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Abstract: Common beans are a staple food and the major source of iron for populations in 
Eastern Africa and Latin America. Bean iron concentration is high and can be further 
increased by biofortification. A major constraint to bean iron biofortification is low iron 
absorption, attributed to inhibitory compounds such as phytic acid (PA) and polyphenol(s) 
(PP). We have evaluated the usefulness of the common bean as a vehicle for iron 
biofortification. High iron concentrations and wide genetic variability have enabled plant 
breeders to develop high iron bean varieties (up to 10 mg/100 g). PA concentrations in beans 
are high and tend to increase with iron biofortification. Short-term human isotope studies 
indicate that iron absorption from beans is low, PA is the major inhibitor, and bean PP play 
a minor role. Multiple composite meal studies indicate that decreasing the PA level in the 
biofortified varieties substantially increases iron absorption. Fractional iron absorption from 
composite meals was 4%–7% in iron deficient women; thus the consumption of 100 g 
biofortified beans/day would provide about 30%–50% of their daily iron requirement. Beans 
are a good vehicle for iron biofortification, and regular high consumption would be expected 
to help combat iron deficiency (ID). 

Keywords: common bean; iron biofortification; phytic acid; polyphenols; ferritin;  
stable iron isotope studies 
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1. Introduction 

The domestication of Phaseolus vulgaris (common bean) occurred independently in South America 
and Central America/Mexico, leading to two different domesticated gene pools, the Andean and 
Mesoamerican, respectively [1]. The common bean is currently estimated to be one of the most important 
legumes worldwide [2], and is an important source of nutrients for more than 300 million people in parts 
of Eastern Africa and Latin America, representing 65% of total protein consumed, 32% of energy [3–5], 
and a major source of micronutrients e.g., iron, zinc, thiamin and folic acid; [4,6,7]. The annual global 
bean production is approximately 12 million metric tons, with 5.5 and 2.5 million metric tons alone in 
Latin America Caribbean (LAC) and Africa, respectively [4,8]. The highest producer is India at more 
than 4 million metric tons per year [9]. LAC and African countries with the highest production are Brazil, 
Mexico, the Democratic Republic of the Congo (DRC), Kenya, Tanzania and Uganda. The highest 
apparent per capita consumption is found in Burundi, Kenya and Rwanda [3], ranging from 31 kg to  
66 kg per year [4,8], equivalent to 180 g per capita and day. However, bean consumption and production 
tend to be underestimated because beans are often intercropped and consumed in remote rural areas [10] 
where dietary intake data are often incomplete or inexistent [11]. Thus, estimations of bean consumption 
as high as 200 g and 300 g per capita per day have been reported in Rwanda and certain regions of the 
DRC, respectively [12,13]. 

Although the average iron concentration in beans is high 55 μg/g; [14] compared to other major crops 
such as wheat [15], rice [16] and maize [17], many people living in these countries still suffer from ID 
due to an insufficient level of bioavailable iron in a monotonous cereal/bean-based diet without  
meat [18–20]. One potentially sustainable strategy to combat ID in bean-eating populations is iron 
biofortification. Beans exhibit sufficient genetic variability in iron concentration, which is the basic 
requirement for biofortification. The multidisciplinary biofortification approach could therefore be used 
to counteract ID by either increasing the concentration and/or bioavailability of iron in beans through 
traditional plant breeding, or by employing genetic engineering techniques [21]. 

In order to successfully introduce a biofortified crop in to the food system, other human and 
environmental factors have to be properly addressed. Although no behavioral changes are required from 
the consumers for invisible traits such as mineral biofortification, the target varieties have to be chosen 
carefully, following the consumer’s dietary patterns and culinary preferences [22]. Sensory and cooking 
qualities have to be maintained and studies assessing consumer preferences must be undertaken in 
different cultural settings [11]. The new variety also has to be accepted and cultivated by the farmers, 
and must exhibit high agronomic yield and resistance to pathogens and other environmental stresses; in 
short, it must be as or more profitable than local varieties. To augment the sustainability of 
biofortification in general, and beans in particular, breeders have to take into account the impact of 
climate, soils and agronomic practices on iron concentration [23,24]. 

In some countries (e.g., Rwanda and DRC), plant breeders have already developed and released new 
P. vulgaris bean varieties with iron concentrations above 94 μg/g, the target level of HarvestPlus, an 
international research program supporting the research and development of biofortified crops [25–27].  
They show good micronutrient retention after processing, and equal or increased agronomic yield,  
indicating that the common bean may be a promising crop for iron biofortification [28]. However, successful 
bean iron biofortification might be constrained due to the reported low iron bioavailability associated 
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with high concentrations of PA [29,30] and PP [14,31], two potentially potent iron absorption inhibitors 
in common beans [32–36]. Recent human stable isotope iron absorption studies, conducted with black 
and brown biofortified bean varieties, [37,38] reported that the additional iron bred into biofortified 
beans was of low bioavailability and the authors questioned whether biofortified beans could make a 
useful contribution to filling the gap between current iron intake and requirements [28]. 

This review evaluates the potential of the common bean as a vehicle for iron biofortification, with a 
focus on human studies of iron absorption from beans and bean-containing meals and the impact of 
compounds present in beans (PA; PP; proteins) on bean iron absorption. 

2. Methods 

Due to the broad scope of the review, key words related to the overarching topics were searched in 
PubMed and Web of Science to identify published literature related to bean consumption, bean 
production and iron in beans including iron biofortification, iron speciation, iron absorption inhibitors 
and human studies conducted with beans and bean containing meals. The key-word search was 
conducted in September 2014, and included the following words and expressions: (common bean * OR 
Phaseolus vulgaris *) and (iron * OR iron biofortification * OR consumption * OR production * OR 
iron absorption * OR iron bioavailability * OR isotope studies * OR iron absorption inhibitors * OR 
phytate * OR polyphenols * OR proteins * OR lectin * OR ferritin *). Additional sources (published and 
unpublished) were identified through a reference review of key publications and theses [39–41] and 
following discussions with researchers at HarvestPlus and ETH Zurich. 

