. Figure 5.20

114 Chapter 5. Decoder Examples

p(»ly)[jlA]
200

pCii-lW-JV-j^ Ibms=198 7uA

Static Power=98 5mW

Delay Bit 1 = 34 130ns

Delay Bit 3 = 40 216ns

Figure 5.21 Simulation ofa decoder correcting two bit errors and

e = 2.5%.

t[ns]

p(a |y) [nA]
200

Figure 5.22 Simulation ofa decoder correcting 4 erased bits.

5.2. Decoder for a Tail-Biting Trellis Code 115

I-V converter pairs and nine high-speed ECL comparators (bit

sheers) for measurement purposes. The analog voltages may be

measured by a high-speed oscilloscope, whereas the bit sheer

outputs are directly fed back to the HP 83000 test system.

Measurement Results 5.2.5

Measurements of the transient behaviour of the output proba¬
bilities, shown in Fig. 5.24, match well with the simulation re¬

sults. The measured approximate output probabilities of bit 1

and bit 2 are drawn in this plot; the error correction of bit 1

can be seen clearly. Furthermore, the output of the external

comparator for the hard decision on bit 1 is shown, making the

decoding delay of approx. 31 ns evident. We observed heavy

ringing of the output currents. On the one hand, this ringing
was caused by coupling between the pins of the package, which

could not be calibrated out completely. On the other hand, the

cavity of the package was very wide and hence the long bond

wires added considerable inductivity on all pins. This induc¬

tance prevents high-speed signals as well as fast changes of the

current consumption to propagate properly and thereby gener¬

ates oscillations. However, it was found that decoding speed
and errors were not affected by this ringing. We could have

prevented ringing by assigning the pinout properly and by us¬

ing, for example, the chip-on-board (COB) mounting technique
or flip-chip assembly, which almost eliminate the bond-wire in¬

ductances.

In Fig. 5.25, the result of another measurement is shown. The

sourceword u = [1,0,1,1,0,1,1,0,1] is encoded and applied to

a BSC with crossover probability 0.05. Consecutively, zero,

one, two, and three bit errors were applied, where the three-

error configuration corresponds to another codeword with two

bit errors. The error correction capability for two applied errors

can clearly be observed in Fig. 5.25. In this measurement setup,

a probability of 1 corresponds to 200 (iA and one oscilloscope
division corresponds to 25 (iA. The differences of the output

amplitudes ofbit 1 and bit 3 stem from device mismatch effects

within the decoder core. As we have seen, the building blocks

were designed with virtually minimal transistor sizes as in dig¬
ital design. Extensive Monte-Carlo simulations were made, in

which none of the simulated configurations failed and the stan¬

dard deviation of the output currents was within 3 to 4% of the

Transient

measurements of the

decoding process

Measurement of the

effect of several

toggled bits

_0)
Q.

X

o
o
u

<u

Û

a-

U

Figure 5.23: The test setup based on the HP 83000 digital circuit tester

5.2. Decoder for a Tail-Biting Trellis Code 117

lck Run 2 OOGS/s Average

F -f^
•

error correction

A

\ P(bi ;i|y)

P(b2=i|y)

Mal h i ^n (i

b-j (after comparator)
.

I
....

I
.
^-r^P

A 31 Ons

S> 181 0ns

_

p=1

p=0 5

p=0

logic '1'

logic '0'

J1- ni

21- Or

M iiöns
' ' ' '

7
' "

'1W 17 Feb 19

08 58 06

^4 typical measured transient response ofthe output

probabilities ofbit 1 a«<i è// 2. 20 mV/div correspond to

10 (iA/div andprobability 1 corresponds to 50 (i A.

Figure 5.24

nominal value. Therefore it is assured that the decoder is very

robust against mismatch errors.

Unfortunately, beside the ringing problem as visible in

Fig. 5.24, we observed a second severe defect on the chip imple¬
mentation. For very small input values, the V-I converters com¬

pletely shut off the currents and thus created zero-probability

paths in the tailbiting trellis. The decoder could not recover

from a zero probability value. Hence, the malfunctioning V-I

converters prevented us from measuring a BER curve, which

would be the most important measurement to fully characterize

the decoder chip.

A chip micrograph of the complete prototype implementation
is shown in Fig. 5.26. The entire chip area is 2.8 x 2.6mm2 in¬

cluding pads. The area of the decoder itself is 1.7 x 0.7 mm2,
and it is situated in the lower right corner of the die. The re¬

maining area is taken by the VI-converters needed for measure¬

ment purposes.

With a decoding time of 90 ns per decoded 9-bit sourceword,

a data rate of 100Mbit/s can be achieved, which includes am-

Problems during the

measurements

Floorplan of the chip

100Mbit/s
throughput measured

118 Chapter 5. Decoder Examples

•f1 Run 25QMS/S

F
Average

{ i- !
,

P=1

^ fZ q i
ri

o o

CO

o

a

c

J

3

a>

:.l
a

c
J p=0 5

1 '!
-1

o

a>

1
m

I
1

p=0
Chi

'

C hi

30
10

urn

Olli i/O

M 2'd Uns / 1 '4'v1 1? Feb 1999

12 51 13

Figure 5.25 Measured transient response ofthe outputprobabilities ofbit 1

and bit 3 Consecutively, zero, one, two and three bit errors

have been introduced Each module is biased by 200 \iA

(corresponding to probability \) In the plot, 50 mV/div

correspond to 25 \iA/div

5.2. Decoder for a Tail-Biting Trellis Code 119

Chip micrograph ofthe protype chip. The actual decoder is on

bottom rightpart ofthe chip, whereas the VI converters reside

on the top halfofthe chip.

Figure 5.26

pie margin and reset time. The main chip characteristics are

summarized in Table 5.1.

Power/Speed Comparison 5.2.6

In the following, an estimate of the power consumption of

an equivalent digital decoder is deduced. We found by high-
level discrete-time simulations that the decoding algorithm con¬

verges to its final value after 15 iterations per section if parallel

updates for each node type are assumed. This corresponds to

a total of 4400 multiplications and 1100 additions. In order to

achieve the desired bit rates, fast but low-power 5-bit multipli¬
ers and adders are assumed at each node of the factor graph
of Fig. 5.12. The maximum operating frequency of these node

processors is 167MHz (15 iterations within 90ns). Defining a

gate as a basic digital circuit with up to n inputs and 1 output,

Estimation of the

digital complexity
and the timing

constraints

120 Chapter 5. Decoder Examples

Technology
#BJT

#PMOS

Supply voltage
Power consumption

@Iref=50\xA

Chip area

Core size

Decoding speed (with

margin)

AMS 0.8 u,m 2M2P BiCMOS

940

650

single 5 V

50mW (w/o V-I converters)

2.8 x 2.6mm2

1.7 x 0.7mm2

100MBit/s

Table 5.1 Summary ofthe prototype chip characteristics.

Estimation of the

digital

implementation

Optimization of the

gate level

30 gates are needed for implementing the full adder and 110 for

the one-step multiplier.

Furthermore, assuming that all gates have the same delay time

to, an average node capacitance of 0.1 pF, an activity per gate
of 1/4 (i.e. every node charges and discharges within 8 cal¬

culation steps) and an energy loss due to overlap currents of

20%, the power dissipated per multiplication can be estimated

as 2.5 mW. Similarly, 0.65 mW is required per 5-bit addition.

Therefore, operating from a single 3V power supply and ne¬

glecting additional scaling operations and buffering, the overall

power consumption for the decoder under consideration can be

estimated to be above 11.5 W. A rough estimation has shown

that adding the input network and the analog memories at most

doubles power consumption and chip area. Therefore the power

efficiency of our analog decoder is superior by a factor of more

than 200 compared to its digital counterpart. Similar numbers

could be found for the efficiency in the use of die area. A dig¬
ital implementation of such iterative decoders is possible with

today's CMOS processes if a delay per gate of fo = 0.45 ns is

assured for n = 6 processors in parallel. However, such digital

implementations are limited to small codes, since otherwise the

power consumption and die area become unpractically large.

However, note that the digital implementation can potentially
be optimized on the gate level. Instead of doing the full multi¬

plication, table-lookup techniques can be applied; this is espe¬

cially suitable for data quantized to only a few bits [143]. Ad¬

ditionally, the whole gate-level schematic can automatically be

optimized by the digital design tools offered by most of the im-

5.2. Decoder for a Tail-Biting Trellis Code 121

portant vendors of IC design frameworks. By doing so, trade¬

offs can be evaluated easily.

A second approach to optimized digital implementations are

different update strategies. We might choose a more suitable

update schedule in the digital domain for this decoder as dis¬

cussed in Section 3.3.2. Instead of parallel updates of all nodes,
the forward and backward trellises could be calculated serially
with approx. 3 rounds each. This means that the presented ana¬

log decoding technique develops its full power for low-density

parity-check codes, where the factor graph is highly connected.

In this case, no simplifications can be made in the digital im¬

plementation.

Another problem in comparing different implementation ap¬

proaches, without having exact details of the actual design, are

the different realizations of the same algorithm. The Max-Log-
MAP [144], for example, approximates the MAP algorithm but

significantly reduces the complexity by performing the calcula¬

tions in the log-domain. Only additions and the max-operations
are necessary in this case. Although the performance loss is

about 0.3 dB at low SNR values, it may be used for low-power

applications. As an illustration for this design uncertainty we
cite the design study done by Vogt et al. [132]. They have com¬

pared different Turbo decoder realizations and found that the

eficiency of these realizations differs by as much as a factor

of2.5.

Optimization in the

update schedules

Optimization on the

algorithmic level

122 Chapter 5. Decoder Examples

Q parity bit EB XOR function Q channel/info bit

Figure 5.27 The structure ofa basic repeat-accumulate (RA) code.

Quasi-cyclic repeat-accumulate (QCRA) codes areformed by

adding a tailbiting connection (dashed line) to the rectilinear

part ofthefactor graph.

5.3 Decoder for a Turbo-Style Code

Our third complete decoder example is a decoder for a quasi-

cyclic repeat-accumulate (QCRA) code. Repeat-accumulate

(RA) codes are a special form of low-density parity-check
codes with a factor graph as shown in Fig. 5.27. Tanner pro¬

posed the initial idea for the basic structure of the QCRA codes

[145,146]. This idea was refined by making numeric simula¬

tions to evaluate the performance of different realizations of the

code [147]. In the following, we present the code structure, the

design automation process that allows us the direct generation
of the final layout, and simulation results. Unfortunately, the

chip-on-board (COB) assembly of the chips failed due to bond¬

ing problems and we have still no working module to make

measurements at the present time. So we just describe the test

setup for the decoder chip at the end of this section.

General Code and Decoder Description

The code chosen for our implementation is a linear [44,22,8]

quasi-cyclic repeat-accumulate (QCRA) code that is character-

A turbo-style QCRA
code as the third

decoder example

5.3.1

Code defined by
LDPC matrix

5.3. Decoder for a Turbo-Style Code 123

ized by the following parity-check matrix:

1(1) — 1(0) _ _

1(0) 1(9) 1(1) 1(0) _

— 1(0) _ i(i) 1(0)

1(1) 1(4) _ _ Id)

H

where we use the following notation:

I(D-

1(0)

(5.8)

l(°) 4 I :

1

1

!(1) A

1

etc. are shifted 11 x 11-element identity matrices, and '—' is

a zero matrix of the appropriate size or '-' is a zero element in

the matrix.

A conesponding factor graph representation is shown in

Fig. 5.28. Note that the parity-check matrix H of (5.8) has been

reordered, by doing linear combinations of rows and column

permutations, to get the symbol numbering as shown in the fac¬

tor graph of Fig. 5.28. We have chosen the even-numbered bits

on the outer ring to be the information bits whereas the odd-

numbered bits are parity bits. Note that the bits on the inner

ring are auxiliary bits. Hence we have a systematic, linear, rate

Turbine form of the

factor graph

124 Chapter 5. Decoder Examples

1/2 code. The girth of the graph, i.e., the smallest number of

branches of a closed loop in the factor graph, is g = 10. This

is an important parameter, since the iterative decoding on fac¬

tor graphs with cycles performs sub-optimally. The larger the

girth, the smaller the influence of cycles on the decoding per¬

formance.

The factor graph
serves directly as a

model of the decoder

circuit

The factor graph serves directly as the block diagram of the de¬

coder circuit. Because of the form of the factor graph, we will

denote the decoder as a 'Turbine decoder' in the following. In

Fig. 5.28 we identify five types of nodes: fully bi-directional

variable nodes on the innermost circle, fully bi-directional soft-

XOR nodes with 3 or 4 ports on the second circle from the

center, and partly bi-directional 2.5-port1 variable nodes with

and without an output for the information bits and the parity

bits, respectively. Since the factor graph nodes work mostly

fully bi-directionally and our building blocks allow only two-

input circuits, we dissect them into building blocks as shown

in Fig. 5.29. The lines in the figures represent actually two-

element probability mass functions. The letters at the inputs of

the building blocks indicate whether one enters by the x -inputs

(bottom of the core transistor matrix) or by the >>-inputs (on the

left side of the core transistor matrix). In order to save on the

input logarithm transistors as well as to omit unnecessary cur¬

rent duplicates, we try to reuse as many of the input terms as

possible. However, this is not always possible. Some of the

inputs have a letter in parentheses beside them such as, for ex¬

ample, (x). This indicates a domain change from a y input to an

x input and vice versa. This increases the current consumption,
since a scaler circuit of its own has to be used for that purpose.

