Show simple item record

dc.contributor.author
Gabor, Attila
dc.contributor.author
Tognetti, Marco
dc.contributor.author
Driessen, Alice
dc.contributor.author
Tanevski, Jovan
dc.contributor.author
Guo, Baosen
dc.contributor.author
Cao, Wencai
dc.contributor.author
Shen, He
dc.contributor.author
Yu, Thomas
dc.contributor.author
Chung, Verena
dc.contributor.author
Single Cell Signaling in Breast Cancer DREAM Consortium members
dc.contributor.author
Bodenmiller, Bernd
dc.contributor.author
Saez-Rodriguez, Julio
dc.date.accessioned
2021-11-09T12:04:58Z
dc.date.available
2021-11-06T14:12:26Z
dc.date.available
2021-11-09T12:04:58Z
dc.date.issued
2021-10-01
dc.identifier.issn
1744-4292
dc.identifier.other
10.15252/msb.202110402
en_US
dc.identifier.uri
http://hdl.handle.net/20.500.11850/514097
dc.identifier.doi
10.3929/ethz-b-000514097
dc.description.abstract
Recent technological developments allow us to measure the status of dozens of proteins in individual cells. This opens the way to understand the heterogeneity of complex multi-signaling networks across cells and cell types, with important implications to understand and treat diseases such as cancer. These technologies are, however, limited to proteins for which antibodies are available and are fairly costly, making predictions of new markers and of existing markers under new conditions a valuable alternative. To assess our capacity to make such predictions and boost further methodological development, we organized the Single Cell Signaling in Breast Cancer DREAM challenge. We used a mass cytometry dataset, covering 36 markers in over 4,000 conditions totaling 80 million single cells across 67 breast cancer cell lines. Through four increasingly difficult subchallenges, the participants predicted missing markers, new conditions, and the time-course response of single cells to stimuli in the presence and absence of kinase inhibitors. The challenge results show that despite the stochastic nature of signal transduction in single cells, the signaling events are tightly controlled and machine learning methods can accurately predict new experimental data.
en_US
dc.format
application/pdf
en_US
dc.language.iso
en
en_US
dc.publisher
EMBO Press
en_US
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
cell signaling
en_US
dc.subject
crowdsourcing
en_US
dc.subject
mass cytometry
en_US
dc.subject
predictive modeling
en_US
dc.subject
single cell
en_US
dc.title
Cell-to-cell and type-to-type heterogeneity of signaling networks: insights from the crowd
en_US
dc.type
Journal Article
dc.rights.license
Creative Commons Attribution 4.0 International
dc.date.published
2021-10-18
ethz.journal.title
Molecular Systems Biology
ethz.journal.volume
17
en_US
ethz.journal.issue
10
en_US
ethz.journal.abbreviated
Mol Syst Biol
ethz.pages.start
e10402
en_US
ethz.size
16 p.
en_US
ethz.version.deposit
publishedVersion
en_US
ethz.identifier.wos
ethz.identifier.scopus
ethz.publication.place
Heidelberg
en_US
ethz.publication.status
published
en_US
ethz.leitzahl
ETH Zürich::00002 - ETH Zürich::00012 - Lehre und Forschung::00007 - Departemente::02030 - Dep. Biologie / Dep. of Biology::02539 - Institut für Molecular Health Sciences / Institute of Molecular Health Sciences::09735 - Bodenmiller, Bernd / Bodenmiller, Bernd
ethz.date.deposited
2021-11-06T14:12:34Z
ethz.source
SCOPUS
ethz.eth
yes
en_US
ethz.availability
Open access
en_US
ethz.rosetta.installDate
2021-11-09T12:05:04Z
ethz.rosetta.lastUpdated
2023-02-06T23:19:01Z
ethz.rosetta.versionExported
true
ethz.COinS
ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.atitle=Cell-to-cell%20and%20type-to-type%20heterogeneity%20of%20signaling%20networks:%20insights%20from%20the%20crowd&rft.jtitle=Molecular%20Systems%20Biology&rft.date=2021-10-01&rft.volume=17&rft.issue=10&rft.spage=e10402&rft.issn=1744-4292&rft.au=Gabor,%20Attila&Tognetti,%20Marco&Driessen,%20Alice&Tanevski,%20Jovan&Guo,%20Baosen&rft.genre=article&rft_id=info:doi/10.15252/msb.202110402&
 Search print copy at ETH Library

Files in this item

Thumbnail

Publication type

Show simple item record