Sources not pertaining to the aforementioned topics (e.g., bean consumption, production, 
biofortification, iron speciation and iron absorption) were not included in this review; in total,  
212 published and unpublished sources were included in this review. 

3. Results and Discussion 

3.1. Iron in Beans 

3.1.1. Genetic Variability of Iron Concentrations in Beans 

Iron in beans is present in higher concentrations than in cereal staples, and is almost completely 
retained through harvest and processing [14,42]. More than 36,000 accessions of beans for 44 species of 
Phaseolus from 109 countries are held in a gene bank at the “Centro Internacional de Agricultura 
Tropical” (CIAT) in Cali, Colombia, making it the most diverse and largest bean collection  
worldwide [43]. Much data are available on the iron content of beans, but the most complete overview 
and reliable information is provided by two independently conducted studies screening the common 
bean core collection of CIAT, which is a systematic sample of the germplasm available and contains 
more than 1000 genotypes. Both studies reported that there is a promising genetic variability for iron in 
beans [14,44] with iron concentrations ranging from about 35–90 μg/g, with an average of 55 μg/g. Iron 
concentration in 119 wild varieties tested was only slightly higher than in the cultivated beans with an 
average Fe concentration of 60 μg/g [14]. Other researchers reported much higher iron concentrations in 
wild types ranging from 71 μg/g to 280 μg/g [45], and suggested that these wild varieties be used in 
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biofortification programs to increase iron concentration in cultivated varieties. It is not clear to what 
extent these very high iron concentrations are due to iron contamination from soil or other sources, but 
this is a potential source of apparent variability that should be investigated. 

There is no correlation between geographic distribution and iron concentration in beans, although 
beans from the Andean gene pool tend to have higher iron concentrations than Mesoamerican  
beans [14]. However, variability of iron concentration in beans was not only ascribed to bean variety, 
but was also influenced by the planting site and season [46]. 

3.1.2. Iron Speciation in Beans 

Storage iron in legumes is sequestered in ferritin, which is the major iron storage protein.  
Ferritin consists of 24 protein subunits that can store up to 4500 Fe3+ atoms in the form of an iron 
oxyhydroxide-phosphate mineral [47,48]. It is abundant in legumes and has been reported in beans, 
soybeans, lentils and peas [49–52]. Hoppler and colleagues [52] recently developed an isotope dilution 
method to quantify ferritin in different legume seeds and reported that the concentration of ferritin-bound 
iron in beans was lower than previously reported using other techniques [48] and ranged from 15% to 
30% of total iron. Thus, 70%–85% of the iron present in beans is in the form of non-ferritin-bound iron 
possibly bound to PA. Hoppler and colleagues [53], using their isotope dilution technique [52] 
subsequently reported that ferritin concentration in beans is independent of iron concentration and that 
as the iron concentration in beans increases, there is an increase in the non-ferritin bound iron  
(Figure 1). They further observed a correlation between non-ferritin bound iron and phytate and 
suggested that this might be the reason for the low iron bioavailability reported from biofortified beans. 
In colored beans, it is also possible that iron in the seed coat [54] is bound to PP as little PA is located 
in the seed coat. 

 

Figure 1. Scatterplot (including regression lines) showing the correlation between  
total iron content of 21 common bean genotypes versus their ferritin-bound iron (◊) and  
non-ferritin-bound iron (□) fractions [53]. 

Although early studies reported poor iron absorption from animal ferritin [55–59], this seems to be 
due to an inappropriate labeling procedure [60], and recent data indicate that plant ferritin-iron is as well 
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absorbed by humans as ferrous sulfate and the common inorganic iron pool [61,62]. There has been 
speculation that ferritin iron is absorbed intact by a separate mechanism and that the iron is protected  
from PA. This led to the proposal that increasing ferritin iron in plant foods by plant breeding programs 
could be a solution to global ID. This hypothesis assumes that much of the ferritin survives cooking and 
digestion, protects iron from absorption inhibitors such as PA and calcium in the gastrointestinal tract, and 
is absorbed intact (with its high iron concentration) via a ferritin specific transporter [63]. This proposal is 
based on a series of human and Caco-2 cell studies made by Theil and colleagues [63–66]. They showed 
in the human iron bioavailability studies that ferritin iron absorption was not influenced by certain 
concentrations of hemoglobin and ferrous sulfate and they suggested that ferritin iron is absorbed by a 
different mechanism than iron salts/chelates or heme iron and that ferritin was unaffected by gastric and 
luminal digestion [63]. 

This suggestion, however, is not supported by radioisotope studies in humans with intrinsically 
labeled black beans that reported equal absorption from the intrinsic and extrinsic radio labels, indicating 
that all the iron species in the bean were absorbed to the same extent as common pool iron [67], and by 
in vitro studies which reported that ferritin iron is readily and completely released from the ferritin 
molecule during cooking and gastric digestion [68–70]. These studies suggest that the absorption of 
ferritin iron in beans would be equally influenced by inhibitors and enhancers of iron absorption as  
non-ferritin iron. Further studies may be needed to resolve these contradictory results. 

One way forward would be the measurement of iron absorption in human subjects from intrinsically 
labeled beans that contain different proportions of total iron as ferritin iron. However, at present the 
weight of the evidence suggests that iron speciation in beans is relatively unimportant as iron appears to 
be readily and completely released from ferritin by cooking and digestion [69] and, in the same way as 
non-ferritin iron, ferritin iron after its release would be expected to bind to PA in the gastric juice forming 
insoluble, non-bioavailable complexes [37,71]. 

