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Abstract 

GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs energy 

minimization) geochemical-thermodynamic models against various types of experimental or geochemical 

data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and 

gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with 

flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 

includes the GEMS3K chemical speciation solver (http://gems.web.psi.ch/GEMS3K), which features a 

comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous 

electrolyte, gas and fluid mixtures, solid-solutions, (ad)sorption. The gemsfit2 code uses the robust open-

source NLopt library for parameter fitting, which provides a selection between several nonlinear 

optimization algorithms (global, local, gradient-based), and supports a large-scale parallelization. The 

gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic 

statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for 

evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code 

provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, 

measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, 

and geochemical relevance of GEMSFITS is demonstrated by examples of typical classes of problems that 

include fitting of parameters of thermodynamic mixing models, optimization of standard state Gibbs energies 

of aqueous species and solid-solution end-members, thermobarometry, inverse titrations, and optimization 

problems that combine several parameter- and property types. 

 

Keywords: parameter optimization, regression tool, thermodynamic modeling, Gibbs energy minimization, 

experimental database 
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1. Introduction 

Advances in computational methods and technology have facilitated the development of efficient and 

comprehensive (geo)chemical thermodynamic and physical-chemical models for simulation of the behavior 

and complex feedbacks of natural systems. Computational thermodynamics has many applications in 

geochemistry, petrology, chemical engineering, chemistry, and materials research, because multicomponent-

multiphase systems can be simulated at pressure-temperature conditions and over timescales that are not 

accessible to direct observation and laboratory experiments. These simulations are useful for solving 

environmental problems (e.g. long-term prediction of radioactive waste disposal or contamination of 

groundwater), designing and improving industrial processes (e.g. formation and stability of different 

materials), and understanding the evolution of geochemical systems from the surface to the deep Earth. In 

particular, geochemical reactive-transport simulations that couple thermodynamic fluid-mineral equilibria, 

kinetics of mineral dissolution and precipitation, and fluid flow in the subsurface have become essential for 

understanding and predicting the processes in geosystems relevant for carbon dioxide sequestration, 

exploitation of geothermal energy, and formation of mineral resources (Steefel and Lasaga, 1994; Steefel et 

al., 2005; Xu et al., 2011; Zhang and Parker, 2012; Hoffmann et al., 2012). 

One of the main steps in thermodynamic equilibrium modeling is to calculate the molar Gibbs free 

energy of all components of all phases as a function of temperature, pressure, and composition. The 

equilibrium state (at fixed composition, temperature and pressure) is then determined by the global minimum 

of the total Gibbs energy of the system. The Gibbs Energy Minimization (GEM) algorithm (Karpov et al., 

1997; Kulik et al., 2013) finds the unknown phase assemblage and speciation of all phases by minimizing the 

total Gibbs energy of the system while maintaining the mass balance. Conversely, the Law of Mass Action 

(LMA) algorithm (Reed, 1982) finds the equilibrium speciation by solving a system of nonlinear equations 

that combine mass balance and mass action expressions. The method directly minimizes the mass balance 

residuals and performs additional loops if the stable phase assemblage is not known in advance. Although 

LMA algorithms can perform faster in simple chemical systems, the GEM method is better suited for solving 

for the equilibrium in complex heterogeneous chemical systems with many non-ideal multicomponent 

solution phases (Kulik et al., 2013; Leal et al., 2014). The main input and output parameters and properties 

used in the GEM approach are listed in Table 1. 
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Table 1.  GEM method input and output parameters/properties. 

GEM input GEM output 
  • List of independent components (elements) • Chemical system speciation (mole amounts of 

dependent components in all phases) 
• List of phases • Total volume and Gibbs energy of the system 

• List of species (dependent components) in all 
phases 

• Activity coefficients of dependent components 
in their respective phases 

• Standard state Gibbs free energy (G˚) for each 
species at T,P of interest 

• Amount, volume, mass, and bulk elemental 
composition of the multicomponent phases 

• Bulk (elemental) chemical composition • Effective aqueous ionic strength (IS), pH, pe, Eh 
(in aqueous systems). 

• Temperature T and pressure P of interest  

• Parameters of activity models for components of 
solution phases 

 

    Optional:  
• Specific surface areas of phases  

• Kinetic rate parameters for phases  

• Additional metastabilty restrictions for some 
phase components 

 

  
 

As any numerical model, a chemical-thermodynamic model is a mathematical formulation that 

describes the relevant features of a natural system or its parts. Key components of thermodynamic models 

are the control (input) parameters, which may be empirical (e.g. compositions of fluids and rocks, fluid/rock 

ratios) or may represent some physical-chemical properties of the system (thermodynamic properties, 

temperature, pressure). For example, the Helgeson-Kirkham-Flowers equation of state (HKF EoS) (Helgeson 

et al., 1981; Shock and Helgeson; Tanger and Helgeson, 1988; Shock et al., 1992), which describes the 

temperature and pressure dependence of the standard-state thermodynamic properties of aqueous species, 

uses 7 semi-empirical parameters. These parameters are not accessible to direct observation or measurement, 

but need to be derived by regressing experimental data for measurable quantities (mineral solubility, heat 

capacity and volume of aqueous solutions). 