5.3.2 Circuit Design

General transistor sizing

Transistor sizing

comparable to the

tail-biting decoder

The transistor level schematics of the individual factor graph
nodes are given in Fig. 5.30 and in Fig. 5.54 to Fig. 5.57. For

most of them, the large schematics are divided into two parts
that are shown on opposite pages and should be read together.
The computation nodes have been implemented using the same

The 'half port' is an input port only as needed for the input of the

channel information

5.3. Decoder for a Turbo-Style Code 125

O Bit

O Channel-Bit

O Info-/Channel-Bit

XOR-Function

Channel-Function

Factor graph ofthe binary linear [44,22,8] QCRA code. Figure 5.28

126 Chapter 5. Decoder Examples

1 2

yi

ly \(x)

3 1 2

a)

1 2

yi

~\y \(x)

XI X IX
T TT
3 1 2

d)

1 2 3

3 2

b)

1 2 3

F
3 2 10

c)

1 2

>

3

I* ^ \(x) \y

Z X X

r Y Y
\

i 2

4 \^
''X \

>
1* >7 l# ^

^ X X

y y
3 4

e)

Figure 5.29 Dissection ofthefactor graph nodes ofFig. 5.28 into

elementary 2-input building blocks with a) fully bi-directional

3-port variable node, b) bi-directional 2.5-port variable node,

c) bi-directional 2.5-port variable node with output bit sheer,

d) fully bi-directional 3-port soft-XOR node, and e) fully
bi-directional 4-port soft-XOR node.

5.3. Decoder for a Turbo-Style Code 127

BiCMOS technology from AMS as the one we used for the

tail-biting decoder described in Section 5.2 [140]. Again, all

the bipolar transistors are minimum size (3 x 0.8 p,m2). The

pMOS transistors located in the current mirrors on the top of

the circuits are also almost minimum size (12 x 1.6 p,m2). They
were designed for maximum speed in a 5V design and FDsat =

2V. Hence, the current mirrors operate in the strong-inversion

region for the nominal currents of 200 \iA.

Input variable nodes

The 2.5-port factor graph nodes for input variables of Fig. 5.28 Reset circuitry for the

need some special attention. In order to have predictable ini- inPut variable nodes

tial conditions for the sum-product algorithm, the input proba¬
bilities of the network are generally set to a uniform distribu¬

tion. Therefore, additional initialization functionality has been

implemented in the circuits of the affected 2.5-port computa¬
tion nodes by means of clamping reset switches as shown in

Fig. 5.54 and Fig. 5.55. By clamping the binary input distribu¬

tions together, the input current sum is forced to be theoreti¬

cally distributed uniformly on the two diode-connected input
transistors of port-1. Unfortunately, the pMOS transistor Mir

(W/L = 20 (xm/0.8 p,m) is not a perfect switch. More likely it

behaves as a MOS resistor in the linear range, and the drain-

source resistance is not negligible at a zero gate voltage. This

causes a differential voltage-drop at the input port 1 that di¬

rectly translates into an imbalance of the input distribution and

thereafter also in the output distributions. Even if the transistor

Mir had been made very wide, the parasitic channel resistance

would not have dropped to an acceptable level. Therefore the

additional transistors M2r and M3r (W/L = 40 (xm/0.8 \iva) are

connected to the two output ports 2 and 3 to equalize the output
distributions during the reset time. The transistors prove to be

very efficient in equalizing the input distributions of the whole

network even at their relatively small size.

Current-mode comparator

In addition to the reset hardware, the 2.5-port variable node for Bit sheer for the

the information bits also contains the output circuitry. This in- information bit nodes

eludes the summarization calculations, i.e., the pair-wise prod¬
uct of all incoming branches, and a bit slicer. The bit slicer

128 Chapter 5. Decoder Examples

2

W^ w W^^ w

£>

lnl<0> &

Inl<l> o->-

J^
rt r<

Jr
In3<0> o-

In3<l> °->-

,^r
^

VrefB o i-

In2<0> »

In2<l> o->-

VrefA o *

rt ri rt ri rt ri

%
®4

Figure 5.30 Circuit implementation ofthe fully bidirectional 3-port
variable node (left part). Denoted as 'Bit' in Fig. 5.28.

5.3. Decoder for a Turbo-Style Code

1

W^^ WW W

rt ri K rt
Vr

®4:

Circuit implementation ofthe fully bidirectional 3-port
variable node (right part). Denoted as 'Bit' in Fig. 5.28.

130 Chapter 5. Decoder Examples

Figure 5.31

5Mdh

1
M2]H HEM;

BHCM<

S

0

X

1-CH

^

î>HCMi

II II II II II II II II

5
HLm7

?HCM

Current comparatorfor the output bit sheer

\[M9

lHCMi2

out

j|\

is actually a current comparator that compares the the two ele¬

ments of the output distribution. ïïp(u, = l|y) > p(u, = 0|y) it

puts a logic
'

1
'

at the output and a logic '0' otherwise. The ac¬

tual comparator of Fig. 5.31 can decide only whether the signal
current is positive (flowing into the circuit) or negative (flowing
out of the circuit). Therefore a precomputation has to be done

with the output currents according to

'comp :Izp(Ul = l\y)-
Izp(u, = l\y) +Izp(u, =0|y)

(5.9)

This actually calculates a dynamic threshold value correspond¬

ing to the probability of 0.5 and subtracts the output value cor¬

responding to the conditional probability of being a T. This

value is not strictly positive anymore and may hence serve as

the input of the current comparator.

Trafif's current-mode

comparator

The comparator circuit of Fig. 5.31 is a class-B circuit that uses

positive feedback in the first stage. It was initially proposed by
Traff [148]. Transistors Mi and M2 form a 'head-over' digi¬
tal inverter followed by a traditional unit-size inverter. At the

output of this bistable circuit we observe only small voltage
variations that are subsequently amplified by a scaled inverter

chain according to the grading 1:1:2:4 of the nominal transistor

widths. The sizing of an unit inverter is W/L = 9 (xm/0.8 |im
for pMOS transistors and W/L = 5 (xm/0.8 \iva for nMOS tran¬

sistors, respectively. This sizing corresponds to the one found

in the digital cell library.

5.3. Decoder for a Turbo-Style Code 131

On-chip D/A converter

To drive the inputs of the Turbine-decoder core, 7-bit current-

output D/A converters with an input latch are placed on the

chip. This is different from the previous decoder example,
where the input signals are produced externally on the DUT

adapter board by means of high-speed D/A converters. The

main benefit from placing the converters directly near the in¬

put nodes on the chip is a better speed performance and no

problems from zero currents, which would subsequently result

in zero-probability paths. A current steering architecture has

been chosen due to its simplicity and robustness [108,137]. As

shown in Fig. 5.32, the currents, which are normally dumped
into a dummy load, are used for the complementary value

of the binary input distribution. By programming the 7-bit

value to the register we choose the conditional input probability

piyi \Xi = 1) according to

On-chip D/A

converter to provide
input values to the

decoder core

i p(yt \xi = i) = ^heîpiyi \x, =

'b\ b2 b3 b4
:4/ref

8 16

1)

bj_ be

32 64

iL
128

(5.10)

where b, are the programmed values of the D/A converter and

7ref is set to /msb/4. Conversely we get

I piyAx, =0):

4/ref

4IrefP(yi\x, --= 0)

b\ b2 h

2 4 8

A4

16 32
+1+

64

bi

128

(5.11)

for the complement of p(y, \x, = 1).

For the binary-weighted current sources we used simple cas-

code structures. The current switches are of very small size

(W/L = 2(im/O.8 (im) to allow fast switching. The summed

currents are passed to the input of the decoding network by cur¬

rent mirrors. The current mirror transistors are all equipped
with regulated-cascode structures [135]. Hence, the resulting

high-impedance output of the D/A converter provides well de¬

fined input values to the decoding network. The layout of the

complete converter, as shown in Fig. 5.33, is as compact as pos¬

sible (334 x 434 (im2). However, the D/A convert design fol¬

lows a traditional design approach and the layout therefore uses

Robust design of the

current-steering D/A

converter

132 Chapter 5. Decoder Examples

Figure 5.32

f.pO.k-1) Ip(y,\x=Q)

data
b7

static register

Current-steering D/A converter with binary-weighted current

a considerable amount of silicon area due to matching consid¬

erations. 45 of these D/A converters are placed on the chip:
44 converters are used for the decoding network inputs, and for

one converter the output signals are connected to the chip pads
for measurement purposes.

5.3.3 Automating the Design Process

Generating the

schematics and

layout of a large

analog network

Drawing schematics and layouts of analog decoding networks

becomes too complicated for large codes. The design is very

susceptible to drawing errors that will later on affect the overall

behaviour of the circuit. Additionally, the design time may get
far too long, and changes in the design may require a complete

redrawing of all the elements of the network. Hence we have to

look for a design flow that offers the construction of the decod¬

ing network. Our aim is thus a computer-assisted methodology
that checks the critical parts, i.e., the interconnections in the

schematic and in the layout of the circuit chip. We have devel¬

oped such a method in the context of the chosen QCRA code,
which we will describe in the following.

5.3. Decoder for a Turbo-Style Code 133

A part ofthe layout showingfour current-steering D/A

converters usedfor the input-value generationfor the decoding
network One D/A converter measures 334 x 434 |im2

Figure 5.33

134 Chapter 5. Decoder Examples

The parity-check The parity-check matrix H of (5.8) together with the allocation

matnx is the basis for ofthe information bits and the channel bits comprises the entire
the automated design information needed to generate both the factor-graph represen¬

tation and the actual decoder structure. Thus we can parse this

matrix and extract the information needed for the design. Each

row of the matrix H provides the information about the parity
checks (XOR functions). The rows with 3 or 4 entries corre¬

spond to 3-port and 4-port fully bi-directional soft-XOR mod¬

ules. In the same way we analyze the columns. In the case of

the [44,22,8] QCRA code, the first 22 columns of the 66 x 44

parity-check matrix correspond to the non-observable, fully bi¬

directional internal 3-port variable nodes. The remaining 44

columns then correspond to the 2.5-port variable nodes. The

module incorporates the output functionality if the correspond¬

ing bit is an information bit. After having parsed the entire

parity-check matrix, we can generate a text file in the Verilog

syntax by the same program. This file contains the structural

description of the decoder. Subsequently, this Verilog file is

imported as a schematic file into the Cadence design environ¬

ment by the program Verilogln. In a next step, the transistor-

level schematics of the building blocks are filled into the empty

place-holders of our design structure. Now we are ready for

the transistor-level simulations, since we have a complete hi¬

erarchic transistor-level description of our circuit. The circuit

simulator tools such as Spectre are well embedded into the de¬

sign framework. Thus the schematic is a central pivot of the

whole design flow.

The second part of the decoder design consists in drawing the

full-custom layout of individual building blocks. They are de¬

signed to be placed in a library as analog standard cells. This

library can then be used with a (digital) place-and-route (P&R)
tool such as CellEnsemble or SiliconEnsemble of the Cadence

IC design framework. Special attention has to be paid to the

choice of the width of an individual cell such that the modules

are placed correctly by the software tool. After having drawn

the individual cells, the layout of the entire decoder can be

generated automatically by the P&R tools of the design frame

work. For the final chip, the additional bias-network blocks can

be assembled semi-automatically inside the pad ring of the chip

layout.

Design of analog
standard cells

A flow-chart of the We have sketched the procedure presented above in the flow-

design procedure chart shown in Fig. 5.34. The described method has been

5.3. Decoder for a Turbo-Style Code 135

sucessfully applied to the design of our test chip. Fig. 5.35

shows a clipping of the generated decoder core. Clearly visible

is the massive power-feeding trunk on the right of the image
that provides the supply for the decoder core.

Simulation Results 5.3.4

The analog network of the whole decoder chip has been simu- Fast transients of the

lated using Cadence's Spectre simulation tool. The BSim 3v3 decoder circuit

model was used for the MOS transistors. A typical simulation

response is shown in Fig. 5.36. It demonstrates the correction

of three toggled bits (channel bits 2, 3, and 4) on a binary sym¬

metric channel (BSC) with a crossover probability of 5%. We

have chosen the configuration with three consecutively toggled
bits because it is hardest for the decoder circuit to recover the

correct information in this case. In fact, the toggled bits are lo¬

cated on the same minimum-girth loop, as we can easily see in

Fig. 5.28. The transient curves in Fig. 5.36 show the computed

approximate a posteriori probabilities p(u, |y) for all 22 infor¬

mation bits. In this example, it takes about 100 ns until the sign
of all output probabilities have reached their final value. The

bias current of each module was chosen to be 200 u, A. A prob¬

ability of 1 corresponds to a current value of 200 u.A, a proba¬

bility of 0 corresponds to 0 u,A. A single 5V supply was used.

The total maximum (static and dynamic) power consumption
was estimated to be 1W. In Fig. 5.36 we also observe the non-

perfect action of the clamping reset switches. It always results

in a light preference of the applied input value, i.e., acorrectbit

immediately starts in the right direction of the decoding trajec¬

tory.

As soon as the errors are no more placed on the same minimum- Existence of vanable

girth loop, the decoding network gets considerably faster. This decoding difficulty

behaviour is shown in Fig. 5.37 and Fig. 5.38. In these simu¬

lations we use the same simulation conditions as before. We

observe an opposite situation if we introduce more toggled bits

than the decoder is capable of correcting. An oscillatory be¬

haviour is observed if 4 input bits on the same minimum-girth

loop are toggled. The transient simulation of this input configu¬
ration is shown in Fig. 5.39. Note that we also observe the same

oscillations in digital simulations. Hence these oscillations are

an inherent problem of this code.

Chapter 5. Decoder Examples

Matrix H

(MATLAB) ©

parse H

write Venlog
file

Venlog

import with

Verilogln

\ Composer
© \ draw /

\ schematic /

schematic

Virtuoso /
draw / ©

\cell layout;

cell layout

Cadence Design Framework

©

' ' !
Spectre

simulation ©
CeEEiisemble

SfliconEnsemble

P&R

' '

1 '

transient curve)

Virtuoso /

draw bias / QS)
i networks /

core layout
layout

bias network

©
SflicoiiEiisemMe

final assembly

final layout

5.34 Designflow used to automate the construction oflarge analog

decoding networks.