3.1.3. Progress in Bean Iron Biofortification 

The initial goal of the HarvestPlus bean biofortification initiative was to use selective plant  
breeding strategies to produce bean varieties with at least 80% more iron than found in conventional 
beans [28]. The targeted iron level for beans was 94 μg/g, which represented an increase of 44 μg/g as 
compared to the average concentration in the germplasm. Assuming a mean iron absorption of 5%, the 
target increase was estimated to meet one third of the daily iron needs of the most vulnerable population 
groups who consumed 30%–40% of their daily calories from beans [13]. The target level was quickly 
reached [17,26,37,72], and the first human studies testing the performance of biofortified beans have 
already been conducted [37,73]. 

Several approaches were used to breed high iron beans. Blair and colleagues [25] developed a high 
iron bean line by an advanced backcross breeding approach including backcrossing, recurrent selection 
and various permutations of gamete and pedigree selection. The new bean line, which was derived by 
backcrossing a high iron wild type bean into a commonly cultivated bean from the Andean gene pool, 
had an iron concentration ranging from 92 μg/g to 99 μg/g [25]. Using a different approach, the same 
researchers [26] developed two promising new, red mottled Andean bush beans with improved iron and 
zinc concentrations. The lines were derived by crossing a red mottled bean, commonly cultivated in 
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eastern and southern Africa, and in the Andean region, with a brown seeded high mineral climbing bean. 
The agronomic performance of the new varieties was tested in the Andean region and Central America. 
Iron and zinc concentrations strongly depended on the planting site but were on average 18–23 mg/kg 
higher than in the red mottled parental bean. Although affected by environmental factors, the higher iron 
concentration in the biofortified beans compared to the parent beans over different environments 
indicates that breeding for high iron should be successful. However, although high iron genotypes will 
accumulate more iron than the low iron genotypes grown at the same location during the same growing 
season [14,46], the major challenge will be to maintain high iron concentration in a sufficient number of 
genotypes to cover varying climates, altitudes and soil types. In Rwanda progress has been made to 
address this challenge, with ten high-iron varieties released since 2010 that cover different growth types 
(bush and climbers) and agro-ecological zones (low, mid and high altitude), and span a wide range of 
market classes (seed color, grain size, cooking time). 

Another approach to boost the iron concentration in beans focuses on interspecific crosses with  
P dumosus and P coccineus. Results of interspecific crosses are promising especially for Mesoamerican 
beans where it has proven difficult to get iron levels above 90 ppm [74]. A further step forward, which 
offers new insights into inheritance of bean iron concentration, is the recent identification of the 
quantitative gene loci (QTL) that control iron accumulation [42,46]. These findings are promising for 
the use in biofortification because they give more precise genetic information about targeted traits, 
rendering marker-assisted selection of high micronutrient beans possible. 

An alternative to plant breeding is agronomic biofortification with the application of mineral 
fertilizers to soils or leaves. Agronomic biofortification through soil fertilization has increased  
zinc [75,76] and selenium levels [77] in cereals but has been much less successful for iron [78].  
The usefulness of iron containing fertilizers added to soils is hindered by the rapid and strong binding of 
the added iron to soil particles which prevents its uptake by the plant [79]. Better results might be 
achieved with the application of chelates such as FeEDTA because more iron remains bioavailable in 
solution [80,81]. But these fertilizers are more expensive [81] and bear the risk of leaching because they 
increase mineral mobility throughout the whole soil [82,83]. Another method of agronomic 
biofortification is foliar application of zinc fertilizers, which is more effective than zinc soil application 
and has been shown to increase the Zn grain yield of wheat and rice [84–86]. In contrast, the application 
of iron fertilizers has only little or no effect on grain iron [87,88], but increasing the supply of N boosts 
both iron and zinc concentration in the grain and shoot [87]. Fertilizers, however, are costly and they 
must be applied repeatedly, which might raise the question of compatibility between the application of 
fertilizers and the philosophy of sustainable biofortification. 

3.2. Compounds Influencing Iron Absorption from Beans 

3.2.1. Polyphenols-Impact on Iron Absorption and Human Health 

PP are a heterogeneous class of compounds derived from the secondary plant metabolism.  
They protect the plant against pathogens and UV radiation, and play an important role in pollination by 
insects [89–91]. Their ability to form non-absorbable complexes with iron in the intestinal tract, as well 
as the strength and the nature of bonding, depends to a large extent on the polyphenol’s structure [36,92]. 
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PP with only one donor atom available to bind to the iron atom, form rather weak complexes with the 
iron, whereas bidentate PP, which bind iron through two sites can be very powerful ligands [93]. It is 
suggested that for the PP to effectively bind the iron, at least two hydroxyl groups in the ortho- position 
are necessary [94], and if the hydroxyl groups are arranged differently, the PP behaves like a 
monodendate ligand [93,95]. 

The inhibitory nature of PP present in different plant foods has been the subject of many human 
isotopic absorption studies, and PP from vegetables, legumes, spices, red wine, different teas, cocoa and 
coffee decrease iron absorption [36,96–100]. The strong inhibitory effect of sorghum PP on iron 
absorption has been observed in several absorption studies [34,101] and recently published data suggest 
that 162 mg sorghum PP added to a non-inhibitory phytate-free bread meal decrease iron absorption by 
about 70% [102]. This compares to a reduction of almost 80% by the same concentration black tea PP 
added to a similar bread meal [36]. 

