Weakly supervised inference of personalized heart meshes based on echocardiography videos
dc.contributor.author
Laumer, Fabian
dc.contributor.author
Amrani, Mounir
dc.contributor.author
Manduchi, Laura
dc.contributor.author
Beuret, Ami
dc.contributor.author
Rubi, Lena
dc.contributor.author
Dubatovka, Alina
dc.contributor.author
Matter, Christian M.
dc.contributor.author
Buhmann, Joachim M.
dc.date.accessioned
2022-12-20T09:23:28Z
dc.date.available
2022-12-20T09:23:28Z
dc.date.issued
2023-01
dc.identifier.issn
1361-8415
dc.identifier.issn
1361-8423
dc.identifier.other
10.1016/j.media.2022.102653
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/588331
dc.identifier.doi
10.3929/ethz-b-000578774
dc.description.abstract
Echocardiography provides recordings of the heart chamber size and function and is a central tool for non-invasive diagnosis of heart diseases. It produces high-dimensional video data with substantial stochasticity in the measurements, which frequently prove difficult to interpret. To address this challenge, we propose an automated framework to enable the inference of a high resolution personalized 4D (3D plus time) surface mesh of the cardiac structures from 2D echocardiography video data. Inferring such shape models arises as a key step towards accurate personalized simulation that enables an automated assessment of the cardiac chamber morphology and function. The proposed method is trained using only unpaired echocardiography and heart mesh videos to find a mapping between these distinct visual domains in a self-supervised manner. The resulting model produces personalized 4D heart meshes, which exhibit a high correspondence with the input echocardiography videos. Furthermore, the 4D heart meshes enable the automatic extraction of echocardiographic variables, such as ejection fraction, myocardial muscle mass, and volumetric changes of chamber volumes over time with high temporal resolution.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
Elsevier
en_US
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject
Heart mesh prediction
en_US
dc.subject
Echocardiography
en_US
dc.subject
Cardiac modeling
en_US
dc.subject
Deep learning
en_US
dc.title
Weakly supervised inference of personalized heart meshes based on echocardiography videos
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
dc.date.published
2022-10-17
ethz.journal.title
Medical Image Analysis
ethz.journal.volume
83
en_US
ethz.journal.abbreviated
Med Image Anal
ethz.pages.start
102653
en_US
ethz.size
19 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Amsterdam
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. (emeritus) / Buhmann, Joachim M. (emeritus)
en_US
ethz.leitzahl.certified
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02150 - Dep. Informatik / Dep. of Computer Science::02661 - Institut für Maschinelles Lernen / Institute for Machine Learning::03659 - Buhmann, Joachim M. (emeritus) / Buhmann, Joachim M. (emeritus)
en_US
ethz.date.deposited
2022-11-01T04:25:05Z
ethz.source
SCOPUS
ethz.source
BATCH
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2022-12-20T09:23:30Z
ethz.rosetta.lastUpdated
2023-02-07T09:00:52Z
ethz.rosetta.exportRequired
true
ethz.rosetta.versionExported
true
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/578774
dc.identifier.olduri
http://hdl.handle.net/20.500.11850/588066
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Weakly%20supervised%20inference%20of%20personalized%20heart%20meshes%20based%20on%20echocardiography%20videos&rft.jtitle=Medical%20Image%20Analysis&rft.date=2023-01&rft.volume=83&rft.spage=102653&rft.issn=1361-8415&1361-8423&rft.au=Laumer,%20Fabian&Amrani,%20Mounir&Manduchi,%20Laura&Beuret,%20Ami&Rubi,%20Lena&rft.genre=article&rft_id=info:doi/10.1016/j.media.2022.102653&
Files in this item
Publication type
-
Journal Article [132069]