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∥Quantis, Parc Scientifique EPFL, Bat̂iment D, 1015 Lausanne, Switzerland

*S Supporting Information

ABSTRACT: Increasing CO2 atmospheric levels lead to increasing ocean
acidification, thereby enhancing calcium carbonate dissolution of calcifying
species. We gathered peer-reviewed experimental data on the effects of acidified
seawater on calcifying species growth, reproduction, and survival. The data were
used to derive species-specific median effective concentrations, i.e., pH50, and
pH10, via logistic regression. Subsequently, we developed species sensitivity
distributions (SSDs) to assess the potentially affected fraction (PAF) of species
exposed to pH declines. Effects on species growth were observed at higher pH
than those on species reproduction (mean pH10 was 7.73 vs 7.63 and mean
pH50 was 7.28 vs 7.11 for the two life processes, respectively) and the variability
in the sensitivity of species increased with increasing number of species available
for the PAF (pH10 standard deviation was 0.20, 0.21, and 0.33 for survival,
reproduction, and growth, respectively). The SSDs were then applied to two
climate change scenarios to estimate the increase in PAF (ΔPAF) by future
ocean acidification. In a high CO2 emission scenario, ΔPAF was 3 to 10% (for pH50) and 21 to 32% (for pH10). In a low emission
scenario, ΔPAF was 1 to 4% (for pH50) and 7 to 12% (for pH10). Our SSDs developed for the effect of decreasing ocean pH on
calcifying marine species assemblages can also be used for comparison with other environmental stressors.

■ INTRODUCTION

Increase in atmospheric carbon levels has led to increasing
uptake of CO2 by oceans.1 This process, characterized by
enhancement of dissolved CO2 levels and the decrease in ocean
pH, leads also to amplification of carbonate dissolution in
oceans.2 The building of shells and skeletons of calcifying species
is favored by oversaturated carbonate minerals in oceans.3,4

Thereby, changes in carbonate chemistry following ocean
acidification may pose a particular threat to these species.5

Since the process of calcification is observed in a wide variety of
taxa (including phytoplankton, corals, and crustaceans),
detrimental effects of ocean acidification may result in a decline
of species richness and the various ecosystem services those
species provide, including nursery for fish and protection against
erosion and storms by corals, fisheries of urchins and
invertebrates, and food provisioning for predators.3

Many laboratory experiments assessed the effects of ocean
acidification on individual species, which allowed for various meta-
analyses of the effects of acidification on marine species.6−9 Those
studies have shown that acidification effects on marine species,
particularly on the calcifying ones, are mainly detrimental,8

although the responses of individual species are far from uniform.7

In environmental risk assessments, species-specific responses
to environmental stressors can be used in the derivation of the
so-called species sensitivity distributions (SSDs). They are

probabilistic models of the interspecies variation to a specific
stressor, where a statistical function illustrates the increasing
fraction of species affected by increasing levels of the stressor.10,11

They are commonly applied in risk assessment of toxicants, such
as metals or pesticides, but recently they have also been
developed for marine species with respect to increasing CO2

exposure.12,13 They are particularly useful for (1) the estimation
of the overall response (and the variability in responses) of an
assemblage of species in the environment and (2) the derivation
of acceptable or “safe” levels of a stressor for the protection of the
environment.10 Despite recent developments in the risk
assessment of ocean acidification,12,13 probabilistic models
related to pH declines (a commonly monitored indicator of
ocean acidity) have not yet been reported.
Here, we developed species sensitivity distributions (SSDs)

based on three life processes (i.e., growth, reproduction, and
survival) and apply the SSDs to two global climate change
scenarios of the Intergovernmental Panel on Climate Change,
IPCC.14 Growth, reproduction, and survival are often indicators of
themaintenance of species populations in the environment as they
reflect the performance of species at important life processes.15
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■ MATERIAL AND METHODS
Data Inventory. We collected experimental data of ocean