While it is tempting to suggest decreasing PP in beans as a means to improve iron nutrition, the 
reported health benefits of certain PP should be considered. Some monomeric PP can be absorbed and 
are reported to have physiological effects leading to health benefits. However, they need to be present at 
a sufficiently high concentration and be adequately absorbed if they are to exert biological effects [103]. 
Polymeric PP are not absorbed but are extensively degraded by fermentation in the colon to a variety of 
metabolites that are absorbed and may also have beneficial physiological effects [104]. There is 
epidemiologic evidence that certain PP reduce the risk of several forms of cancers [105], and that 
individuals with high flavonoid intake have a reduced risk of cardiovascular disease [106–111].  
The European Food Safety Agency has recently accepted a health claim that cocoa flavanols improve 
blood flow [112]. The mechanism of action is thought to be via an influence of monomeric epicatechin 
on the enzymes producing nitric oxide, which leads to a relaxation of the blood vessels [113,114] and 
potentially a decrease in blood pressure. Although PP compounds in vitro are strong antioxidants [115], 
they are extensively modified on absorption [116] and can lose much of their antioxidant potential. 
Nevertheless, it is possible that they could help prevent oxidative stress by trapping OH  
radicals [117,118] or by forming complexes with iron and preventing its participation in the Fenton 
reaction [119,120], which leads to free radical production and possible tissue damage. 

3.2.2. Occurrence of Different PP in Common Beans 

Common beans contain a wide range of PP including phenolic acids, flavanols (flavan-3-ols;  
e.g., catechin, gallocatechin, afzelechin), anthocyanidins (e.g., delphinidin, cyanidin, mainly present in 
glycosylated form) as well as flavonols (e.g., quercetin, kaempferol; Figure 2), the latter three classes 
being responsible for bean pigmentation [121]. 

Flavanols mostly occur in the form of oligomers and polymers, which are called proanthocyanidins 
or condensed tannins [122]. However, PP content and profile differ widely between beans and are 
determined by the bean variety and seed color [14]. In addition, analytical values for total PP 
concentration differ strongly depending on the chemical assay used. 
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Figure 2. The predominant PP units in beans that occur mostly in various polymeric forms. 

As quantified by the simpler, colorimetric Folin Ciocalteau method, white beans have by far the 
lowest total PP concentration, ranging from 40 to 80 mg PP/100 g beans and red colored beans tend to 
have the highest PP concentrations with up to 800 mg/100 g expressedingallicacidequivalents; [123]. 
The major PP in colored beans are the proanthocyanidins, which are primarily located in the bean  
hull [29,124]. Diaz and colleagues [125] found concentrations ranging from 10% to 30% of seed coat 
weight, with an overall average of about 20% in 250 bean varieties. Since bean hulls account for 
approximately 7% of total bean weight, the amount found in hulls was equivalent to total proanthocyanidin 
concentrations of up to 2 g/100 g bean. Lower proanthocyanidin concentrations ranging from 0.2 to  
1.1 g/100 g bean [31,126] have also been reported. Using mass spectrometry, the majority of bean 
proanthocyanidins are reported to be procyanidins that are made up of catechin and epicatechin  
units; [31,127]. Prodelphinidins (polymers of (epi)-gallocatechin), have also been reported in beans by 
Aparicio-Fernandez and colleagues [127], but were not found by Gu et al. [128]. 

Flavonol glycosides, such as quercetin and kaempferol, are exclusively present in colored  
beans [31,129,130]. However, flavonol, as well as proanthocyanidin concentration in beans, is 
influenced by the length of seed storage [31]. Intensely colored beans are rich in anthocyanins, the 
glycosylated anthocyanidins, which are also exclusively located in the seed coat. Black beans were found 
to contain up to 218 mg/100 g anthocyanins, with highest concentrations in delphinidin 3- glycoside 
(56%), but no anthocyanins were found in white beans [131,132]. Wu and colleagues identified 
delphinidin-, malvidin- and petunidin glycosides in black beans, whereas red beans contained  
cyanidin- and pelargonidin glycosides [133]. Beans also contain numerous phenolic acids, including 
hydroxybenzoic, p-coumaric, caffeic and ferulic acids [134], but at very low concentrations. Based on 
the literature, it would appear that most of the PP present in colored beans are polymeric. The levels of 
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potentially absorbable monomeric flavanols and phenolic acids are low. The polymeric PP are largely 
based on flavanols that have at least two hydroxyl groups in the ortho- position and possess the potential 
to complex iron and perhaps other minerals. It is also apparent that PP concentrations and the PP profile 
in beans vary widely depending on genotype and color. Data suggest that PP levels in colored beans can 
vary more widely within a single color class than between the different color classes. This would allow 
selecting for low PP traits in the different bean color classes [14]. To our knowledge, there are no specific 
reports of the beneficial effects of PP from beans on human health. 

3.2.3. Phytic Acid-Impact on Iron Absorption and Human Health 

Myo-inositol-1,2,3,4,5,6-hexakisphosphate (PA) is the most abundant phosphorylated myo- inositol 
derivative. Phytate, the salt of PA, is ubiquitous in eukaryotic species and serves as the major 
phosphorous and mineral storage form. It accounts for 1%–5% of the composition of legumes, cereals, 
oil seeds, pollens, and nuts. Phytate is mainly located in the kernel, where it contains up to 75% of the 
plant’s phosphorous, whereas roots and other plant compartments contain smaller quantities [135,136]. 
In most cereals, phytate is located in the aleurone layer, pericarp and the germ [137], whereas in legumes 
the highest concentrations can be found in the protein bodies of the endosperm or the cotyledon [138]. 

PA is highly negatively charged under physiological conditions and therefore forms strong, highly 
insoluble complexes with divalent and monovalent minerals such as iron, zinc, magnesium, copper, 
calcium and potassium, thus providing the plant with essential minerals for normal ripening and  
maturation [139], signaling [140] and responding to plant pathogens [141]. It is estimated that the daily 
consumption in industrialized countries ranges from 0.3 to 2.6 g per day, whereas PA intake is much  
higher in developing countries, where people mainly consume diets based on plants. Detailed information 
about food sources, intake, processing and bioavailability is available through a recently published 
review [138]. 