5.3. Decoder for a Turbo-Style Code 137

A part ofthe automatically generated layout ofthe turbine

decoder The massive metal lines on the right are part ofthe

power-feeding trunk

Figure 5.35

138 Chapter 5. Decoder Examples

p(K,|j) [pA]

200 r

-p(«2=l|y)

p("i=i|y)-EL_/*'

""f~t~TÎ

t[ns]

Figure 5.36 A typical simulation responsefor the decoder ofFig. 5.28:

transient curves ofthe approximate a posteriori probabilities

p(Uj \y)for j = 1,2,..., 22 given the encoded information
word u = {1,0,0,0...,0} and three bit errors in the received

channel information (channel bits 2, 3, and 4). Probability 1

corresponds to 200 \i A.

p(«,|y) [nA]

200 F

-p(«i=i ly)

x-,^p("2=1 ly)

•2s**»

70 t[ns]

Figure 5.37 Transient simulation using the same simulation conditions as

before. Bits 1, 3, and 4 are toggled in this case.

5.3. Decoder for a Turbo-Style Code 139

p(«,|y) [nA]

200 r

y <^p(Kl=l|y)

'

/
/

\

%
*

,<=-p(«2=l|y)

p("3=i|y)-

10 20 30 40 50 60 70 t[ns]

Transient simulation using the same simulation conditions as

before. Bits 2, 4, and 6 are toggled in this case.

Figure 5.38

p(K,|j) [pA]

200 c

-p(«2=i|y)

Transient simulation using the same simulation conditions as

before. Bits 1, 2, 3, and 4 are toggled in this case. Oscillations

are also observed in time-discrete simulations.

Figure 5.39

140 Chapter 5. Decoder Examples

Table 5.2

Technology
#BJT

#PMOS

Supply voltage
Power consumption

@ /ref = 200 (iA

Chip area

Core size

Decoding speed (with

margin)

AMS 0.8 (im 2M2P BiCMOS

3895

2884

single 5V

1W (estimated)

5.28 x 5.45 mm2

2.7 x 2.5 mm2

150 MBit/s (estimated)

Summary ofthe simulated chip characteristics ofthe prototype
turbine decoder.

5.3.5 Test Setup

Floorplan of the

turbine decoder chip

A chip micrograph of the complete prototype implementation
is shown in Fig. 5.40. The entire chip area is 2.8 x 2.6mm2

including pads. The area of the decoder itself is 1.7 x 0.7mm2.

The decoder is situated in the lower right corner of the die. The

remaining area is taken by the D/A converters needed for the

input value generation. The main simulated chip characteristics

are summarized in Table 5.2.

The HP 83000 based

test system

For testing the integrated circuit chip, an HP 83000 digital cir¬

cuit tester is used as shown in Fig. 5.41. The silicon dies are

mounted by the COB assembly technique on small PCBs. The

COB adapter is then connected to the DUT adapter board. The

digital tester directly commands the on-chip D/A converters us¬

ing a 6-bit address bus and a 7-bit data bus. The DUT adapter
board generates the bias currents and the reference voltages for

the test chip. Additionally, the DUT adapter board contains

eleven I-V converters for half of the analog probability outputs.
The analog voltages may be measured by a high-speed oscil¬

loscope, whereas the on-chip bit sheer outputs are directly fed

back to the HP 83000 test system on a 22-bit wide digital bus.

5 3 Decoder for a Turbo-Style Code

Chip micrograph ofthe protype turbine decoder chip The

actual decoder is the bottom rightpart ofthe chip whereas the

D/A converters are placed in an L-shape on the remaining

Figure

space

_0)
Q.

X

o
o
u

<u

Û

LO

u

COB Adapter for

Turbine Chip TP

DUT Adapter Board

Figure 5.41 : The test setup ofthe turbine-decoder based on the HP 83000 digital circuit tester

5.4. Probability-Based Analog Viterbi Decoder 143

Analog Viterbi Decoder Using Probablity 5.4

Propagation Modules

The Viterbi algorithm [23,24] is an essential tool for every com- Valuable Viterbi

munications engineer. Several analog implementations have algorithm

been made so far to speed up Viterbi decoders and lower their

power consumption [28,32,37,38]. In all these analog imple¬
mentations, the digital add-compare-select (ACS) units, which

are the key parts of the whole decoder, are replaced by analog

ones, but the rest of the decoder, in particular the path memory
and the survivor-path trace-back units, is still digital.

In the following, we will reformulate the original Viterbi algo¬
rithm to fit the framework of sum-product calculus and prob¬

ability propagation networks. Using this new formulation we

will then propose a modified architecture for the implemen¬
tation of large probability-propagation-based Viterbi decoders

which could be used, for example, for the decoding of highly

complex trellis codes and channel tracking applications.

Reformulation of the Viterbi Algorithm 5.4.1

The general MAP sequence detection Problem

The Viterbi algorithm was initially proposed in 1967 as a

method of decoding convolutional codes [23]. It has been rec¬

ognized since then that it is a general recursive solution to

the MAP sequence detection problem of a finite-state discrete-

time Markov process observed under memoryless noise condi¬

tions [24]. The encoding Markov process can be characterized

by a state transition diagram as given, for example, in Fig. 2.3.

The observed process is Markov in the sense that the probabil¬

ity P(xk+i |*o,xi, • • • ,xk) of being in state xt+i at time k + 1

given all states up to the time k, depends only on the state xt at

time/::

P(xk+\ \xo,xi,. ..,xk) = P(xk+\ \xk). (5.12)

Furthermore, the state sequence of all possible transitions can

be described by a trellis diagram. In fact, the Viterbi algorithm
can be seen as the solution of the so-called shortest-path prob¬
lem through a given graph, i.e., the trellis diagram.

MAP sequence

detection of a Markov

process

Problem description
by a state-transition

diagram

144 Chapter 5. Decoder Examples

The original definition of the Viterbi algorithm tries to maxi¬

mize the joint probability measure

P(x,y) = P(x)P(y|x) (5.13)

K-l K-l

= Y[P(xk+i\xk)]"[P(yk\xk+i,xk), (5-14)

k=0 k=0

'

?
'

where x is the state vector and y is the observed vector of length
K, and using a convenient definiton of the transition ^ at time

k as the pair of states (xk+i,Xk). Usually, K is called the con¬

straint length of a decoder. If we now assign a distance measure

for each branch of the trellis diagram, i.e., for each state transi¬

tion %k, according to

M&) = \nP(xk+i\xk) + \nP(yk\i;k) (5.15)

we can rewrite (5.14) as

K-l

lnP(x,y)=J2^kl (5.16)

k=0

which has to be maximized to get the sequence most probably

generated by the encoding process, given our observation.

Viterbi algorithm for an AWGN channel

Path metrics for an We consider in the following a coded transmission system
AWGN channel where the channel can be modeled as an AWGN channel.

Hence, using the definition (2.12) of the probability density
function of a Gaussian process, we may now define the actual

path metrics as

(y-x)2

ß a p(y\x) a e i°2
, (5.17)

X=-(y-x)2 ocln/z, (5.18)

where À is the squared Euclidean distance measure between the

sent and the received symbol and \x is proportional to the con¬

ditional probability p(y\x) which is simply a shifted Gaussian

distribution. According to (5.16), the path length expression

5.4. Probability-Based Analog Viterbi Decoder 145

S, T„ S, 0,

a) b)

A simple butterfly trellis section usedfor defining the update Figure 5.42

rules ofthe Viterbi algorithm. Fig. a) shows the notation ofthe

max-sumformulation and b) shows the sum-product case.

may be written in different forms:

K-l K-l K-l

In Y\ n = Yl ln^k a YlXk-
k=0 k=0 k=0

(5.19)

Since we are heading for the global maximum of the path Solution of the

length, the maximum has also to be satisfied locally. So we
shortest path problem

can finally formulate the well-known iterative max-sum Viterbi

algorithm update rule for encoders with a single input bit:

rhk+l =rmx[X11jc + r1jc,Xj1jc + rJjc], 0<i,j<K-l

(5.20)
for the update from time instance k to time instance k+l (see

Fig. 5.42a)). The variables T are the accumulated path metrics

for each state of the trellis diagram. The result of the selection

operation (max) at each state is stored in a memory as 1 bit of

digitial information, hence the name storage-survivor memory.
This local decision information is used later on for tracing back

the most probable (or shortest) path.

Instead of maximizing J2k^k we could equally well maximize

In \\k l-i-k of the original Viterbi algorithm formulation of (5.14).
This formulation of the Viterbi algorithm is also known as the

max-product formulation. It has been used for a long time to ap¬

proximate the sum-product algorithmbecause of its much lower

Changing the

definition of the path
metrics

146 Chapter 5. Decoder Examples

computational complexity. Instead of approximating the sum-

product algorithm with the max-product calculus, we could

equally well do the opposite. By some slight modifications of

the max-product update rules, we can state the iterative update
rules of the sum-product formulation of the Viterbi algorithm:

®i,k+\= IMi,k-®i,k + l-ijijc-®j,k, 0<i,j <K-1. (5.21)

Comparison of two

versions of the

Viterbi algorithm

with the notation according to Fig. 5.42b). Again, the variables

© are the accumulated path metrics for each state of the trellis

diagram.

If we compare the original max-product formulation of the

Viterbi algorithm with the sum-product algorithm approxima¬

tion, we observe strict equivalence if max(/zi,/z2) = mi + M2-

So let us briefly analyze the following expression assuming an

AWGN channel and mi > /Z2 or equivalently a\ < ct2, where the

parameters a\ and a^ were introduced for mathematical sim¬

plicity only:

\1\ + M2

Ml

M2

Ml

-(a, -a.)

e

lim„ >0()=0

max(/zi,/z2)

Mi

(5.22)

Free tuning

parameter <x

The parameter a is a free tuning factor and has the meaning of

a signal-to-noise ratio (SNR). But do not confuse this parame¬

ter a with the SNR of the AWGN channel. Now we observe

that by diminishing a to zero, the path metrics are pushed more
and more apart from each other. At the limit when a = 0 we

get exact equivalence with the maximization function. Hence,
the sum-product Viterbi algorithm formulation has an indepen¬
dent tuning parameter, which allows to get results equivalent
to those of the traditional max-sum formulation (or min-sum

formulation if the path metrics are defined by - ln/x).

Simulation results for

the two formulations

Simulation results like the one in Fig. 5.43 for a rate R = 1/2

[171,133] convolutional code confirm this theoretical equiv¬
alence. If we choose a fixed a < 0.1, corresponding to an

SNRdecoder > 20 dB, the coding loss gets negligible. Con¬

versely, one may run into numeric problems if one chooses a

too small. In a nutshell: no adaptation of the parameter a is

necessary in order to get good decoding results with the sum-

product formulation.

5.4. Probability-Based Analog Viterbi Decoder 147

^> viterbi (min sum version)
-o- prob viterbi opt SNRdecoder

D prob viterbi SNRdeco[ie =5dB

—X— prob viterbi SNRdecode =10dB

—\— prob_viterbi SNRdecode =20dB

Comparison ofsimulation results ofa Viterbi decoderfor a

rate R= 1/2 [171,133] convolutional code using a traditional

ACS and a Viterbi decoder using the equivalent SPS unit. No

difference is visible between the min-sum Viterbi decoder and

the probability-based Viterbi decoder ifa < 0.1

fSNRdeooder > 20 dBj.

5 6

Figure 5.43

148 Chapter 5. Decoder Examples

Viterbi decoder using sum-product-select modules

A new probability-

propagation-based
decoder architecture

The block diagram
level of the Viterbi

decoder

Today mostly
voltage-mode based

implementations

In the following subsection we will postulate a new Viterbi de¬

coder architecture that uses our probability propagation mod¬

ules to do the path metric calculations. Depending on the defini¬

tion of the branch metrics, the ACS unit of a traditional Viterbi

decoder performs an operation known as the min-sum calcu¬

lus (or the max-sum calculus) in the context of iterative decod¬

ing [149]. But as we have seen before, we may change the def¬

inition of the branch metrics from the squared Euclidean dis¬

tance measure to a conditional probability measure. By doing
this, the min-sum calculus can easily be transformed into the

sum-product calculus.

Following the notation in [37], Fig. 5.44 shows the simplified
block diagrams for both a traditional Viterbi decoder and the

newly proposed probabilistic Viterbi decoder. The branch com¬

putation unit (BMC) computes the appropriate branch metrics

with respect to the received symbols. These metrics are passed
either to the ACS or the sum-product-select (SPS) unit. The

processed output (1-bit digital information) is then passed to

the storage-survivor-memory (SSM). This memory keeps track

of the decisions made by all ACS units or the SPS units, respec¬

tively, and traces back to find the most probably sent sequence

of information bits. The SSM is strictly the same circuit for

both versions of the analog Viterbi decoder.

To date, most of the analog Viterbi decoder implementations
are based on voltage-mode circuits such as switched-capacitor
circuits. To our knowledge, current-mode implementations of

Viterbi decoders have just started to emerge. A first com¬

plete current-mode implementation using switched-current (SI)

memory cells in the ACS loop and state-vector renormalization

was presented by Demosthenous and Taylor [37]. However, the

decoder can be simplified and thus speeded up in many ways

by applying the sum-product calculus as in our approach.

5.4.2 Proposed Implementation

The proposed circuit

implementation

A probabilistic Viterbi decoder core for a rate R = 1/2 con-

volutional code with constraint length K using SPS units in¬

stead of the traditional ACS units is shown in Fig. 5.45. As

5.4. Probability-Based Analog Viterbi Decoder 149

ACS feedback loop
/

received

channel

information

1 l
BMC

Lge»
ACS SSM

decoded

information

SPS feedback loop
/

received

channel

information

EL^.
—»-

1
—*-BMC SPS SSM

decoded

information

Simplified block diagram ofa traditional analog Viterbi

decoder (top) and a probabilistic analog viterbi decoder with

building blocks ofFig. 3.13 in the SPS unit (bottom).

Figure 5.44

opposed to the ACS circuit implementation of [37], this cir¬

cuit implementation is inherently immune to branch-metric-

representation overflows or underflows, since the branch metric

signal-currents represent probability distributions whose sum-

current vector is bounded. A renormalization of small currents

is also inherent to the circuit topology of the basic sum-product

building block as presented in Chapter 4.