acidification effects on calcifying species from literature studies.
Those studies were listed in previous meta-analyses7−9 and were
complemented by a keyword search of studies published
afterward and until September 2012 (see keyword selection
in appendix S1 of the Supporting Information, SI). We only
included experiments where the taxonomic level of the tested
organism was species and where the total scale pH (hereafter
described as pH) was manipulated by changing CO2 partial
pressure (pCO2). In experiments where pCO2 but not pH
was reported, we converted pCO2 to pH (see conversion in
SI Appendix S2). The reported responses in each study were
categorized into one of three life processes: growth,
reproduction, and survival. Responses allocated to growth
included calcification and growth rates (e.g., as mass of calcium
carbonate or body size increase per time), body size, or body
weight; to reproduction, they included fertilization success,
percentage of normal larvae, and hatching rates; and to survival,
they included mortality and survival rates. We excluded responses
reporting metabolic changes (for example, O2 productivity, and
photosynthetic rate or amount of RuBisCO) since they could not
be directly related to any of the three life processes. If multiple
responses, different conditions (for example, duration or temper-
ature of the experiment), different tested organisms (for example,
different generations or life stages) were reported by a single study,
then the experiments of the study were kept separate. This resulted
in more experiments than studies. Finally, we recorded the species
response and the pH associated with that response. In each
experiment, we excluded pH levels which were above 8.35. Also,
we excluded experiments where the highest tested pH level was
lower than 7.95 since those conditions do not represent
contemporary but past or future ocean pH levels.2,16

Derivation of pH50 and pH10. First, we adjusted the
responses reported in each experiment to empirical relative
responses17 as follows:

= −
R
R

eRR 1i
i

r (1a)

where eRRi, Ri, and Rr are the relative response at pH i and the
reported responses at pH i and at the reference situation (i.e., the
highest reported pH level), respectively. For example, the relative
response of growth rate at pH i is 0.5 if Ri and Rr are given as
calcification rates of 500 and 1000 mg CaCO3·day

−1,
respectively. The equation was modified if the reported response
did not promote but reduced growth, reproduction, or survival
(for example, rate of mortality or weight loss). In such cases, eRRi
was calculated as follows:

= = −
R
R

eRR eRR 1i i
r

I (1b)

Second, we employed eRRi and the corresponding pHi to fit a
logistic regression where the calculated relative response in each
experiment was as follows:

=
+ β−cRR

1
1 10(pH pH)/50 (2)

where pH50 is the pH causing an effect of 50% to a given life
process of a species (i.e., growth, reproduction, or survival) and
β is slope of the logistic function. For each experiment, the effect
pH declines on the species was then recorded as detrimental (if
β < 0 at a 95% confidence level), beneficial (if β > 0), or uncertain

(where β was nondifferent from zero or if the p value of the re-
gression was higher than 0.05) using SAS 9.2. Only experiments
with 3 or more RRi and pH conditions were included since
the logistic function describe in eq 2 has 2 parameters (i.e., pH50
and β) and requires 1 degree of freedom.
For detrimental effects, we proceeded by calculating the pH

causing an effect of 10% to a life process of a species as follows:

β= − × +pH log 9 pH10 10 50 (3)

If multiple pH50 and pH10 results were available for a given life
process of a species, then the highest value of pH50 and pH10 was
employed for the derivation of the SSD. This is a conservative
approach since the effect on a species is given at the highest
reported pH value. We tested if the pH50 and pH10 results
employed in the SSD were correlated with the duration and the
temperature at which the experiment was conducted using
Pearson correlation (SAS 9.2).

Species Sensitivity Distributions. For each life process
(i.e., growth, reproduction, and survival) and for each effect
concentration (i.e., pH50 and pH10, hereafter defined as severe
and subtle effects, respectively), the SSD was constructed using
a cumulative normal distribution function described as the
potentially affected fraction of species (PAF). The PAF at pH
i was given as follows:

πσ
= μ σ− −ePAF

1
2i

pH( ) /22 2

(4)

where μ and σ are the average and standard deviation of species-
specific pH50 or pH10 value. We determined the statistical
uncertainty around the PAF along the pH gradient using aMonte
Carlo exercise (10 000 simulations) using Oracle Crystal Ball.
This was attained by first determining the uncertainty around
μ and σ, which was executed following the procedure described
by Roelofs et al.18 In this procedure, the uncertainty around the
μ and σ coefficients is augmented for SSDs encompassing fewer
species.