PA has a strong negative effect on iron absorption [32] and can decrease iron status [142].  
Several isotope absorption studies in humans have also shown PA to inhibit zinc [143], calcium [144], 
magnesium [145] and manganese [146] absorption. PA’s particularly strong inhibition of iron absorption 
was shown in single meal isotope absorption studies [32], in which little up-regulation of iron absorption 
during long-term PA consumption occurred [147]. However, interpretation of these results may be 
complicated by the fact that single meal studies tend to overestimate the effect of inhibitors on  
iron absorption and an adaptation of the human organism to inhibitors might take place over the  
long-term [148]. This is supported by a recently developed algorithm on multiple meal studies indicating 
that iron status is a more important predictor of iron absorption than dietary factors [149]. 

The effect of PA on iron absorption is dose dependent. Hallberg and colleagues [33] showed that  
10 mg/100 g, 20 mg/100 g and 100 mg/100 g PA reduced iron absorption by 20%, 40% and 60%, 
respectively in a bread meal free of iron absorption enhancers. This dose dependency was confirmed in 
another study, which, showed that the inhibition of PA on iron absorption can be counteracted by the 
addition of ascorbic acid [33,150]. EDTA is a fortification compound that also has the ability to increase 
iron absorption from meals rich in PA [151] and iron EDTA is the fortification compound recommended 
for high phytate food vehicles [152]. With cereal- and legume-based foods, the enzymatic degradation 
of phytate using added exogenous phytases, either during processing [153] or immediately prior to meal 
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consumption [151], or by activating native phytases during processing [154] can substantially improve 
iron bioavailability. It has been suggested that, in terms of the inhibition of iron absorption, the PA: iron 
molar ratio is more important than the total amount of PA [155]. With simple meals devoid of absorption 
enhancers, it has been recommended that PA: iron molar ratio should be below 1:1 and preferably  
0.4:1 [153]. In composite meals with meat or vegetables containing ascorbic acid or other enhancers, a 
PA: iron molar ratio <6:1 is proposed [155,156]. 

In addition to degrading PA concentrations enzymatically, PA can be decreased by mechanical 
removal [157] or by plant breeding [158]. The mechanical removal of PA is not easily applicable to 
beans because the phytate is mainly in the cotyledon [30]. The activity of native, endogenous phytases 
in cereals and legumes was investigated by Egli and colleagues [159]. They reported phytase activity in 
beans to be relatively low compared to wheat, barley and rye, but in the same range as in other legumes. 
Germination, but not soaking, increased bean phytase activity, as was reported for other legumes such 
as mung beans [160]. Endogenous phytases can be activated by reducing pH with fermentation, and 
encouraging results have been reported with pearl millet [161]. This approach is less applicable to beans 
that are usually consumed whole and not fermented. 

While it is clear that a decrease in PA would in many cases benefit iron nutrition, PA like PP has been 
proposed to have potential health benefits and a decrease in PA is not exclusively perceived as positive. 
The ability of PA to bind iron and prevent possible free radical generation has led to the speculation that 
PA may have health-promoting properties particularly in the prevention of certain cancers [138,162]. 

As PA is not absorbed in humans, it has been most investigated in relation to colon cancer where 
unabsorbed iron may be a risk factor through the generation of free radical [163,164], which could react 
with the colonic mucosa. It has been suggested that PA exerts a positive impact in the colon by binding 
free unabsorbed iron, and thus preventing the formation of iron generated free radicals, and also by the 
direct up-regulation of tumor suppressor genes [162,165,166]. However, most information on PA as a 
therapeutic compound has been derived from cell studies and observational human studies [167]  
and, although the potential for PA to bind iron in the colon exists, iron is mostly insoluble at colonic  
pH [168,169]. 

3.2.4. Phytic Acid in Common Beans 

Most of the PA present in beans (95%–98%) is located in the cotyledon, whereas the embryo  
(1%–3%) and the seed coat (0.5%–4%) contain small quantities [30]. A wide variation in PA 
concentration, ranging from 400 to 2600 mg/100 g beans has been reported [29,30,45,170], with a mean 
content of about 1000 mg/100 g beans and a PA:iron molar ratio ranging from 6:1 to 33:1. The PA level 
depends on the bean variety, environment and the analytical assay used for PA quantification. An impact 
of growing site and soil type on the total PA concentration in beans has been reported by Blair and 
colleagues [170]. They observed significant differences in PA in the same bean varieties grown on high 
or medium phosphorous soil [158]. 

There is also evidence that the bean PA concentration is influenced by the bean iron concentration. 
Results from Hoppler et al. [53] showed that PA simultaneously increases with the iron concentration in 
beans (Figure 3), although there is a slight decrease in the PA: iron molar ratio. This is in accordance 
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with the results of other studies, where beans also had the tendency to accumulate more PA with higher 
iron concentration [45]. 

 

Figure 3 Correlation between non-ferritin-bound iron in ppm and PA in g/100 g  
bean [53]. 

The hypothesis that PA concentration is correlated with iron concentration is further strengthened by 
recent studies testing the performance of iron-biofortified beans in humans [37,38]. Both iron biofortified 
beans investigated had much higher PA concentration than the control beans indicating that additional 
iron bred into the beans was associated with additional PA accumulation. However, breeding 
simultaneously for high iron and low PA should be possible since, as mentioned above, Blair and 
colleagues have reported that most phytate and phosphorous related QTL are independent of iron  
QTL [158]. There are also data from studies with beans [171], cowpeas [172] and wheat [173] that 
indicate that the PA concentration is not associated with yield or plant health. 