Regression of model parameters involves adjusting them by iterative numerical methods in such a 

way that the differences between model-calculated properties and their experimentally determined 
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counterparts become minimal. Input parameters derived using different models and separate sets of the 

experimental data may not be mutually consistent and will lead to unrealistic model predictions. 

Simultaneous processing of large sets of experimental data and regressing them with the same 

thermodynamic model ensures that the derived thermodynamic properties are internally consistent and 

accurately reproduce the experimental data (Anderson and Crerar, 1993). To make this possible, a single 

code framework must integrate a comprehensive collection of appropriate thermodynamic models, an 

efficient numerical method to perform the thermodynamic computations, a numerically stable and efficient 

optimization algorithm to adjust the parameter values, and an extensible, flexible collection of the 

experimental data and parameter optimization tasks. 

GEMSFITS is a code package that can adjust any input parameters or properties (see Table 1) for 

GEM-based modeling of (geo)chemical equilibria, provided that experimental datasets are available and that 

the input parameters are sensitive to them. This is a much more extended scope than that of the previous 

prototype GEMSFIT (Hingerl et al., 2014), which was aimed only at fitting interaction parameters of 

thermodynamic activity models. The GEMSFITS codes are fully compatible with the GEM-Selektor 

software package (http://gems.web.psi.ch/GEMS3) and the GEMS3K numerical kernel (Kulik et al., 2013). 

The GEMSFITS package consists of gemsfit2 (parameter optimizer) and gfshell2 graphical user 

interface (GUI) codes, which both access the same NoSQL database files. The package offers a general and 

flexible way for handling the experimental database, setting up parameter optimization or inverse modeling 

tasks, and visualizing and analyzing the results of the fitting. The gemsfit2 code can efficiently run 

complex multi-dimensional parameter optimization problems and can be parallelized. In this paper, we 

describe the main features and computational methods of the GEMSFITS package and demonstrate the 

efficiency of its application to chemical-thermodynamic problems of aqueous geochemistry and petrology. 

 

2. Review of software for optimization of thermodynamic model parameters  

Generic fitting code packages like MATLAB (MathWorks, 2012), HOPSPACK (Plantenga, 2009), UCODE 

(Poeter and Hill, 1998), DAKOTA (Eldred et al., 2007), or PEST (Doherty and Hunt, 2010) perform 

nonlinear parameter estimation using data exchange via input and output files; the user has to manually 

implement all thermodynamic models involved in the parameter fitting. In many cases, complex scripts are 

needed to call the objective function subroutine that compares the model output properties with their 
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empirical (experimental) counterparts. One of the benefits of these methods is that they are independent of 

the modeling software package. 

Another approach is to couple the optimization routine to a chemical solver. The FITEQL code 

(Herbelin, 1999) uses nonlinear least-square optimization for determining chemical equilibrium constants 

from experimental solubility and titration data. Due to limitations of the implemented algorithms, the 

program has convergence issues in more complex fitting problems. Furthermore, because of a lack of 

normalization options, the fitting results are more sensitive to the data points with high absolute values 

(Karamalidis and Dzombak, 2010). The program comes together with the MINEQL LMA chemical solver 

that can be used to perform calculations only in aquatic systems with pure solids, simple ideal solid-

solutions, and/or adsorption at low temperature (0-50 °C) and low to moderate ionic strength (<0.5 M) 

(Westall et al., 1976). This substantially limits the range of possible applications. 

The PhreePlot package (Kinniburgh and Cooper, 2011) includes the embedded PHREEQC LMA 

chemical solver (Parkhurst and Appelo, 2013) and thus has a direct access to all chemical speciation models 

available in PHREEQC. However, preparing a more complex fitting task in PhreePlot (e.g., when 

experiments with more than one dependent value are regressed and/or when parameters belong to separate 

models) is regarded as quite an advanced task (Kinniburgh and Cooper, 2011). The program involves only 

local non-gradient based (derivative-free) optimization algorithms, and the output summary statistics is 

minimal (calculation of confidence intervals and sensitivity and parameter correlation analysis are not 

performed). The possibilities for optimization of several model parameters against large experimental 

datasets are limited because the code is not parallelized. The LMA algorithm used in PHREEQC also makes 

the parameter regression for complex non-ideal solution models or non-ideal fluid mixtures not possible. 

 

3. Key features of GEMSFITS 

In comparison with the software packages reviewed above, GEMSFITS offers a robust collection of non-

linear (global, local, gradient based, and non-gradient based) optimization algorithms, coupled with the 

efficient GEMS3K chemical solver (Kulik et al., 2013) that includes a broad range of mixing models for 

solution phases collected in the TSolMod library (Wagner et al., 2012). Another relevant feature of 

GEMSFITS is that it can store, retrieve, and manage in a flexible and efficient way large amounts of 

structured experimental data in a NoSQL database. This feature also allows the user to produce and store 
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different optimization tasks using various selections of data sets and experimental samples. In contrast, other 

available codes (see Section 2) do not provide the convenient tools for managing the experimental data and 

optimization tasks, which makes it very difficult to develop and maintain comprehensive datasets with 

experimental data for large chemical systems. 