Climate Change Scenarios. Two climate change scenarios
proposed by the Special Report on Emissions Scenarios, SRES14

were employed in order to estimate the fraction of species poten-
tially affected by future ocean acidification. The scenarios B1 and
A2 describe, respectively, low and high greenhouse gas emission
scenarios and differing with respect to social-economic and
technological developments expected in the future.14 In addition
to the decline of 0.1 pH unit, which has already occurred since the
industrial revolution,19 current global average pH at the ocean’s
surface is roughly 8.1.20 Under the B1 and A2 climate change
scenarios, pH is projected to be roughly 7.95 and 7.8 by 2100.20

The change in PAF was calculated for each life process and
effect concentration for future scenarios S as follows:

Δ = −PAF PAF PAFS S 0 (5)

where PAF0 is the current PAF, and PAFS is the PAF at pH pro-
jected under global climate change scenario S. The uncertainty
in ΔPAF results was calculated as the range in 5th and 95th in a
Monte Carlo simulation.

■ RESULTS
Species Sensitivity Distributions. Our data inventory

included 72 studies and 346 experiments, of which 73 logistic
regressions showed detrimental effects of ocean acidification
on growth (40 in total), on reproduction (25 in total), and on
survival (8 in total) while the remaining experiments did not
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show a significant logistic distribution (at a 95% confidence),
SI Table S3.1. SI Appendix S3 provides further details of the
logistic regression results per experiment.
A total of 82 species were included in our data set, in which

40 species had detrimental effects of ocean pH declines
confirmed in our logistic regressions. The PAF functions for
growth, reproduction, and survival comprised a total of 28, 11,
and 5 calcifying species, respectively, belonging to 10 different
phyla. Figure 1 shows that the pH at which 50% of the calcifying
species have a severe effect (described by the pH50) varied
between 7.11 and 7.35, depending on the life process. Likewise,
the pH at which 50% of the species show a subtle effect
(described by the pH10) varied from 7.63 to 7.73, Figure 2.
The variability in both pH50 and pH10 results was higher for
effects on growth, followed by effects on reproduction and
survival (σgrowth > σreproduction > σsurvival).
The corals Acropora intermedia, Favia f ragum, and Porites

astreoides shows the highest pH10 related to growth effects
(indicating high sensitivity to pH declines) while the sea urchin

Hemicentrotus pulcherrimus and the coral Acropora digitifera
were the least sensitive to pH declines. The chlorophyte
Halimeda cylindracea and the sea urchin Echinometra mathaei
showed the highest pH50 related to growth effects whereas the
bivalve Mercenaria mercenaria and the sea urchin Hemicentrotus
pulcherrimus were the least sensitive to pH declines.
The duration of experiments ranged from less than 1 day

(especially in reproduction experiments testing egg hatching
success, for example) to 320 days while ocean water temper-
atures ranged from −1.9 to 34 °C (SI Table S3.2). However, we
found no significant correlation between duration or temper-
ature and pH50 or pH10 results (SI Appendix S4).

Climate Change Scenarios. In the low emission scenario
(B1), represented by a decline in pH from 8.1 to 7.95, we found
an increase in the PAF by 12%, 7%, and 12% in subtle effects
(i.e., pH10) and an increase in the PAF by 4%, 1%, and 2% in
severe effects (i.e., pH50) on growth, reproduction, and survival
of species, respectively (Figure 3). In the high emission scenario
(A2), represented by a decline in pH from 8.10 to 7.80, we found

Figure 1. Potentially affected fraction (PAF, continuous line) using pH50 values for (a) growth, (b) reproduction, and (c) survival. The error bars
illustrate the 95% confidence intervals around the pH50 determined with the logistic regression and the μ and σ are the mean and standard deviation of
pH50 used in the derivation of the PAF. The bottom right box shows the rankings of species sensitivity to pH declines.

Figure 2. Potentially affected fraction (PAF, continuous line) using pH10 values for (a) growth, (b) reproduction, and (c) survival. The μ and σ are the
mean and standard deviation of pH10 used in the derivation of the PAF. The bottom right box shows the rankings of species sensitivity to pH declines.
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an increase in the PAF by 28%, 21%, and 32% in subtle effects
(i.e., pH10) and an increase in the PAF by 10%, 3%, and 6% in
severe effects (i.e., pH50) on growth, reproduction, and survival
of species, respectively. The effects on species survival were
found to be the most uncertain since the ratios between the 95th

and 5th percentiles of PAF results obtained by the Monte Carlo
simulation ranged from 1.26 to 1.58 for growth, 1.94 to 3.97, for
reproduction, and 1.96 to 4.57 for survival (depending on the
effect severity and emission scenario).