Campion and colleagues have recently used mutagenesis to develop a low phytic acid (lpa) bean with 
normal phosphorus, but only 10% of the original PA concentration [171]. The mutation was associated 
with a defective gene, coding for an ATP-binding cassette (ABC) transporter taking part in PA storage 
in protein bodies during seed maturation [174]. Despite the large reduction in PA, this mutation retained 
a good grain yield and a high germination rate [171], in contrast to many previously developed lpa  
crops [175]. Free or weakly bound iron was increased seven-fold in the lpa beans [171] and a stable iron 
isotope absorption study in humans found a markedly improved iron bioavailability when compared to 
the parent beans [176]. The reduction of PA, by disrupting its biosynthetic chain, might therefore be a 
possible solution to alleviate the nutritional issues associated with high PA concentrations. 

3.2.5. Proteins-Impact on Iron Absorption 

Food proteins can both enhance or inhibit iron absorption, either forming soluble complexes with iron 
and improving iron uptake, or forming insoluble unabsorbable complexes preventing iron uptake.  
The most prominent and widely examined proteins affecting iron bioavailability are the muscle tissue 
commonly referred to as the “meat factor”. Many studies have shown that the addition of muscle tissue 
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to meals significantly improves non-heme iron absorption [177–179]. Identification of the “meat factor”, 
however, has proven to be difficult and it may not be a single compound. In early studies, the amino acid 
cysteine was shown to stimulate iron absorption in humans, and it was hypothesized that low molecular 
weight peptides containing cysteine might be part of the meat factor [180–182]. Adding the cysteine 
containing peptide glutathione [180], or an amino acid mixture as present in fish [183] to black bean 
meals strongly increased iron bioavailability in humans. 

More recent studies by Storcksdieck et al. proposed that the “meat effect” was due to the rapid 
digestion of actin and myosin in the stomach and the ability of the many small peptides entering the 
duodenum to keep iron in solution and available for absorption [184]. Most other proteins are little 
digested in the stomach. Different types of glycosaminoglycans (GAG), which are part of the connective 
tissue between muscle fibers, have also been the subject of investigations. However, although GAGs 
promoted iron uptake in Caco-2 cells [185,186], a human study failed to show an effect on iron 
absorption [187]. Armah and colleagues [188] have also suggested that phosphatidyl choline contributes 
to the enhancing effect of meat. They showed an enhancing effect in a human study, which however 
could not be confirmed by others [151]. 

Other proteins of animal origin affecting iron absorption are found in milk and eggs [189].  
Several researchers reported an inhibitory effect of milk proteins [189] and egg white/albumin [189,190], 
although the latter to a lesser extent [191]. Hurrell et al. conducted a human absorption study and showed 
that casein and whey proteins had a stronger negative impact on iron bioavailability than egg white [191], 
and other studies reported that replacing egg albumin or casein with soy products significantly reduced 
iron absorption in humans [192]. 

Studies with soy and other legume proteins are probably more relevant to the potential influence of 
bean proteins on iron absorption. Studies with soy are complicated by the high level of PA, but one of 
the major soy proteins in the globulin fraction, conglycinin, has shown to be inhibitory in the absence of 
PA [32,193]. However, not all legume proteins are inhibitory. The much higher iron bioavailability from 
a dephytinized pea protein isolate [194] compared to soy protein isolates [195] was explained by the 
absence of the conglycinin fraction in peas [153,194]. Finally from rat studies, there is evidence that 
isolated soybean lectin and concanavalin A might inhibit iron absorption [196]. 

3.2.6. Proteins in Common Beans 

Beans contain between 20% and 30% proteins. Although they are rich in some essential amino acids, 
such as leucine and lysine [197,198], the protein quality is limited by its low digestibility [199] and the 
low concentration of tryptophan and of sulfur containing amino acids [197,198]. These amino acids 
occur at low levels in the major seed storage protein phaseolin, which accounts for 30%–50% of total 
protein. Phaseolin belongs to the globulin family, which at 65% of the total protein is the most prevalent 
group of proteins in beans [199] and other legumes such as peas and soybeans [194]. It is present in 
beans in different forms, depending on its polypeptide composition [199]. It is not known whether bean 
phaseolin has a similar inhibitory effect on iron absorption in humans as the conglycinin fraction of soy 
bean protein; however, evidence from in vitro studies indicates that it can form insoluble complexes with  
iron [200,201]. 
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Carrasco-Castilla and colleagues [200] tested the iron binding capacity of different phaseolin peptide 
fractions and enzyme hydrolysates of bean protein. Iron chelating activity was measured 
spectrometrically with ferrozine. The highest iron binding capacity (>80%) was observed with the 
phaseolin hydrolysate, although the total bean protein isolate after hydrolysis itself bound up to 36% of 
the iron. In another in vitro study, the same researchers investigated the iron chelating activity of total 
bean protein, phaseolin and extracted lectin. The unhydrolyzed lectin extract and phaseolin complexed 
32% and 18% of the iron, respectively, but the unhydrolysed bean protein isolate had no effect on iron. 
Enzyme hydrolysis of total protein and phaseolin resulted in a strong increase in their iron binding 
activity, whereas lectin was less active after hydrolysis [201]. These results indicate that phaseolin in 
beans may negatively influence iron absorption in humans but that lectins are unlikely to have an effect, 
especially in cooked beans because they are heat labile compounds. This, however, remains to be tested. 

3.3. Bean Iron Bioavailability 

Almost all information about bean iron bioavailability in humans is from iron isotope studies using 
radio-or stable isotope extrinsic tagging techniques, which are commonly used tools to measure iron 
bioavailability from foods. Small quantities of iron isotopes are added as an extrinsic tag to one  
food in one or several test meals and iron absorption is measured as iron isotope incorporation into 
hemoglobin in the erythrocytes [148,202]. Although the validity of the method has been questioned 
under certain conditions in a review by Consaul and Lee [203], several human studies have proven this 
method to deliver reliable results by comparing extrinsic with intrinsic tagging in beans and other  
foods [67,73,204,205]. The majority of studies conducted with beans have been single/double  
meal studies. Compared to multiple meal studies such a study design might overestimate the effect  
of inhibitors and enhancers on mineral absorption [206,207], and results are more susceptible to  
intra-subject day-to-day variation in iron absorption. This has to be taken into consideration  
when interpreting the studies described below that investigated iron absorption from beans and  
bean-containing meals. 