At the core of the SPS unit we find the branch-metric multi¬

plier (Qu to Q14) consisting of only one bipolar transistor (or
one MOS transistor in weak inversion) per element-wise multi¬

plication of two discrete probability distributions. The dashed

transistors Q13 and Q14 are present due to symmetry considera¬

tions and do not contribute to the output signal, as described in

Chapter 4. A small overhead is added by the extra transistors at

the input doing the logarithmic compression of the input prob¬

ability distribution. For practical binary cases with a constraint

length K > 7 and rate R = l/2, the overhead of four input tran¬

sistors is negligible compared to the 2K+l transistors needed

for the multiplying part. The bases of Qu to Q14 are connected

(shown as dashed lines in Fig. 5.45) to one of the logarithmi¬

cally compressed input metrics according to the edge label of

the trellis diagram. Before adding the two corresponding paths
of the trellis diagram, the product currents are copied twice by
the pMOS transistors Mio to M24. One copy is used for the

Discussion of the

circuit

150 Chapter 5. Decoder Examples

M10 M12 M14 M2 *-- M4 M24 M22 M20

Figure 5.45 Circuit implementation ofa 2K
l
-state SPS unitfor binary

symbols including itsfeedback loop.

5.5. High-Level Study of Plain CMOS Implementations 151

current summation, and one copy is fed into the current com¬

parator consisting of transistors Mi to M4. The result of this

comparison is then passed to the SSM unit by a digital inverter

where it is stored and used for the survivor-path trace-back pro¬

cess. The sum current of each state is stored in a ping-pong SI

memory cell to form the feedback loop of the SPS unit (drawn
as blackbox in Fig. 5.45). Transistors Q15 and Qi6 - together
with the remaining 2K~2 sections for each state - form a renor-

malization circuit. The sum current of all states together is thus

defined by /bias and affects the speed of the whole decoder.

Although a BiCMOS process is used for the probabilistic ana¬

log Viterbi decoder, the architecture is very attractive for high-
and highest-speed implementations of such decoders, since the

circuits have fewer transistors in the data path than other ana¬

log Viterbi decoder implementations. Speed can be adapted in

a wide range by changing the bias current. On the other hand,

an ordinary CMOS process can be used to build an ultra-low-

power analog Viterbi decoder with transistors operating in weak

inversion. In this case, all bipolar NPN transistors are replaced

by nMOS transistors.

For the design of the circuit, we have to consider the same

precision requirements as in the case of a digital implemen¬
tation. A resolution of 5 to 7 bits on the log-likelihood level,

i.e., for the squared Euclidean distances, is generally sufficient

for digital circuit implementations. Smaller quantization of the

data induces noticeable losses in the coding gain. Having in

mind the precision discussion of Section 4.4.1, a design fulfill¬

ing these specs is feasible even with relatively small transistor

sizes. However, systematic errors should be avoided by doing
a correct layout of the circuit chip. This point is even more

important, since we reuse the same computation section all the

time.

CMOS

implementation

possible

Precision

considerations

High-Level Study of Plain CMOS

Implementations

5.5

Today's semiconductor technology is driven by digital applica¬
tions in CMOS. Hence, BiCMOS technology lags by at least

one and a half generations behind the leading CMOS technolo¬

gies. For heavily parallel analog circuit applications, the mini-

CMOS drives

semiconductor

technology

152 Chapter 5. Decoder Examples

We would like to

implement our

circuits in CMOS

technology

Redundancy

improves decoding

performance

mal feature size, which is the key parameter for digital applic-
tions, is not always the most important parameter. Wiring den¬

sity in all three geometrical dimensions is equally or even more

important for complex connection patterns. A second argument
for using CMOS technology instead of BiCMOS technology is

its lower production cost. For economic reasons, everything
that can be done in CMOS will be implemented in this technol¬

ogy.

For all the practical and economical reasons mentioned above,
it will be advantageous to implement the circuits of the consid¬

ered analog probability propagation networks in CMOS tech¬

nology. Weak inversion operation of the MOS transistors en¬

ables the direct implementation of the circuits, but by nature

they are relatively slow due to the low current densities in

the transistors. Raising the current level does not help, since

widening the transistors to enable weak-inversion operation at

a higher current level increases the parasitic gate-source capac¬

itances proportionally and the speed measure gm/C remains al¬

most at the same level. However, with the transistor sizes of to¬

day's advanced CMOS technologies rapidly shrinking towards

the sub-0.1 |im range, the transistors are operating more and

more in moderate or even weak inversion even for high-speed

operation. We will support this claim briefly after having in¬

troduced a very simple MOS model which is continuous from

weak inversion to strong inversion.

In a second subsection we will introduce the concept of dif¬

ferent factor-graph representations and thus different decoder

architectures for the same underlying code. By doing this we

will get code descriptions with redundant equations. By ex¬

plicitly constructing code descriptions with over-constrained

equation sets we will get better decoding performance if we

use quadratic-law MOS tranistors in our probability calculation

modules. Part ofthe work presented in this subsection was done

in two diploma projects under our supervision: Moser [150] in¬

vestigated the [8,4,4] Hamming code and its different realiza¬

tions and Fromherz and Schinca [151] implemented the contin¬

uous MOS model in the high-level simulation tool.

5.5. High-Level Study of Plain CMOS Implementations 153

Continuous CMOS Model from Weak to Strong
Inversion

5.5.1

The operational regions of exponential behaviour in weak inver¬

sion and the quadratic behaviour of strong inversion in CMOS

circuits are not separated abruptly. There is a smooth transi¬

tion between these two regions of operation. Thus, it will be

interesting to see by how much the bit-error rates are degraded
if the MOS transistors are operated in moderate or strong in¬

version. To simulate these effects, we set up an object-oriented

high-level simulation environment. All transistors of the core

muliplier matrix are in saturation and are modeled according
to [109,152]

Id-- InßU^ln2 1 + exp
VG-nVS-Vtb

2nUj
(5.23)

where ß = fi Cox W/L, the slope factor n, and all other symbols
have their usual meaning (see also the List of Symbols at the

end of this text). The finite output resistance of the MOS tran¬

sistors and all other non-idealities were neglected. We will use

this simple model in the high-level simulations of Section 5.5.3

to compare different decoder implementations.

Towards Weak Inversion with State-of-the-Art CMOS

Processes

Continuously from

exponential to

quadratic behaviour

The degree of inversion of a single transistor can be determined

by the so-called inversion coefficient IC, which was introduced

by Vittoz [152]. It describes the ratio between the actual drain

current and the specific current, which is the factor before the

squared logarithm function of (5.23):

IC:
/d

2nßUj
(5.24)

Definition of the

inversion coefficient

For IC <C 1 the transistors operate in weak inversion; generally
IC < 0.1 is enough for a reasonable approximation of the expo¬

nential behaviour. By lowering the transistor length L and leav¬

ing the transistor width W and the drain current Id the same, we

actually diminish the inversion coeffient proportionally. At the

Advanced CMOS

processes work more

and more in moderate

or even weak

inversion

154 Chapter 5. Decoder Examples

same time, the parasitic gate capcitance Cq is also proportion¬

ally reduced. Moreover, the frequency measure gm/Co goes up

by l/L2 since gm is assumed directly proportional to Id in the

weak-inversion region. If we want to achieve a given operation

frequency and use a more advanced process with smaller min¬

imal feature size Lmm, we will observe that the inversion co¬

efficients of the transistors will be reduced by a factor 1/Z^m.
So just using a more sophisticated CMOS process pushes the

operation of the transistors rapidly towards the weak-inversion

region. Hence, advanced CMOS processes will allow the high¬

speed operation of our building blocks in weak-inversion and

thus without any approximations. Additionally, these CMOS

processes generally provide many metal layers, which enables

very complicated connection patterns both on local and global
scale. Thus we may implement very complex systems on one

single chip.

5.5.2 Redundant Equations and Code Realizations

In the following, we will introduce the concept of redundant

parity-check equations by proposing different realizations of

the [8,4,4] extended Hamming code. We will use these code

descriptions afterwards for high-level simulations to compare

the decoding performance using different operation regions of

the MOS transistor.

The [8,4,4] extended The [8,4,4] extended Hamming code is characterized in its ba-

Hamming code sic form by the four equations

X5=«i©«2©M3, (5.25a)

X6 = Ml©«2©M4, (5.25b)

Xj = Ml©M3©M4, (5.25c)

*8 = M2©M3©M4, (5.25d)

where © denotes the addition modulo-2 operation. These

parity-check equations encode the dataword u = [u i, U2, «3, «4]
onto the codeword x = \u\,U2,«3,«4,x^,X(„x-i,x%\. The code

is a so-called systematic code because the databits u\,...,m

appear directly in the codeword; x*,,...x% are called parity bits.

5.5. High-Level Study of Plain CMOS Implementations 155

Factor graph ofthe extended [8,4,4] Hamming code in its

basicform.

Figure 5.46

In Fig. 5.46, the basic realization of the [8,4,4] Hamming code

is shown. Note that there exist other realizations, i.e., other

factor graphs of the same code. They may lead to different de¬

coding performance as we will show in the following subsec¬

tion. To illustrate these differences, two additional examples
are given in Fig. 5.47 and Fig. 5.48. For the second realization,
four hidden states s\ to 54 are introduced in a tail-biting manner:

Changing the code

realization by

introducing state

variables

S\ =«3 ©«4,

52 =U4®Ui,

53 =U\ ®U2,

S4=U2®U3.

(5.26a)

(5.26b)

(5.26c)

(5.26d)

Using these hidden states, the parity-check equations (5.25a) to

(5.25d) become

x5 = m3 ©53,

X6 =U2®S2,

Xq = U\ ©51,

X% = M4©S4.

(5.27a)

(5.27b)

(5.27c)

(5.27d)

The factor graph of Fig. 5.47 is a straightforward image of the

above eight equations (5.26a) to (5.27d).

156 Chapter 5. Decoder Examples

Ö

o

Figure 5.47
Realization 2 ofthe extended [8,4,4] Hamming code withfour
state variable nodes.

5.5. High-Level Study of Plain CMOS Implementations 157

1*5,

Realization 3 ofthe extended [8,4,4] Hamming code withfour
redundantparity checks.

Figure 5.48

Realization 3 has been obtained by adding four additional par¬

ity check equations to the equation set (5.25a) to (5.25d) [150].
These redundant equations add additional complexity in the de¬

coder, but they do not change the code itself. The codeword is

still built using the original parity-check equations (5.25a) to

(5.25d).

Redundant equations
for the extended

Hamming code

High-Level Simulation Results 5.5.3

CMOS-only decoder for the extended Hamming code

A first simulation set was run with the three realizations of

the [8,4,4] Hamming code presented in the previous subsec¬

tion [150]. The transistors were designed to operate in weak

or in strong inversion. The bits were encoded according to the

parity-check equations (5.25a) to (5.25d) and then transmitted

over a channel with additive white Gaussian noise (AWGN).
The results of Fig. 5.49 indicate clearly that different realiza-

High-level
simulations for the

extended Hamming
code

158 Chapter 5. Decoder Examples

exponential

2 3 4

SNR [dB]

Figure 5.49 High-level simulationsfor a (8,4,4) Hamming code where the

encoded bits are transmitted over an AWGNchannel.

Comparison between exponential and quadratic characteristic

ofMOS transistors.

tions of the same code behave differently during decoding op¬

eration. Realization 3 with four redundant equations performs
best, both in weak and strong inversion, but the other realiza¬

tions also perform rather well in the quadratic (strong inver¬

sion) region, with a coding loss of less than 1 dB compared to

the ideal exponential characteristic. These results suggest that

the use of redundant equations may even help to overcome cod¬

ing loss when using MOS transistors in the quadratic (strong

inversion) region [151].

CMOS-only decoder for the tail-biting trellis code

A slight coding loss

for the tail-biting
decoder if operated
with MOS devices

only

A second experiment was conducted using the binary [18,9,5]

tail-biting trellis code of Section 5.2. All the NPN BJTs were

simply replaced by properly sized nMOS transistors. As is

shown in Fig. 5.50, the decoder of Fig. 5.13 operated in the

quadratic region loses at most 0.5 dB compared to its ideal ex-

5.6. Appendix — Schematics of the Tail-Biting Trellis Decoder 159

High-level simulationsfor a binary [18,9,5] tail-biting trellis

code where the encoded bits are transmitted over an AWGN

channel. Comparison between exponential and quadratic
characteristic ofMOS transistors.

Figure 5.50

ponential implementation. However, note that no mismatch ef¬

fects were included so far in this high-level simulation setup.
But it is expected that these mismatch-effects only introduce a

slight loss in decoding as it was discussed in Section 4.4.1.

Comparable attempts to force circuits, originally designed for

bipolar technology, to operate in the quadratic (strong inver¬

sion) region of plain CMOS technology have been made. For

example, Gilbert's array-normalizing circuit [131] has been

used in a fuzzy logic controller to scale current vectors [153].

Although the circuit does not anymore scale the quantities cor¬

rectly, the order of precedence is preserved in the monotoni-

cally increasing transfer function, which is sufficient for build¬

ing fuzzy logic circuits.

Exchanging MOS

devices for BJTs can

be found in other

circuits

Appendix — Tail-Biting Trellis Decoder 5.6

_0)
Q.

X

o
o
u

<u

Û

LO

a-

u

hW Ht! Ht! WHt! hi! Ht! ^hM^^ MHt! Ht! Ht!
' o il

')i '
il)i e

' '
ii

')i
'

o ii
')i '

ii (i e
' ' ii ' <i

pyOO o-

pyOl

I—*—®"

ï\

"\1

pylO tu

pyll

Vreffl

VrefA o-

ri

pxOO o*—»—

*!

2

pxOl

l\ r<

pxlO o*—»—

d

®4

pxll

o Figure 5.51 : Circuit implementation ofthe type-B module: forward trellis.

rhta^iX W^tX flW^ Wr^Xr^
I Q 1 |

I (|
I 1 | (| Q ! I 1 |

I 1 |
I Q 1 |

I 1 |
I 1 | (| Q ! I 1 | I ^ I

1

o o

\ <\

pyOO o-

pylO

^
AÛ

pyOl on

pyll o-H

VrefB o 1

^

VrefA o-

A

o o

<\ \

rt

pxOO o-» B

c.