■ DISCUSSION

We gathered data on ocean acidification experiments reported
by peer-reviewed studies. In each experiment, the effect of pH
decreases on individual species was allocated one of three life
processes: growth, reproduction, and survival. Species-specific
pH50 and pH10 were employed in the construction of SSDs and
we estimated the change in the PAF of calcifying species under
two global climate change scenarios. Below, we discuss the main
uncertainties of the analysis and interpret our results.
Uncertainties. We constructed SSDs based on pH50 and

pH10 derived from logistic regressions where detrimental effects
of pH declines on the three life processes of calcifying species
were confirmed. However, for most regressions, we found no
significant relationship between pH declines and effects to life
processes of species (SI Table S3.1), which considerably
decreased the number of species available in the derivation of
the SSDs. Still, for some species, multiple pH50 results were
obtained for individual species (SI Table S3.1). For example, we
found 16 experiments testing ocean acidification effects on the
growth of the coral Strongylocentrotus purpuratus, 4 of which had
detrimental effects confirmed with logistic regressions. In those
cases, we used a conservative approach in which acidification
effects are considered at the highest reported pH10 and pH50
levels. Had we chosen the lower reported pH10 and pH50, the
mean μ describing the PAF curves would be lower than those we
reported.
Unconfirmed or dissimilar results for a given species across

regressions may have been triggered by various factors, including
the lack of standardization between the experiments with respect
to their duration, temperature, salinity, and so forth.12

For example, De Vries et al.12 found that effect levels were
correlated with the duration of experiments for marine species
(both calcifying and noncalcifying), although, in our study, we
found no evidence of this correlation. The discrepancy in the

influence of experiment duration between our study and that of
De Vries et al.12 may have been caused by the higher range in the
duration of experiments employed by De Vries et al.12 (0.07 to
365 days) compared to those of our study (0.01 to 320 days).
The lack of experiment standardization is also reflected in the
discrepancy between the numbers of pH treatments to which the
species was exposed. (The statistical power for the logistic
regression declines considerably when few samples, i.e., pH
levels, are available for the logistic regression, which may explain
the high number of regressions with uncertain species effects of
acidification.) We also found no correlation of pH50 and
temperature of experiments, both antagonistic and synergistic
effects of temperature and ocean acidification have been shown
in other studies.21,22 Species-specific factors which could
contribute to the discrepancy between logistic regressions for a
given species include differences in species populations across
experiments,23 metabolic plasticity of species exposed to ocean
acidification,24,25 altering of physiological processes to counter-
weight declines in calcium carbonate skeleton weights, e.g.,
reduction of motility.25

In the derivation of logistic regressions in each experiment,
we only included the effects at pH levels below 8.35. The choice
of discarding more alkaline conditions is based on the fact
that marine waters seldom reach 8.35 or higher.16,26 For the
calculations of expected changes in the PAF from current to
estimated pH scenarios, we assumed current pH levels of 8.10,
which is the level of monthly averages of ocean pH reported by
Takahashi and Sutherland26 at different world’s locations.
The SSDs we developed do not take into account spatial

variability or seasonal differences across species assemblages.
However, such differences are known to occur. For example,
while some of the species considered have a global distribution
(e.g., Mytilus edulis), others have narrower distribution (e.g.,
Oculina arbuscula). Even though there is an increasing body of
literature on ocean acidification experiments, including studies
developing SSDs for pCO2,

12,13 deriving ecosystem-specific
SSDs would considerably decrease the confidence around PAF
estimates.