All studies have reported relatively low iron bioavailability from beans with absorption varying from 
below 1% to about 9%, depending on the bean/meal composition, study design, and the iron status of 
the study subjects. Cook and colleagues [67] first reported a very low (1.5%) mean fractional absorption 
in a radio-iron isotope study in 8 healthy subjects (4 male; 4 female) who consumed a simple meal 
containing mashed black beans. Similarly low iron bioavailability (<1%) from black beans was reported 
in a subsequent radio iron study conducted in 10 iron replete male subjects who consumed a soup 
containing beans, bay leaves, garlic powder, onions and red pepper [208]. In addition to the inhibitory 
effect of PA and PP, which were not quantified, another major reason for the low iron bioavailability in 
these studies was the relatively good iron status of the subjects. 

3.3.1. The Impact of Bean PP on Human Iron Absorption 

Petry and colleagues investigated the impact of bean PP and PA on iron absorption from beans in a 
series of single meal stable isotope studies in humans [35]. In order to measure the impact of bean PP 
on iron absorption in the absence of PA, increasing amounts of red bean hulls were added as the source 
of bean PP to non-inhibitory bread meals in which PA had been completely degraded during 
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fermentation of the dough. Twenty mg of bean PP (as measured by Folin-Ciocalteu) had no impact on 
iron absorption, whereas 50 mg and 200 mg reduced iron bioavailability by 18% and 45%, respectively, 
indicating that red bean PP caused a dose-dependent inhibition of iron bioavailability. Compared to PP 
from different beverages tested with a similar bread meal, PP from beans were less inhibitory than PP in 
black tea and a series of herb teas [36]. A second study also looked at the inhibition of bean PP in  
the absence of PA. In this study, homogenized dephytinized beans were fed with or without the  
PP-containing hulls. Removing the hulls doubled iron absorption from 3.5% to 7%. 

Beans, however, are never consumed in the absence of PA, and in the presence of PA, bean PP appear 
to add little or no further inhibition to iron absorption above that caused by PA. In a single meal study 
conducted in Rwandan women with low iron status, iron absorption from a white bean meal consisting 
of 75 g (dry weight) pureed beans with a PP concentration of 65 mg was compared to iron absorption 
from a 75 g (dry weight) pureed red bean meal with a PP concentration of 260 mg. Both meals had 
comparable PA and iron concentrations. Iron absorption from the low PP bean meal (4.7%) was 27% 
higher than from the high PP meal (p < 0.05). However, the effect of PP was no longer observed when 
the beans were fed with potatoes or rice in a multiple meal design [37]. Iron absorption values from both 
meals containing either the high PP or the low PP beans, were about 7%. Other studies have also failed 
to show an impact of bean PP on iron absorption in the presence of PA [176,209]. Beiseigel and 
colleagues [209] for example, compared iron absorption from the low PP Great Northern bean 
(white/crème) to iron absorption from the high PP Pinto bean (marbled brown) in a single meal study 
with healthy women with normal iron status. Beans had comparable iron and PA concentrations. Iron 
absorption from both beans was about 2%. 

There is one published iron absorption study with beans that still needs an explanation. It was part of 
the series of studies made by Petry et al. [35]. In this study, beans with their natural PA concentration 
were fed with their PP-containing hull intact or with the hull removed. Iron absorption significantly 
decreased with the removal of most of the PP’s with the hull. The authors speculated that this was due 
to an enhancing interaction between a carbohydrate component of the hull and PA, rather than due to the 
removal of PP, which were unlikely to have enhanced iron absorption. 

In summary, several single meal iron absorption studies in humans clearly show that PP of colored 
beans can have a negative impact on iron absorption in the absence of high PA concentrations, and that 
the extent of the inhibition depends on the PP profile and level. Bean PP, however, are less inhibitory 
than PP from teas and in the presence of PA, add little or no further inhibition. Additionally, no negative 
effect of bean PP has been observed in multiple meal studies. It is unlikely therefore that bean PP will 
influence iron status in the real life situation when beans are eaten as part of the composite daily diet and 
where the impact of inhibitors and enhancers is more equilibrated. 

3.3.2. The Impact of Bean-PA on Human Iron Absorption 

PA, on the other hand, is a more potent inhibitor of bean iron absorption, and its impact has been 
shown in single [35,73,176] as well as multiple meal studies [37,38]. Studies conducted with biofortified 
beans have given new insights on the impact of PA on bean iron absorption, indicating perhaps that the 
total amount of PA or the additional PA present in biofortified beans, and not the PA:iron molar ratio, 
determines iron bioavailability [37,73]. Petry and colleagues carried out a multiple meal study in 
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Rwanda, a bean-consuming population. They compared iron absorption from a biofortified high iron 
bean (92 μg iron/g bean; 13,900 μg PA/g bean) administered over several days as part of composite 
meals to iron absorption from a normal iron bean (52 μg iron/g bean; 8500 μg PA/g bean) [37]. 

Beans had similar PA:iron molar ratios (9:1). Relative iron bioavailability from the biofortified high 
iron bean was significantly lower (3.8%) than from the normal iron bean (6.3%), leading to equal 
amounts of total iron absorbed from the two tested beans. The authors suggested that the observed effect 
was due to the higher concentration of PA in the biofortified bean. 