A

1

o o

A 2

pxlO o-»—f-

t

A A A

o o

<\ \

rt

PXOI O-» B

t

9)4

SaA3

PXII CH--B—

Figure 5.52: Circuit implementation ofthe type-C module: backward trellis.

_0)
Q.

X

o
o
u

<u

Û

LO

a-

u

w^^ X XX M K dididi M MM

pxOO
rt û

pxlO o-i

pxOl

,J^

pxll o-»-

VrefB o 1

,Jr-

VrefA o-

Û rK

pyOO

iÛ rK

pylO

h; Ä Ä

pO

rt

pyll

J_h

©4

pi

Figure 5.53: Circuit implementation ofthe type-D module: final summarization.

5.7. Appendix — Schematics of the Turbine Decoder 163

Appendix — Schematics of the Turbine

Decoder

5.7

T

lnl<0> o-

Inl<l> o-»-

rt

M3r

X

VrefB o k

In3<0> o

H

r<

M„

O-

In3<l> o-

In2<0> o-

In2<l> o-t~

VrefA i

rf rt

^ J
©4:

rf

M2r

T

rt rtrt

K
(3)4:

Circuit implementation ofthe fully bidirectional 2.5-port Figure 5.54

variable node. Denoted as 'Channel-Bit' in Fig. 5.28.

164 Chapter 5. Decoder Examples

T

^ /s?
,

M*
,

I /
~'

P P
"

^-c~—" #

lnl<0> »

Vreffi

Inl<l>

o f-*^

rt ri

Li
M,r

In3<l> o-

"31-

VrefA '

K ri

LU
©4,

rt ri ri ri
II I 1

^J
©4:

Figure 5.55 Circuit implementation ofthe fully bidirectional 2.5-port
variable node with output bit sheer Denoted as

'Info-/Channel-Bit' in Fig. 5.28.

5.7. Appendix — Schematics of the Turbine Decoder

T

rt ri Krf

^J
©4,

;?
r^ © 4,

current

comparator

Circuit implementation ofthe fully bidirectional 2.5-port
variable node with output bit sheer Denoted as

'Info-/Channel-Bit
'

in Fig. 5.28. A special 'boxed'

pMOS-transistor symbol is usedfor the cascoded transistors

on the top rightpart ofthe circuit.

166 Chapter 5. Decoder Examples

T

£>

lnl<0> &

Inl<l> o->-

J^
rt r<

,^r
In3<0> o-

In3<l> °->-

,^r
^

VrefB o i-

In2<0> »

In2<l> o-«-

VrefA o *

rt rt ri ri

%
©4

Figure 5.56 Circuit implementation ofthe fully bidirectional 3-port

soft-XOR node (leftpart).

5.7. Appendix — Schematics of the Turbine Decoder

&

\\ vi

1
>rï W W W

&

rt
\r

n~1 y \\ y

©4

Circuit implementation ofthe fully bidirectional 3-port

soft-XOR node (rightpart).

168 Chapter 5. Decoder Examples

>^ y&?i w ww s

Vreffi '

In2<0> c

0*

->

CO 4i

Figure 5.57 Circuit implementation ofthe fully bidirectional 4-port

soft-XOR node (leftpart).

5.7. Appendix — Schematics of the Turbine Decoder

^^& ii^tj w SoS &t

0*

Circuit implementation ofthe fully bidirectional 4-port Figure

soft-XOR node (rightpart).

170 Chapter 5. Decoder Examples

Chapter 6

Concluding Remarks

Summary of the Results 6.1

In this dissertation we have presented a technique for effi¬

ciently implementing the sum-product algorithm (or probabil¬

ity propagation algorithm) in analog VLSI technology. The de¬

scribed new type of analog computing networks exhibits a nat¬

ural match between probability theory and transistor physics.
The elementary modules ofwhich these networks are composed
include probabilistic versions of all standard logic gates as well

as more general non-binary sum-product modules. The obvious

application of such networks is the decoding of error-correcting
codes as described in this dissertation. However, any factor

graph where all function nodes of degree larger than one are

{0, l}-valued can be mapped onto such analog networks.

The transistor-level implementation of the building blocks are

very simple current-mode vector multipliers and current-mode

selective adders that process discrete probability distributions.

The core circuits can be interpreted as translinear circuits

or log-domain signal processors. Basically one transistor is

needed to build the pair-wise product of two elements of dis¬

crete probability distributions.

The presented networks follow a bio-inspired approach and

therefore omit many plagues of traditional analog circuit de¬

sign such as data-representation overflows, temperature depen¬
dence, linear approximations of non-linearities, component-

variations, and tedious manual design flows. The circuits ex¬

ploit rather than fight the inherent non-linearities of the used

exponential characteristic of both bipolar junction transistors

and weakly inverted MOS transistors. By building large, highly
connected networks out of very simple and low-precision com¬

putation nodes, a high precision and high processing through-

A new technique for

an analog

sum-product
algorithm

implementation

Translmear transistor

core of the building
blocks

Bio-inspired circuit

design approach

172 Chapter 6. Concluding Remarks

put is reached on the system level. Due to their simplicity and

computational efficiency, our analog networks exhibit a distinct

advantage in the speed-power-ratio compared to their compara¬

ble digital counter-parts. According to our (still limited) expe¬

rience, this advantage amounts to at least two orders of magni¬
tude.

Automated analog We have also presented a design methodology that allows a di-

design-flow rect mapping of the parity-check-matrix description of a given
code to the factor-graph representation and further on to the

structural description of the decoding network. It is based on

the standard digital design-flow of chip-design environments

such as is available in Cadence design tools. By automati¬

cally constructing the decoder circuits rather than doing a full-

custom designby hand, we circumvent tedious manual verifica¬

tions and fundamentally speed up the design process. This also

opens the prospect of fabricating large first-time-right decoder

systems.

The practical decoder examples presented in this dissertation

showed a system-level behaviour that is remarkably robust

against all sorts of non-idealities even for the discrete transistor-

device implementation. The measured results also showed a

close agreement with the transistor-level simulations. Further¬

more, we verified many theoretical design aspects with these

practical implementations. Finally, the high-level design stud¬

ies are a rich source of ideas for future work on this subject.

Beside the decoding applications, which are the main subject of

this dissertation, the probability propagation networks may be

applied in various other related domains such as the tracking of

hidden-Markov models, widely used for many pattern recog¬

nition tasks, and the inference on Bayesian networks, which

appear in the context of artificial intelligence problems.

6.2 Ideas for Further Work and Outlook

To round off this dissertation, we briefly describe a few open

issues and ideas for future research. They mainly represent the

thoughts of the author where future work might go to.

Decoder for a full-size LDPC code. So far, only relatively
small decoding networks were implemented. They incorporate

Practical

implementations
perform well

Probabhty-
propagation networks

are also useful for

other applications

6.2. Ideas for Further Work and Outlook

only some ten or hundred factor graph nodes. However, for a

good BER performance, the length of a code needs to be quite

large. Generally, a code with a length of some thousand bits per

codeword will already be sufficient for a practical application.
Hence, we need to construct larger decoding networks, which

gives rise to many issues such as the exacerbating simulation

times and the testability of such networks. These problems have

not been investigated in depth yet, but they will be of increasing

importance for future designs.

Full CMOS implementation. The chip implementations de¬

scribed in this dissertation rely on the exponential characteris¬

tic of BJTs. However, it is economically and technically inter¬

esting to use standard CMOS processes. As we have seen in

Section 5.5, the advanced CMOS processes shift the operation

region of the transistors more and more towards moderate in¬

version or even weak inversion. This opens the new prospect of

implementing high-speed analog decoders in CMOS technol¬

ogy only.

Use of redundant code equations. A second possibility for

purely CMOS analog decoders is the use of redundant equa¬

tions in the code description. As we have seen in the high-level
simulation results, this direction is very promising since we do

not have to rely on the most advanced CMOS technologies.

Application of the probability-propagation calculus to other

problems. In this dissertation we have only described decoding
networks. However, we have seen that many problems can be

described by factor graphs which in turn can be directly con¬

verted to an analog probability-propagation network. It would

be very interesting to apply the design technique to other appli¬
cation fields such as artificial-intelligence problems that might

appear in on-line fault-detection circuits of complex systems.

Adaptive filters. By changing the signal representation from

a probability-based interpretation to a real-valued interpreta¬
tion, the well-known equal gate and soft-XOR gate may be

operated as real-value adders and real-value multipliers, re¬

spectively [154]. Hence, they represent the basic operations
of discrete-time filters. By making the filter taps adaptive, we

could easily build adaptive FIR and IIR filters. Adaptive FIR

filters are commonly used for equalizing wire-line channels.

Joint channel-equalizer/-decoder. In the communications

community, there exist several concepts of jointly equalizing

Chapter 6. Concluding Remarks

a given channel and decoding the transmission code. But all

of them work in the digital domain and it thus may make no

sense to do decoding in the analog way, whereas the remaining

part of the receiver works digitally. So why not build most of

the receiver front-end using our analog probability networks?

For example, the decision-feed-back equalizer (DFE) is a good
candidate for an analog network implementation, since all the

basic operations can be implemented using our generic build¬

ing blocks. By doing so, we get one step closer to the antenna

or the line interface of a data communication system without

flipping too much back and forth between analog to digital.

All-analog receiver system. Our experience so far is that many

individual blocks of a receiver system can be implemented in

analog electronics. Despite the fact that many renowned re¬

searchers postulate software radio, i.e., a system that consists

merely of an A/D converter as close as possible to the antenna

and digital processors for signal processing, we think that for

certain demanding applications analog signal processing in an

intelligent manner is the way to go. Our long-term aim is an all-

analog receiver system, i.e., to have no digital signals before the

decoder block, since the analog decoder can make an inherent

A/D conversion. This would potentially provide very efficient

highest-speed and ultra-low-power communications systems as

needed by today's e-society.

Appendix A

Selected Circuit

Structures

Transistor Terminals and Voltages

In order to facilitate the analysis of a given circuit and to pre¬

vent from sign problems in circuits using complementary tran¬

sistors, we define all voltages as positive values for the normal

active region. In the case of abipolar process the voltages ofthe

transistor terminals are defined with the rails as their reference

as is shown in Fig. A. 1. For the case ofMOS transistors, which

are in principle symmetrical structures, we define the voltages
with respect to the potential of the well or substrate. Hence,
the devices are four-terminal devices. But often, we draw only
the three main terminals drain, gate, and source. In the case of

an «-well technology, the substrate (which is also called bulk)
is /»-doped semiconductor material an thus is generally tied to

the negative rail to prevent forward biased /»«-junctions. Con¬

versely, the «-doped substrate of a /»-well technology is gen¬

erally connected to the positive supply rail. Since the terminal

voltages of a MOS transistor are bulk-referenced, the function¬

ality of a given terminal is only defined by the voltage level.

The current leading terminal with the smaller voltage becomes

the source of the transistor whereas the other terminal becomes

the drain.

For the equations describing the behaviour of the semicon¬

ductor devices, consult one of the excellent textbooks that

exist today: for MOS tranistors see [109, 155] and for BJT

[138,156-158]. The references [109,156-158] are very device

physics oriented, whereas the remaining books are more design
oriented.

176 Appendix A. Selected Circuit Structures

PNP

b y
npn o—r

KoE

VR
Vv

-o

C

Who S

G
O-

1 r°
D

D

J k

pos rail

X n-type
substrate

pMOS

-o

hoS

-Ô

nMOS

p-type
substrate

neg rail

Figure A. I The definition ofthe terminals and its corresponding voltages

for both BJT (on the left side) and CMOS (on the right side).

A.2 Cascode Structures

A composite
'

super

transistor'

The output resistance of a single saturated MOS transistor (or
forward-biased transistor in the case of a BJT) is generally

fairly limited. In the case of a MOS transistor it is directly

proportional to the transistor length L. In order to reduce the

effect of a drain-current change due to drain-source-voltage
variations, the length L has to be made fairly long for practi¬
cal applications. Hence, the maximum operation frequency is

dimished by the same amount. A simple solution to that prob¬
lem is the so-called cascode structure. The many available cas¬

code structures lead to 'super transistors' with improved out¬

put resistance. The composite transistors can be used in re¬

placement for any transistor of a given circuit. The symbol of

such a super transistor, that we have used for our purpose, is

shown in Fig. A.2a). Many different forms of cascode circuits

exist [108,130,135,137,138]. In this context we cite just two:

the simple cascode structure is shown in Fig. A.2b) and the reg¬

ulated cascode structure in Fig. A. 2c). All the reasoning that

has been advanced so far for MOS transistors is also valid for

BJTs, with only slight differences in the calculations.

A.2. Cascode Structures 177

a)

Cascoded nMOS transistors: a) the used symbolfor a

cascoded nMOS transistor, b) a simple cascode structure, and

c) a regulated cascode structure.

Figure A.2

The simple cascode consists of only two transistors: the main

transistor below and the stacked cascode transistor. This cas¬

code transistor stabilizes the drain voltage of the main transis¬

tor. The output resistance of the main transistor is multiplied

by the transconductance of the cascode transistor times the out¬

put resistance of this same transistor. Hence, by still having

fairly small transistor sizes, the output resistance of the com¬

posite transistor is considerably augmented. The transistors are

designed such that they both operate in saturation. The biasing

voltage Fq2 is chosen according to the maximum drain current

and kept constant in time.

For high-precision circuits, the simple cascode structure may

not raise the output resistance sufficiently. One solution to

this problem consists of stacking more than one cascode stage.

However, this also raises the minimum supply voltage require¬
ments drastically. A much more intelligent solution to that

problem was proposed by Säckinger et al. [135]. The so-called

regulated cascode structure actively controls the drain voltage
of the main transistor. By doing so, much higher output re¬

sistances can be achieved. However, the operational amplifier
adds circuitry overhead. The most simple implementation of

this amplifier would consist of only one source follower tran¬

sistor. But generally more sophisticated implementations of the

amplifier have to be chosen. Examples for such implementa¬
tions can be found in [41] and the references therein.

A simple cascode

structure

The regulated
cascode structure

178 Appendix A. Selected Circuit Structures

A.3 Current Mirrors

The most simple
current mirror

consists ofjust two

transistors

Current mirrors are a key element in analog integrated circuits.