Interpretation of Results. Subtle growth effects on species
(for which responses include organism size, weight, and
calcification rate) follow changes in water chemistry by reducing
the accretion of calcium carbonate in the tissue of organisms.8

This effect may be accompanied by an energy-saving strategy
whereby metabolic rates are suppressed in order to maintain

Figure 3. Change in the potentially affected fraction (ΔPAF, eq 5) from current conditions (pH = 8.1) to a low emission (B1) and high emission (A2)
scenario of climate change, where pH is estimated to decline by 0.15 and 0.30 units, respectively. The error bars are the 5th and the 95th percentiles
around ΔPAF, and the results are given for (a) severe (i.e., pH50) and (b) subtle (i.e., pH10) effects.
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other life processes under short-term acidified seawater.27

This process has been documented for individual species, such
as Acropora sp. and Mytilus galloprovincialis.27,28 Nevertheless,
detrimental effects on growth may as well be artifact of oxygen
displacement following the bubbling of CO2.

12,29

Detrimental effects on the growth of crustaceans were not
found in our study. Their lack of sensitivity to ocean acidification
may be due to the more extensive biogenic covering, thereby
offsetting the dissolution of CaCO3 from their exoskeleton.13,30

By contrast, species encompassing structures which are heavily
calcified or which have a high content of highly soluble aragonite
may be particularly sensitive to pH declines.13,31

Under a high emission scenario of climate change (A2), the
uncertainty in the change in the PAF is higher than under a low
emission scenario (B1) because the uncertainty in the PAF
function at 7.80 is higher than at 7.95. This discrepancy is
enhanced for the SSDs of life processes for which lesser species
are available (i.e., reproduction and survival). Still, the increase in
the fraction of species for which negative effects of ocean
acidification were reported is comparable to those of Wittman
and Pörtner.13 In their study, Wittman and Pörtner13 found that
an increase in 5 to 10% in the fraction of species affected by an
increase in pCO2 levels from 344 to 511 μatm (which are roughly
the CO2 levels currently and under the B1 scenario, respectively).
Implications of Environmental Risk Assessment. Our

study shows how species-specific responses of calcifying
species to pH declines can be implemented in environmental
risk assessments. Our results show that responses to ocean
acidification vary across different calcifying taxa (molluscs,
echinoderms, and cnidarians, among others) as well as across
life processes (in our case, growth, reproduction, and survival).
Subtle effects on 50% of species occur within a range of 7.63 to
7.73 whereas severe effects are observed to 50% of species in
pH levels ranging from 7.11 to 7.35. The employment of SSDs
of ocean pH may be especially useful to assessments of ocean
acidification risks to calcifying species since they convey the
interspecies variability responses to gradual pH declines and they
allow for the estimation of the potential fraction of the species
assemblage affected in different global climate change scenarios.

■ ASSOCIATED CONTENT
*S Supporting Information
Appendix S1 shows the keyword used to complement the data
collection with more recent literature. Appendix S2 shows the
conversion from CO2 partial pressure (pCO2) to ocean pH.
Appendix S3 describes the experimental design and pH50 and
pH10 results of each logistic regression (Table S3.1), the
literature list included by our study (Table S3.2), and the
location of each experiment (Figure S3.1). Appendix S4 shows
the result of the influence of temperature and experiment
duration on pH50 results. This material is available free of charge
via the Internet at http://pubs.acs.org.
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long-term moderate hypercapnia on acid-base balance and growth rate
in marine mussels Mytilus galloprovincialis. Mar. Ecol.: Prog. Ser. 2005,
293, 109−118.
(29) Truchot, J. P.; Duhamel-Jouve, A. Oxygen and carbon dioxide in
the marine intertidal environment: Diurnal and tidal changes in
rockpools. Respir. Physiol. 1980, 39 (3), 241−254.
(30) Ries, J. B.; Cohen, A. L.; McCorkle, D. C. Marine calcifiers exhibit
mixed responses to CO2-induced ocean acidification. Geology 2009, 37
(12), 1131−1134.
(31) Beesley, A.; Lowe, D. M.; Pascoe, C. K.; Widdicombe, S. Effects of
CO2-induced seawater acidification on the health ofMytilus edulis. Clim.
Res. 2008, 37 (2−3), 215−225.

Environmental Science & Technology Article

DOI: 10.1021/es505485m
Environ. Sci. Technol. 2015, 49, 1495−1500

1500

http://www.ldeo.columbia.edu/res/pi/CO2/
http://www.ldeo.columbia.edu/res/pi/CO2/
http://dx.doi.org/10.1021/es505485m