To further test this hypothesis, another multiple composite meal study with biofortified and control 
carioca beans of the same color was conducted in the same Rwandan study population [38]. The iron 
absorption from the biofortified (88 μg iron/g) and the control bean (54 μg iron/g) was compared. Beans 
were served either with their natural PA concentration (biofortified bean: 12000 μg PA/g bean; control 
bean: 9000 μg PA/g bean), partially (about 50%) dephytinized (biofortified bean: 5500 μg PA/g bean; 
control bean: 3610 μg PA/g bean) or almost totally dephytinized (about 5% PA; biofortified bean:  
450 μg PA/g bean; control bean: 450 μg PA/g bean). Again, fractional iron absorption from the 
biofortified bean (7.1%) was significantly lower (p < 0.05) than from the control bean (9.2%), when 
beans had their natural PA concentration. Partial dephytinization increased bioavailable iron mainly in 
the biofortified bean (+48%), which led to equal fractional iron absorption and to an increase of more 
than 35% in the total amount of iron absorbed from the biofortified bean. This effect was even more 
pronounced after the removal of 95% of PA and participants absorbed about 50% more iron from the 
biofortified bean compared to the control bean (Figure 4). 

Petry and colleagues recently conducted a paired double-meal crossover study with lpa bean seeds 
with both high and low PP and their parent beans with normal PA levels [176]. Lpa seeds were derived 
by chemical mutagenesis and had only a small fraction of their original PA concentration (5%–10%). 
Highest iron absorption of 6.1% was observed from the lpa seed high in PP (PP, 140 mg/meal; PA, 
25 mg/meal), followed by 4% iron absorption from the lpa seed low in PP (PP, 32 mg/meal; PA, 
45 mg/meal). Iron absorption from the parent beans high in PA (590 and 690 mg/meal) was 3.8% and 
2.7% respectively. This was unexpected as iron absorption from beans in the absence of PA has been 
reported to depend on PP concentration [35]. The authors suggested that their findings were due to the 
much stronger inhibitory nature of PA compared to the PP present in the beans. The PA concentration 
in the lpa bean high in PP (PA: iron molar ratio 0.6:1) was about half that of the lpa bean low in PP (PA: 
iron molar ratio 1.2:1), resulting in a higher absorption even in the presence of the higher PP content.  
This study confirmed that PA is the major inhibitor of iron absorption from beans and indicates that the 
lpa mutation could be introduced in beans independent of the PP concentration and thus independent of 
bean color. 
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Figure 4. Fractional iron absorption and total amount of iron absorbed from a biofortified 
and a control bean with natural PA level, after partial and almost total dephytinization [38]. 

3.4. Can Iron-Biofortified Beans be an Efficacious Intervention to Combat Iron Deficiency? 

In bean-consuming communities, the high iron level in the biofortified varieties coupled with the 
relatively high bean consumption and modest iron absorption indicate that beans should be a good 
vehicle for iron biofortification, despite their high PA content. Although iron absorption from beans is 
relatively low, biofortified beans have a much higher iron level than regular beans and with a daily 
consumption of 100 g biofortified beans provide about 10 mg iron, a 5 mg increase in daily iron intake 
as compared to consuming the same quantity of regular beans. The observed fractional iron absorption 
from composite bean meals of around 4%–7% would thus provide an adult women with 400–700 μg 
absorbed iron per 100 g biofortified beans, an increase as compared to the regular beans. Consumption 
of 100 g biofortified beans in a composite meal with potato or rice could therefore provide up to half of 
the daily absorbable iron requirement of women of child bearing age [210]. 

Experience from efficacy studies that have demonstrated improved iron status in populations 
consuming iron-fortified foods can be used to evaluate the potential of iron-biofortified staples.  
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Hallberg et al. [211] estimated that it took 2–3 years to stabilize a new iron balance when increasing the 
bioavailable iron intake, although 80% of the final impact is achieved in the first year, and around 40% 
of final impact in 5–6 months. Most iron fortification efficacy studies that have demonstrated improved 
iron status, have provided the iron-fortified foods for 6–9 months. The successful ferrous sulfate efficacy 
studies in women or children of marginal iron status indicated that an additional 7 mg additional iron 
per day was necessary to significantly improve iron status [152]. 

Showing efficacy with iron-biofortified beans will be more difficult than for most iron-fortified foods 
as the additional daily iron provided by biofortified beans is restricted at present to about 5 mg/100 g, 
and the iron bioavailability will be less due to the high PA and lack of ascorbic acid or EDTA 
recommended for high phytate fortified foods [19]. More time might be needed to demonstrate improved 
iron status in efficacy studies with biofortified beans. The first studies with biofortified beans have been 
completed in Mexico and Rwanda (although not yet published), indicating that biofortified beans can be 
efficacious at improving iron status [212]. 

4. Conclusions 

Beans are a good source of iron compared to other staples and a promising vehicle for iron 
biofortification. Although they are high in PA, bioavailability studies have demonstrated that the 
proposed targeted iron bioavailability of 5% [11] can be achieved when beans are consumed as part of 
composite meals in a multiple meal design administered to women of low iron status. Multiple meal 
studies are the most appropriate tool to determine iron bioavailability from whole diets, and can be taken 
to indicate long-term potential. Great progress has been made by exploiting the genetic iron variability 
of beans and target iron levels have been reached and even exceeded. On the other hand, due to  
the low bioavailability of bean iron shown in isotope studies, exclusively breeding for high iron 
concentration may not provide enough additional absorbable iron to impact iron status. PA has been 
demonstrated to be the major determinant of iron bioavailability from beans and, to optimize iron 
absorption from biofortified beans, the focus must now be on PA reduction. There is little information 
to suggest a target PA level for iron-biofortified beans, which would depend to some extent on the meal 
composition. Our suggestion is 7000 μg PA/g iron-biofortified bean, as recent studies indicate that PA  
concentrations <7000 μg PA/g bean would usefully improve iron absorption from multiple composite 
meals compared to varieties containing >12,000 μg PA/g bean. If the increase in absorbed iron is still 
not sufficient to fill the gap between absorbed iron and iron requirement, lpa bean lines could be explored 
as a possible solution. 
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