They are used to duplicate currents or to fold or cascade parts of

the circuit in order to reduce the supply-voltage requirements.
All the structures described below can equally well be imple¬
mented with bipolar transistors. The dimensioning of the tran¬

sistors is only slightly different. An overview of different cur¬

rent mirror structures can be found in [108,130,137,138].

The most simple structure of an nMOS current mirror is shown

in Fig. A.3a). Both transistors have to be in saturation and we

rely on perfect matching for an ideal operation. A brief analysis
shows that the copy errors due to the finite output resistance of

the mirror transistors are relatively large [130,137,138]. The

output resistance is improved by making the tranistors longer.
Note that the current mirror can be operated in both strong in¬

version or weak inversion.1 However, a simple anlysis shows

that current mirrors operated in strong inversion match better

than those operated in weak inversion [142,152]. For a given
WL, where W is the width of the transistor, the matching of

the transistors is best if the current mirror is designed to oper¬

ate with a large VGS, i.e., to force the transistor to deep strong
inversion. Matching can be improved by augmenting the active

transistor area WL. This reduces the relative errors of random

fabrication errors.

Design of the simple
current mirror

Cascoded current

mirror

The design of a current mirror is generally started by imposing
a certain voltage swing at the nominal current. This leads to a

W/L in a given semiconductor technology. The minimum volt¬

age between drain and source that still allows the operation in

the saturated region can be derived from the given gate-source

voltage. Finally, the active transistor area WL is adapted un¬

til the desired level of matching is achieved. Note, however,
that the parasitic gate capacitance is augmented by the same

amount. Hence, the increase of the parasitic capacitance will

reduce the maximum operation speed. Generally, several pa¬

rameters have to be traded off during the design process.

Beside raising the transitor length to augment the output re-

The degree of saturation and the degree of inversion are two orthogonal
axes ofthe operational modes ofMOS transistors We can freely choose one

of the four quadrants that is best suited for the purpose of the transistor in

the circuit

A.3. Current Mirrors 179

JwÇf
a) b) c)

Different nMOS current mirrors: a) the most simple current

mirror, b) a simple cascoded current mirror, and c) a

low-voltage version ofa cascoded current mirror.

Figure A.3

sistance of the mirror transistors, we could apply the cascode

techniques described in Appendix A.2. This solution is shown

in Fig. A. 3b). The diode connected transistors are always in sat¬

uration, thus no special attention has to be paid to that part of

the circuit. The transistors of the output section are designed
such that the transistors are saturated for the nominal current.

Although very simple and self-biasing, a drawback of the cir¬

cuit are two stacked diode-connected transistors. They limit the

minimal supply voltage for a correct operation heavily.

A solution for low-voltage operation is shown in Fig. A. 3 c)

[136]. Compared to the simple cascoded current mirror, we

omit the threshold voltage of the cascode transistor. However,

we need a special biasing circuit which is fortunately very sim¬

ple. The sizing of the biasing transistor, which is located on

the left side of the low-voltage current mirror schematic, is ac¬

cording to Fig. A.3c). Again, all transistors are dimensioned to

operate in the saturation region.

Low-voltage version

of the cascoded

current mirror

180 Appendix A. Selected Circuit Structures

List of Abbreviations

A/D Analog-to-Digital
ACS Add-Compare-Select; computation unit of

Viterbi decoders

APP a posteriori Probability
BCH algebraic code type named after the inventors

Bose, Chaudhuri, and Hocquenghem
BCJR decoding algorithm named after the inventors

Bahl, Cocke, Jelinek, and Raviv

BER Bit Error Rate

BiCMOS Bipolar and CMOS transistors in the same sili¬

con process

BJT Bipolar Junction Transistor

BMC Branch Metric Computation; computation unit

of the Viterbi decoder

BSC Binary Symmetric Channel

CAD Computer-Aided Drawing
CAE Computer-Aided Engineering
CMOS Complementary MOS

COB Chip-On-Board; mounting technology for inte¬

grated circuits directly on a PCB

D/A Digital-to-Analog
DFE Decision-Feedback Equalizer
DMC Discrete Memoryless Channel

DR Dynamic Range
ESD Electrostatic Discharge
FBA Forward-Backward Algorithm
FIR Finite Impulse Response; see also IIR

HMM Hidden Markov Model

I/V current-to-voltage conversion

IC Integrated Circuit

IIR Infinite Impulse Response; see also FIR

JTAG Joint Test Action Group. This group created the

IEEE 1149.1 standard defining test access ports
and boundary scans

LDPC Low-Density Parity-Check
LDS Linear Discrete-time System
LED Light Emitting Diode

MAP Maximium a posteriori Probability

182 List of Abbreviations

MOS Metal-Oxide-Semicondictor

MOSFET Metal-Oxide-Semicondictor Field-Effect Tran¬

sistor

P&R Place-and-Route; tool in the digital chip-design
flow

PCB Printed Circuit Board

PSD Power Spectral Density

QCRA Quasi-Cyclic Repeat-Accumulate; LDPC code

type
RA Repeat-Accumulate; LDPC code type
SC Switched-Capacitor
S/H Sample-and-Hold
SI Switched-Current

SNR Signal-to-Noise Ratio

SPS Sum-Product-Select; computation unit of a

MAP Viterbi decoder using probability propa¬

gation modules. See also ACS

SSM Storage Survivor Memory; unit in Viterbi de¬

coders

TA Transconductance Amplifier
TL Translinear Loop
TN Translinear Network

Vä voltage-to-current conversion

VI voltage-current
VLSI Very Large Scale Integration

List of Symbols

Symbols related to coding

Roman Symbols

u ; u, Uncoded data vector; uncoded bit number /'

û;û, Output of the decoder; decoded bit number /'.

Estimate of u, u,

x; x, Coded data vector; coded bit number /'

y;y, Received data vector; received bit number /'

s(t) Input of the physical channel at time t

r (t) Output of the physical channel at time t

b Bit

C (i) Code; (ii) Channel capacity
d Hamming distance

E\, Energy of an information bit

Ea Energy of a channel bit (chip)
Fk ^-dimensional vector space over the field F

g Girth of the graph; smallest number of branches

to form a closed loop in a factor graph

G Generator matrix of a block code

GF(q) Galois-field with q elements

H Parity-check matrix of a block code

K Constraint length of a convolutional code

m (i) Memory order of a convolutional encoder;

(ii) size of alphabet ofX or 7

n size ofX or 7 alphabet

No One-sided noise power spectral density

px(x); p(x) Probability of an actual realization x of the ran¬

dom variable X; short-hand notation ofthe same

probability

p(x) Approximate probability of x

Q(x) Q-function of the Gaussian statistic

R Code rate

Ts Symbol duration; sampling interval

184 List of Symbols

Greek Symbols

11,

fi,(b)

ßx^f

Transition probability of binary symmetric
channel

Squared Euclidean path-metric in the Viterbi al¬

gorithm
Permutation; interleaver of a Turbo code

Variance of white Gaussian noise

Probabilistic path-metric in the Viterbi algo¬
rithm

Short-hand notation for p(y, \x, = b)

Sum-product message from a variable node x to

a function node /

lif-^x Sum-product message from a function node /
to a variable node x

p Sampled outputs of the matched filter detector

Çk State transition at time k

Symbols related to electronics

Roman Symbols

A Active area

Ae Active emitter area of a BJT

C; C, Capacitor; Capacitor number i

Cox Unit oxide capacitance of a MOS transistor

/ Frequency

gm Transconductance of a transistor

/' (i) Small-signal current; (ii) Index

/ Large-signal current

Ic Collector current of a BJT

Id Drain current of a MOS transistor

h Specific current of a MOS transistor

Is Specific current of a BJT

Jo Specific current density of a MOS transistor

Js Specific current density of a BJT

Tref Reference current

IC Inversion coefficient of the channel of a MOS

transistor

L Length of a transistor

£min Minimum feature size (minimum channel

length) of a MOS transistor

List of Symbols

M;M, MOS transistor; MOS transistor number /'

n (i) Slope factor of MOS; (ii) Emission coeffi¬

cient of a BJT; (iii) index

P Power dissipation

Q;Qi Bipolarjunction transistor; BJT number /

R;R, Resistor; Resistor number i

S Thickness

/ Time

T Absolute Temperature
V Small-signal voltage
V Large-signal voltage
VBe Base-emitter voltage of a BJT

vD Drain voltage of a MOS transistor

^Dsat Drain voltage to achieve saturation in the drain

current

Va Gate voltage of a MOS transistor

Vs Source voltage of a MOS transistor

vth Threshold voltage of a MOS transistor

W Transistor width

UT Thermal voltage JcT/q; 25.9mV at 300K

Greek Symbols

ß (i) Current gain of a BJT; (ii) Transfer parameter
of a MOS transistor

e, erei Relative current error

k (i) Channel-length modulation factor; (ii) Ther¬

mal conductivity coefficient

ß Carrier mobility

186 List of Symbols

Bibliography

C E Shannon "A mathematical theory of communication
"

Bell [1]

Systems Technical Journal, vol 27, pp 379^123 (part I), 623-

656 (part II), July 1948

C Berrou, A Glavieux, and P Thitrmajshima "Near Shannon- [2]
limit error-correcting coding and decoding turbo codes

"

In

Proceedings of the International Conference on Communications,

pp 1064-1070 Geneva, May 1993

S Benedetto and G Montorsi "Unveiling turbo codes some [3]
results on parallel concatenated coding schemes

"

IEEE Transac¬

tions on Information Theory, vol 42, pp 409^128, March 1996

S Benedetto and G Montorsi "Iterative decoding of serially [4]
concatenated convolutional codes

"

Electronics Letters, vol 32,

pp 1186-1188, June 1996

R G Gallager Low-Density Parity-Check Codes MIT Press, [5]
1963

D J C MacKay and R M Neal "Good codes based on very [6]

sparse matrices
"

In Cryptography and Coding. 5th IMA Con¬

ference (edited by C Boyd), no 1025 in Lecture Notes in Com¬

puter Science, pp 100-111 Springer, 1995

R M Tanner "Codes with sparse graphs transform analysis [7]
and construction" In Proceedings of the IEEE International

Symposium on Information Theory, p 116 Cambridge, MA USA,

1998

M G Luby, M Mitzenmacher, M A Shokrollahi, and D A [8]

Spielmann "Improved low-density panty-check codes using

irregular graphs and belief propagation
"

Proceedings of the IEEE

International Symposium on Information Theory, p 117, Aug
1998

G M Shepherd The Synaptic Organization of the Brain Oxford [9]

University Press, New York, 1974

G M Shepherd Neurobiology Oxford University Press, New [10]

York, 1983

C A Mead Analog VLSI and Neural Systems Addison Wes- [11]

ley Computation and Neural Systems Series Addison Wesley,

Reading, MA, 1989 ISBN 0-201-05992-4

Bibliography

[12] X Arrégmt, F A van Schaik, F V Baudrn, M Bidiville, and

E Raeber "A CMOS motion detector system for pointing de¬

vices" IEEE Journal of Solid-State Circuits, vol 31, no 12,

pp 1916-1921, Dec 1996

[13] P Masa, P Heim, E Franzi, X Arrégmt, F Heitger, P Ruedi,
P Nussbaum, P Pnloud, and E Vittoz "10 mW CMOS retina

and classifier for handheld, 1000images/s optical character recog¬

nition system" In Proceedings of the IEEE International Sohd-

State Circuits Conference, pp 204-205 San Francisco, CA, Feb

1999

[14] A Mortara, P Heim, P Masa, E Franzi, P F Ruedi, F Heitger,
and J Baxter "An opto-electromc 18 b/revolution absolute an¬

gle and torque sensor for automotive steermg applications
"

In

Proceedings of the IEEE International Solid-State Circuits Con¬

ference, pp 182-183 San Francisco, CA, Feb 2000

[15] F J MacWilliams and N J A Sloane The Theory ofError-

Correcting Codes, vol 16 North-Holland, 1977 ISBN 0 444

85193 3

[16] S Lm and D J Costello, Jr Error Control Coding: Fundamen¬

tals and Applications Prentice-Hall Series m Computer Applica¬
tions m Electrical Engineering Prentice Hall, Englewood Cliffs,

NJ, 1983

[17] ITU-T "Recommendation v 34 — a modem operating at data

signalling rates of up to 33600 bit/s for use on the general
switched telephone network and on leased pomt-to-pomt 2-wire

telephone-type circuits
"

Tech rep ,
International Telecommu¬

nication Union, Geneva, February 1998 Available at http:

//www.itu.int/itudoc/itu-_t/rec/v/v34.html

[18] ITU-T "Recommendation v 90 — a digital modem and ana¬

logue modem pair for use on the public switched telephone net¬

work (PSTN) at data signalling rates of up to 56000 bit/s down¬

stream and up to 33600 bit/s upstream" Tech rep ,
International

Telecommunication Union, Geneva, September 1998 Available

at http ://www.itu.int/itudoc/itu-_t/rec/v/v90.
html

[19] W Y Chen DSL: Simulation Techniques and Standards Develop¬
ment for Digital Subscriber Line Systems Macmillan Technology
Series Macmillan Technical Publishing, Indianapolis, IN, 1998

[20] T Richardson, A ShokroUahi, and R Urbanke "Design of prov-

ably good low-density parity check codes", April 1999 Submit¬

ted to IEEE Transactions on Information Theory

[21] C Schlegel Trellis Coding IEEE Press, NewYork, 1997

Bibliography

D J C MacKay "Good error-correcting codes based on very [22]

sparse matrices
"

IEEE Transactions on Information Theory,
vol 45, no 2, pp 399^31, March 1999

A J Viterbi "Error bounds for convolutional codes and an [23]

asymptotically optimum decoding algorithm
"

IEEE Transactions

on Information Theory, vol 13, pp 260-269, April 1967

G D Forney, Jr "The Viterbi algorithm" Proceedings of the [24]

IEEE, vol 61, no 3, pp 268-278, March 1973

S Benedetto, D Divsalar, G Montorsi, and F Pollara "Serial [25]
concatenation of interleaved codes Performance analysis, de¬

sign, and iterative decoding
"

IEEE Transactions on Information

Theory, vol 44, no 3, pp 909-926, May 1998

J G Proakis Digital Communications McGraw-Hill, third edn, [26]
1995

R E Blahut Theory and Practice ofError Control Codes Addi- [27]
son Wesley, 1984

A S Acampora and R P Gilmore "Analog Viterbi decoding [28]
for high speed digital satellite channels

"

IEEE Transactions on

Communications, vol 26, no 10, pp 1463-1470, Oct 1978

T W Matthews and R R Spencer "An analog CMOS Viterbi [29]
detector for dgital magnetic recording

"

In Proceedings of the

IEEE International Sohd-State Circuits Conference, pp 214-215

San Francisco, CA, 1993

M H Shakiba, D A Johns, and K W Martin "Analog im- [30]

plementation of class-IV partial-response Viterbi detector" In

Proceedings of the IEEE International Symposium on Circuits

and Systems, vol 4, pp 91-94 London, Mai 1994

M H Shakiba, D A Johns, and K W Martin "A 200 MHz [31]
3 3V BiCMOS class-IV partial-response analog Viterbi decoder"

In Proceedings of the IEEE Custom Integrated Circuit Confer¬

ence, pp 567-570 Santa Clara, May 1995

M H Shakiba, D A Johns, and K W Martin "An integrated [32]
200-MHz 3 3-V BiCMOS class-IV partial-response analog Viterbi

decoder" IEEE Journal ofSohd-State Circuits, vol 33, no 1,

pp 61-75, Jan 1998

M H Shakiba, D A Johns, and K W Martin "General ap- [33]

proach to implementing analogue Viterbi decoders
"

Electronics

Letters, vol 30, no 22, pp 1823-1824, Oct 1994

M H Shakiba, D A Johns, and K W Martin "BiCMOS err- [34]
cuits for analog viterbi decoders

"

IEEE Transactions on Circuits

Bibliography

and Systems-II: Analog and Digital Signal Processing, vol 45,

no 12, pp 1527-1537, Dec 1998

[35] A Demosthenous and J Taylor "Current-mode approaches to

implementing hybrid analogue/digital Viterbi decoders
"

In Pro¬

ceedings of the International Conference on Electronics, Circuits

and Systems, vol 1, pp 33-36 Rhodos, 1996

[36] A Demosthenous, C Verdier, and J Taylor "A new architecture

for low power analogue convolutional decoders
"

In Proceedings

of the IEEE International Symposium on Circuits and Systems,
vol 1, pp 37-40 Hong-Kong, 1997

[37] A Demosthenous and J Taylor "Low-power CMOS and BiC-

MOS circuits for analog convolutional decoders
"

IEEE Trans¬

actions on Circuits and Systems-II: Analog and Digital Signal

Processing, vol 46, no 8, pp 1077-1080, Aug 1999

[38] K He and G Cauwenberghs "An area-efficient analog VLSI

architecture for state-parallel Viterbi decoding
"

In Proceedings

of the IEEE International Symposium on Circuits and Systems,
vol II, pp 432^135 Orlando, Florida, May 1999

[39] Z Wang and S B Wicker "An artificial neural net Viterbi de¬

coder" IEEE Transactions on Communications, vol 44, pp 165-

171, Feb 1996

[40] C Verdier, A Demosthenous, J Taylor, and M Wilby "An in¬

tegrated analogue convolutional decoder based on the Hamming
neural classifier" In Proceedings of Neural Networks and Their

Applications, pp 150-155 1996

[41] M Helfenstern Analysis and Design of Switched-Current Net¬

works PhD thesis, ETH Zurich, Konstanz, 1997

[42] H P Schmid Single-Amplifier Biquadratic MOSFET-C Filters

Ph D thesis, Swiss Federal Institute of Technology, Zurich, Octo¬

ber 2000

[43] G S Moschytz MOS Switched-Capacitor Filters: Analysis and

Design IEEE Press, New York, 1984

[44] G C Temes and R Gregorian Analog MOS Integrated Circuits

for Signal Processing John Wiley & Sons, New York, 1986

[45] C Toumazou, J B Hughes, and N C Battersby, editors

Switched-Currents: an analogue technique for digital technol¬

ogy IEE/Peter Peregrrnus Ltd, 1993 ISBN 0-86341-294-7

[46] G J Mmty "A comment on the shortest-route problem
"

Oper.

Res., vol 5, p 724, 1957

[47] L Bu and T -D Chiueh "Solving the shortest path problem

using an analog network" IEEE Transactions on Circuits

Bibliography

and Systems-I: Fundamental Theory and Applications, vol 46,

no 11, pp 1360-1363, November 1999

R C Davis "Diode-configured Viterbi algorithm error correcting [48]
decoder for convolutional codes "US Patent 4545054, Oct

1985

R C Davis and H -A Loeliger "A nonalgonthmic maximum [49]
likelihood decoder for trellis codes

"

IEEE Transactions on Infor¬
mation Theory, vol 39, pp 1450-1453, July 1993

H F Schantz "An overview of neural OCR networks
"

Journal [50]

ofInformation Systems Management, vol 8, no 2, pp 22-27',

1991

H F Schantz "Neural network-OCR/ICR recognology Theory [51]
and applications

"

Document Image Automation, vol 13, no 3,

pp 20-23, 1993

D Jacquet and G Saucier "Design of a digital neural chip [52]

application to optical character recognition by neural network
"

In

Proceedings of the European Design and Test Conference EDAC-

ETC-EUROASIC, pp 256-260 1994

J Wang and J Jean "Segmentation of merged characters by [53]
neural networks and shortest path" Pattern Recognition, vol 27,

no 5, pp 649-658, May 1994

D A Kelly "Neural networks for handwriting recognition
"

In [54]

Proceedings of the SPIE, vol 1709, pp 143-154 1992

M Schenkel, I Guyon, and D Henderson "On-line cursive [55]

scnpt recognition using time-delay neural networks and hidden

markov models
"

Machine Vision and Applications, vol 8, no 4,

pp 215-223, 1995

R Seller, M Schenkel, and F Eggimann "Off-line cursive hand- [56]

writing recognition compared with on-line recognition
"

In Pro¬

ceedings of the 13th International Conference on Pattern Recog¬

nition, vol 4, pp 505-509 1996

J Rouat "Spatio-temporal pattern recognition with neural net- [57]
works application to speech

"

In Proceedings ofArtificial Neural

Networks - ICANN '97, pp 43^18 1997

G K Venayagamoorthy, V Moonasar, and K Sandrasegaran [58]
"Voice recognition using neural networks

"

In Proceedings of the

1998 South African Symposium on Communications and Signal

Processing-COMSIG '98, pp 29-32 Rondebosch, South Africa,

Sept 1998

K M Olson and G A Ybarra "Performance companson of [59]
neural network and statistical pattern recognition approaches to

Bibliography

automatic target recognition of ground vehicles using SAR im¬

agery" Proceedings of the SPIE, vol 3161, pp 159-170, 1997

[60] S B Cho "Pattern recognition with neural networks combined

by genetic algorithm" Fuzzy Sets and Systems, vol 103, no 2,

pp 339-347, April 1999

[61] N Wiberg "Approaches to neural-network decoding of error-

correctmg codes" Lrnkopmg Studies in Science and Technology,
Thesis No 425, 1994

[62] Y-J Wu, P M Chau, and R Hecht-Nielsen "A supervised

learning neural-network coprocessor for soft-decision maximum-

hkehhood decoding
"

IEEE Transactions on Neural Networks,

vol 6, pp 986-992, July 1995

[63] S H Bang and B J Sheu "A neural network for detection

of signals in communication
"

IEEE Transactions on Circuits

and Systems-I: Fundamental Theory and Applications, vol 43,

pp 644-655, Aug 1996

[64] L A Zadeh "Fuzzy sets
"

Information and Control, vol 8,

pp 328-353, 1965

[65] M Wu, W-P Zhu, and S Nakamura "A hybrid fuzzy neural

decoder for convolutional codes" In Proceedings of the IEEE

International Symposium on Circuits and Systems, vol 3, pp

235-238 IEEE, Monterey, CA, June 1998

[66] N Wiberg, H -A Loeliger, and R Koetter "Codes and iterative

decoding on general graphs" European Transactions on Telecom¬

munications, vol 6, pp 513-525, Sept/Oct 1995

[67] N Wiberg Codes and Decoding on General Graphs Ph D

thesis, Umv Lrnkopmg, Sweden, 1996

[68] J Hagenauer and M Wmkelhofer "The analog decoder" In

Proceedings of the IEEE International Symposium on Information

Theory, p 145 Cambridge, MA USA, Aug 1998

[69] J Hagenauer, E Offer, C Méasson, and M Moerz "Decoding
and equalization with analog non-linear networks

"

European
Transactions on Telecommunications, vol 10, no 6, pp 659-680,

Nov/Dec 1999

[70] M Moerz, T Gabara, R Yan, and J Hagenauer "An analog
0 25 \xm BiCMOS tailbitmg MAP decoder" In Proceedings of
the IEEE International Solid-State Circuits Conference, pp 356-

357 San Francisco, CA, Feb 2000

[71] H-A Loeliger, M Helfenstem, F Lustenberger, and F Tarkoy

"Probability propagation and decodmg m analog VLSI
"

In Pro-

Bibliography

ceedings of the IEEE International Symposium on Information

Theory, p 146 Cambridge, MA, Aug 1998

M Helfenstern, H -A Loeliger, F Lustenberger, and F Tarkoy [72]
"Verfahren und Schaltung zur Signalverarbeitung, insbesondere

zur Berechnung einer Wahrscheinlichkeitsfunktion
"

Swiss Patent

Application no 1998 0375/98, Feb 1998 Filed Feb 17, 1998

H -A Loeliger, F Lustenberger, F Tarkoy, and M Helfenstern [73]

"Decoding in analog VLSI
"

IEEE Communications Magazine,
vol 37, no 4, pp 99-101, April 1999

F Lustenberger, M Helfenstern, H -A Loeliger, F Tarkoy, and [74]
G S Moschytz "All-analog decoder for a binary (18,9,5) tail-

bitmg trellis code
"

In Proceedings of the European Solid-State

Circuits Conference, pp 362-365 Duisburg, Sep 1999

F Lustenberger, M Helfenstern, H -A Loeliger, F Tarkoy, and [75]
G S Moschytz "An analog decoding technique for digital
codes" In Proceedings of the IEEE International Symposium
on Circuits and Systems, vol II, pp 428^131 Orlando, FL, June

1999

M Helfenstern, F Lustenberger, H -A Loeliger, F Tarkoy, and [76]
G S Moschytz "High-speed interfaces for analog, iterative

decoders" In Proceedings of the IEEE International Symposium
on Circuits and Systems, vol II, pp 424^127 Orlando, FL, June

1999

H -A Loeliger, F Lustenberger, M Helfenstein, and F Tarkoy [77]

"Probability propagation and decoding in analog VLSI ", Sept
2000 Accepted for publication in IEEE Transactions on Infor¬

mation Theory, available at http : //www .isi.ee. ethz . ch/

~lustenbe/papers/lT_2000.pdf

H -A Loeliger, F Lustenberger, M Helfenstein, and F Tarkoy [78]

"Analog probability propagation networks — Part I Fundamen¬

tals
"

In preparation

F Lustenberger, H -A Loeliger, M Helfenstein, and F Tarkoy [79]

"Analog probability propagation networks — Part II Decoder

examples
"

In preparation

C A Mead "Neuromorphic electronic systems
"

Proceedings of [80]
the IEEE, vol 78, pp 1629-1636, Oct 1990

J Lazzaro, S Ryckebusch, M A Mahowald, and C A Mead [81]
"Winner-take-all networks of 0(n) complexity" In Ad¬

vances in Neural Information Processing Systems 1 (edited by
D Tourestzky), pp 703-711 Morgan Kaufmann Publishers, San

Mateo, CA, 1988

Bibliography

[82] J P Lazzaro "Low-power silicon spiking neurons and axons"

In Proceedings of the IEEE International Symposium on Circuits

and Systems, vol 5, pp 2220-2223 San Diego, CA, 1992

[83] J P Lazzaro, J Wawrzynek, and R P Lippmann "A microp-

ower analog circuit implementation of hidden markov model state

decoding" IEEE Journal of Solid-State Circuits, vol 32, no 8,

pp 1200-1209, Aug 1997

[84] R Sarpeshkar, L Watts, and C A Mead "Refractory neuron

circuits
"

Computation and Neural Systems Memo CNS TR-92-

08, California Institute of Technology, Pasadena, CA, 1992

[85] Y Arima, M Murasaki, T Yamada, A Maeda, and H Shmohara

"A refreshable analog VLSI neural network chip with 400 neu¬

rons and 40K synapses" IEEE Journal ofSolid-State Circuits,
vol 27, no 12, pp 1854-1861, Dec 1992

[86] A F Murray, L Tarassenko, H M Reekie, A Hamilton,

M Brownlow, S Churcher, and D J Baxter "Pulsed silicon neu¬

ral networks Following the biological leader" In VLSI Desing

ofNeural Networks (edited by U Ramacher and U Ruckert), pp

103-123 Kluwer Academic Publishers, 1991

[87] R F Lyon and C A Mead "An analog electronic cochlea
"

IEEE Transactions on Acoustics, Speech and Signal Processing,
vol 36, no 7, pp 1119-1134, July 1988

[88] J Lazzaro and C A Mead "Circuit models of sensory trans¬

duction in the cochlea" In Analog VLSI Implementation of Neu¬

ral Systems (edited by C A Mead and M Ismail), pp 85-101

Kluwer Academic Publishers, 1989

[89] L Watts, D A Kerns, R F Lyon, and C A Mead "Improved

implementation of the silicon cochlea" IEEE Journal of Solid-

State Circuits, vol 27, no 5, pp 692-700, May 1992

[90] F Lustenberger Cochlée artificielle en silicium Semester project,
École Polytechnique Federal de Lausanne, Lausanne, 1994

[91] A van Schalk, E Fragmère, and E Vittoz "Improved silicon

cochlea using compatible lateral bipolar transistors
"

In Advances

in Neural Information Processing Systems (edited by D Touret-

zky), pp 671-677 MIT Press, Cambridge MA, 1996

[92] C A Mead "Adaptive retina
"

In Analog VLSI implementation

of neural systems (edited by C A Mead and M Ismail), pp

239-246 Kluwer Academic Publishers, 1989

[93] M A Mahowald "Silicon retina with adaptive photodetectors
"

In Proceedings SPIE, Visual Information Processing: From Neu¬

rons to Chips, vol 1473, pp 52-58 1991

Bibliography

M A Mahowald "Analog VLSI chip for stereocorrespondence
"

[94]
In Proceedings of the IEEE International Symposium on Circuits

and Systems, vol 6, pp 347-350 London, 1994

W Bair and C Koch "Real-time motion detection using an [95]

analog VLSI zero-crossing chip" In Proceedings SPIE, Visual

Information Processing: From Neurons to Chips, vol 1473, pp

59-65 1991

A Papouhs Probability, Random Variables and Stochastic Pro- [96]
cesses McGraw-Hill, third edn

,
1991

F R Kschischang, B J Frey, and H -A Loeliger "Factor graphs [97]
and the sum-product algorithm ", June 2000 Submitted and re¬

vised for publication m IEEE Trans Inform Theory Available at

http ://www.comm.utoronto.ca/frank/factor

R M Tanner "A recursive approach to low complexity codes
"

[98]
IEEE Transactions on Information Theory, vol 27, no 5,

pp 533-547, Sept 1981

G D Forney, Jr "Codes on graphs Generalized state realrza- [99]

tions", November 1998 Draft

G D Forney, Jr "Codes on graphs Normal realizations
"

In [100]

Proceedings of the IEEE International Symposium on Information

Theory, p 9 June 2000

R L Graham, D E Knuth, and O Patashnik Concrete Mathe- [101]
matics Addison Wesley, New York, NY, 1989

F R Kschischang, B J Frey, and H-A Loeliger "Factor graphs [102]
and the sum-product algorithm", July 1998 Private communica¬

tion

L R Bahl, J Cocke, F Jelinek, and J Raviv "Optimal decoding [103]
of linear codes for minimizing symbol error rate

"

IEEE Transac¬

tions on Information Theory, vol 20, pp 284-287, March 1974

National Semiconductors "An application guide for Op Amps [104]

Application Note 20
"

In Linear Applications Handbook, pp

19-30 1994

B Gilbert "Translmear circuits A proposed classification
"

[105]
Electronics Letters, vol 11, no 1, pp 14-16, January 1975

E Seevmck Analysis and Synthesis of Translmear Integrated [106]

Circuits, vol 31 of Studies in electrical and electronic engineer¬

ing Elsevier, Amsterdam, first edn
,
1988 ISBN 0-444-42888-7

B Gilbert "Translmear circuits An historical overview" Analog [107]

Integrated Circuits and Signal Processing, vol 9, no 2, pp 95-

118, March 1996 Special Issue Translmear Circuits

Bibliography

[108] A B Grebene Bipolar and MOS Analog Integrated Circuit

Design John Wiley & Sons, 1984 ISBN 0-471-08529-4

[109] Y Tsividis Operation and Modelling of The MOS Transistor

McGraw-Hill, second edn
,
1999 ISBN 0-07-116791-9

[110] T Serrano-Gotarredano, B Linares-Barranco, and A G Andreou

"A general translmear principle for subthreshold MOS transisi-

tors
"

IEEE Transactions on Circuits and Systems-I: Fundamen¬

tal Theory and Applications, vol 46, no 5, pp 607-616, May
1999

[111] K Bult Analog CMOS square-law circuits PhD thesis, Twente

University of Technology, 1988

[112] E Seevmck and R J Wiegermk "Generalized translmear circuit

principle" IEEE Journal of Solid-State Circuits, vol 26, no 8,

pp 1098-1102, Aug 1991

[113] R J Wiegermk Analysis and synthesis ofMOS translmear cir¬

cuits PhD thesis, Twente University of Technology, 1992

[114] R W Adams "Filtering m the log-domain" Prepnnt 1470,

presented at 63rd Audio Engineering Society Conferenc, May
1979

[115] E Seevmck "Companding current-mode mtegrator a new cir¬

cuit principle for contmous-time monolithic filters
"

Electronics

Letters, vol 26, pp 2046-2047, Nov 1990

[116] D Frey "Log domain filtering an approach to current-mode

filtering" IEE Proceedings, Part G, vol 140, pp 406^116, Dec

1993

[117] D Perry and G W Roberts "The design of log-domain filters

based on the operational simulation of LC ladders
"

IEEE Trans¬

actions on Circuits and Systems-II: Analog and Digital Signal

Processing, vol 43, no 11, pp 763-774, Nov 1996

[118] Y Tsividis "Externally linear, time-invariant systems and their

application to companding signal processors
"

IEEE Transactions

on Circuits and Systems-II: Analog and Digital Signal Process¬

ing, vol 44, no 2, pp 65-85, Feb 1997

[119] C Toumazou, J Ngarmml, and T S Lande "Micropower log
domam filter for electronic cochlea

"

Electronics Letters, vol 30,

pp 1839-1841, Oct 1994

[120] C Enz and Y Cheng "MOS transistor modeling issues for RF

circuit design", 1999 Workshop on Advances m Analog Circuit

Design (AACD'99)

Bibliography

B Gilbert "A precise four-quadrant multiplier with subnanosec- [121]
ond response" IEEE Journal of Solid-State Circuits, vol 3,

pp 365-373, 1968

K Kimura "Some circuit design techniques using two cross- [122]

coupled parrs
"

IEEE Transactions on Circuits and Systems-I:
Fundamental Theory and Applications, vol 41, no 5, pp 411-

423, May 1994

C F Chan, H Ling, and O Choy "A one volt four-quadrant [123]

analog current mode multiplier cell" IEEE Journal ofSolid-State

Circuits, vol 30, no 9, pp 1018-1019, Sept 1995

G Colli and F Montecchi "Low voltage low power CMOS four- [124]

quadrant analog multiplier for neural network applications
"

In

Proceedings of the IEEE International Symposium on Circuits

and Systems, vol 1, pp 496^199 1996

W Gai, H Chen, and E Seevmck "Quadratic-translmear CMOS [125]

multiplier-divider circuit
"

Electronics Letters, vol 33, no 10,

pp 860-861, May 1997

R J Wiegermk "A CMOS four-quadrant analog current mufti- [126]

plier" In Proceedings of the IEEE International Symposium on

Circuits and Systems, vol 4, pp 2244-2247 1991

K Kimura "A bipolar low-voltage quarter-square multiplier [127]
with a resistive-mput based on the bias offset technique

"

IEEE

Journal ofSolid-State Circuits, vol 32, no 2, pp 258-266, Feb

1997

H R Mehrvarz and C Y Kwok "A novel multi-input floating- [128]

gate MOS four-quadrant analog multiplier" IEEE Journal of
Solid-State Circuits, vol 31, no 8, pp 1123-1131, Aug 1996

J Ramirez-Angulo "±0 75 V BiCMOS four-quadrant analog [129]

multiplier with rail-rail input signal-swing
"

In Proceedings of the

IEEE International Symposium on Circuits and Systems, vol 1,

pp 242-245 1996

K R Laker and W M C Sansen Design of analog integrated [130]
circuits and systems McGraw-Hill, third edn

,
1994 ISBN 0-07-

113458-1

B Gilbert "A monohtic 16-channel analog array normalrzer" [131]
IEEE Journal ofSolid-State Circuits, vol 19, pp 956-963, 1984

J Vogt, K Koora, A Finger, and G Fettweis "Comparison of [132]
different turbo decoder realizations for IMT-2000

"

In Proceed¬

ings of the Global Telecommunications Conference, vol 5, pp

2704-2708 Rio de Janeireo, Brazil, Dec 1999

198 Bibliography

[133] F Poegel "Private email communication The resolution of sig¬

nals in different decoder architectures ", July 2000 This topic
will appear in Frank's PhD thesis which he is currently finishing
at TU Dresden, Germany

[134] COMATLAS Datasheet of the Turbo-code codec CAS 5093

[135] E Sackrnger and W Guggenbuhl "A high-swing, high-

rmpedance MOS cascode circuit" IEEE Journal of Solid-State

Circuits, vol 25, no 1, pp 289-298, Feb 1990

[136] P J Crawley and G W Roberts "High-swing MOS current

mirror with arbitrarily high output resistance
"

Electronics Letters,

vol 28, no 4, pp 361-363, Feb 1992

[137] DA Johns and K Martin Analog Integrated Circuit Design
John Wiley & Sons, 1997

[138] PR Gray and R G Meyer Analysis and Design ofAnalog

Integrated Circuits Wiley, New York, third edn
,
1993

[139] Harris Semiconductors Datasheet of the CA3096 NPN/PNP

Transistor Array, December 1997

[140] Austria Mikrosystem International GmbH Process Parameters

and Design Rules of the 0 8 [xm silicon BiCMOS process, 1999

See also http //www amsrnt com

[141] A M Aji, G B Horn, and R J McEliece "Iterative decoding
on graphs with a single cycle" In Proceedings of the IEEE Inter¬

national Symposium on Information Theory, p 276 Cambridge,

MA, Aug 1998

[142] M J Pelgrom, A C J Dummayer, and A P G Welbers

"Matching properties of MOS transistors" IEEE Journal of Solid-

State Circuits, \o\ 24, no 5, pp 1433-1439, Oct 1989

[143] T Richardson and R Urbanke "The capacity of low-density

parity check codes under message-passing decoding ", September
2000 Accepted for publication in IEEE Transactions on Informa¬

tion Theory

[144] P Robertson, E Villebrun, and P Hoeher "A comparison of op¬

timal and sub-optimal decoding algorithms in the log domain
"

In

Proceedings of the International Conference on Communications,

vol 2, pp 1009-1013 Seattle, WA, June 1995

[145] R M Tanner "On quasi-cyclic repeat-accumulate codes
"

In

Proc. 37th Allerton Conf. on Communications, Control, and Com¬

puting Monticello, Illinois, Sept 1999

[146] R M Tanner "Transforming quasi-cyclic codes with sparse

graphs ", Jan 2000 Submitted to IEEE Trans Inform The-

Bibliography

ory Available at http://www.cse.ucsc.edu/~tanner/

pubs.html

P O Vontobel "Investigation of quasi-cyclic repeat-accumulate [147]
codes suitable for a chip implementation

"

Internal report, Signal
and Information Processing Laboratory, ETH Zurich, 2000

H Traff "Novel approach to high-speed CMOS current com- [148]

parators" Electronics Letters, vol 28, no 3, pp 310-312, Jan

1992

G D Forney, Jr "The forward-backward algorithm
"

In Proc. [149]
34th Allerton Conf. on Communications, Control, and Computing,

pp 432^146 Allerton House, Monticello, Illinois, Oct 1996

S M Moser Investigation ofAlgebraic Codes of Small Block [150]

Length using Factor Graphs Master's thesis, Signal- and Infor¬

mation Processing Laboratory, ETH Zurich, Zurich, March 1999

G Fromherz and E Schmca Konvergenzverhalten des Summe- [151]

Produkt-Algorithmus in Standard-CMOS-Technologie Master's

thesis, Signal- and Information Processing Laboratory, ETH

Zurich, Zurich, March 1999

E A Vittoz "MOS and Bipolar transistors
"

Electronics Labo- [152]
ratones Advanced Engineering Course on CMOS and BiCMOS

VLSI Design '94, Aug 1994

A Rodriguez-Vasquez, R Navas, M Delgado-Restituto, and [153]
F Vidal-Verdu "A modular programmable CMOS analog fuzzy
controller chip

"

IEEE Transactions on Circuits and Systems-
II: Analog and Digital Signal Processing, vol 46, pp 251-265,

March 1999

M Helfenstern, H-A Loeliger, F Lustenberger, and F Tarkoy [154]
"Verfahren zur mathematischen Verarbeitung zweier Werte in

einer elektrischen Schaltung
"

Swiss Patent Application no

1999 1448/99, Feb 1999 Filed Aug 6, 1999

Y Tsividis Mixed Analog-Digital VLSI Devices and Technology: [155]
An Introduction McGraw-Hill, 1995 ISBN 0-07-065402-6

S M Sze Physics ofSemiconductor Devices John Wiley & [156]

Sons, New York, second edn
,
1982 ISBN 0-471-09837-X

S M Sze Semiconductor Devices, Physics and Technology John [157]

Wiley & Sons, New York, 1985 ISBN 0-471-83704-0

S Wang Fundamentals ofSemiconductor Theory and Device [158]

Physics Prentice Hall Senes in Electrical and Computer Engi¬

neering Prentice-Hall, Englewood Cliffs, NJ, 1989 ISBN 0-13-

344425-2

200 Bibliography

Curriculum Vitae

I was born in Lucerne, Switzerland, on May 31,1969. After fin¬

ishing high-school at the Kantonssschule Alpenqum, Lucerne,
in 1989 (Matura Typus C) and a one-year interruption for mil¬

itary services, I enrolled in Micro Engineering at the Swiss

Federal Institute of Technology EPF Lausanne. I received the

Diploma (M.Sc.) degree in Micro Engineering (Ing. en Mi¬

crotechnique dipl. EPFL) in 1995 for the design, implementa¬
tion, and testing of an artificial silicon cochlea in CMOS tech¬

nology. In April 1995 I joined the Signal and Information Pro¬

cessing Laboratory (ISI) of ETH Zurich, where I worked as a

teaching assistant for two years. During this time, I attended the

post-diploma program in Information Technology which I com¬

pleted with a Dipl. NDS degree in Information Technology in

2000. From autumn 1997 to summer 2000 I participated as re¬

search assistant at the interdisciplinary research project 'Design
of Analog VLSI Iterative Decoders' (DAVID). Beside the work

at the DAVID project presented in this dissertation, my main

interests include general analog and bio-inspired circuit design,

micro-systems design, system-oriented VLSI design and ana¬

log design automation.