Unlike the earlier prototype GEMSFIT (Hingerl et al., 2014) that used an structured query language 

(SQL) database server, the GEMSFITS codes can manage and access the experimental data collected in 

databases in the industry-winning NoSQL BSON format (Binary JSON JavaScript Object Notation; 

http://www.mongodb.com/nosql-explained; http://bsonspec.org/). This difference is important, because in 

SQL databases, the individual records (e.g., for experiments or samples) are stored similar to rows in tables, 

whose columns contain properties (e.g., chemical element amount, temperature, pressure) that all must be 

initially specified. Different data types are stored in separate tables that are connected with the join tables 

needed to execute complex selection queries (e.g., selecting experiments with a certain phase). The SQL 

relational database implementation becomes extremely complex when describing hierarchical chemical 

systems with all properties, phases and components, because it has to rely on dozens of data and join tables. 

Conversely, a NoSQL database (as used in GEMSFITS) stores the data as documents, each defined 

as a JSON object. The simplest object is a { <key> : <value> } pair, for instance { “temperature” : 298.15 }. 

The <value> can be either a constant (string, number, binary data block), an ordered array of values [ 

<value1>, <value2>, … ], or a nested key-value pair. This allows describing complex hierarchical data 

structures in a natural, straightforward and human-readable way, similar to structured types in object-

oriented programming languages. Each JSON document can contain any number of nested key-value pairs. 

Compared to the structure of SQL databases, which require a defined schema before adding the data (i.e., 

SQL databases need to know all column headers in all tables in advance), the NoSQL databases allow 

inserting data without a predefined schema because every JSON document (database record) may, in 

principle, have a different data structure. This approach is much better suited for storing large volumes of 

weakly structured data without making any changes to the already stored documents, and implementing 

future extensions of the database. Thus, the NoSQL database can store definitions of complex chemical 

systems or experimental data, which are flexible and easy to process in codes based on object oriented 

programming. 
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Based on our experience with the earlier prototype GEMSFIT (Hingerl et al., 2014), the GEMSFITS 

package has been completely redesigned to efficiently solve the following classes of parameter optimization 

problems (combinations are possible as well): 

1) Fitting of interaction parameters of mixing models including aqueous activity models;  

2) Optimization of thermodynamic properties such as standard state Gibbs free energy 0
298Gf of 

compounds, or equilibrium constants of chemical reactions; 

3) Thermobarometry (finding temperature and pressure of formation for the known phase speciation);  

4) Inverse titrations (e.g. finding the bulk composition that results in prescribed pH); 

5) Combined (nested) titration-solubility, titration-adsorption and similar fitting problems. 

Thus, the GEMSFITS package has the capability to optimize any GEMS3K input properties or 

parameters (see Table 1). Several parameters from different groups can be fitted simultaneously, either as 

unconstrained parameters, or some of them can be bounded, reaction-constrained or linearly-constrained. 

GEMSFITS can perform extensive statistical evaluation of the fitted parameter values, thus helping the user 

to evaluate the quality and physical significance of the regression results. The program can also be executed 

on parallel computer architectures, reducing the amount of computing time, and making it possible to run 

very large optimization problems with the Monte Carlo generated statistics. The GEMSFITS package is 

available for free download from http://gems.web.psi.ch/GEMSFITS, eventually open-source. 

 

4. Methods and data 

The GEMSFITS package is composed of the gemsfit2 parameter optimizer and the gfshell2 graphical 

user interface (GUI), both accessing the same NoSQL database in JSON/BSON (EJDB, http://ejdb.org) 

format where the experimental data, the fitting task definitions, and the task calculation results are stored. 

This functionality enables the user to access and manage the database, to specify the fitting tasks by editing 

their definitions, to run the parameter optimization (optionally generating statistics of the fitted model 

parameters), to view, and to plot and print fitting results and statistics. In this way, an efficient and flexible 

workflow of GEM input parameter optimization is made possible. 

The setup of the fitting task (to be performed by the gemsfit2 code) is provided in the task input 

specification file that can be exported from the gfshell2 or prepared using any external text editor. The 
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task setup controls the selection of experimental data from the database, defines what model output values 

are retrieved, and how they will be compared within the global and/or nested objective function. 

Furthermore, it selects the model input parameters that should be fitted (and provides initial values, 

optionally lower and upper bounds), and defines the choice of the optimization method, the sample 

weighting rules, and the options for statistics. Upon execution, the gemsfit2 code reads the task 

specification input file, the GEMS3K chemical system definition files, and the NoSQL database with 

experimental data, performs the requested calculations (writes the steps into a log file), and finally writes the 

results into output files in comma-separated values (csv) format (results can be imported into NoSQL 

database in connection with the fitting task that generated them). 

 

4.1. Architecture of GEMSFITS 

The GEMSFITS software package consists of four main components: 

1) The NoSQL database (collection of documents describing experimental samples, fitting task 

definitions, and fitting task results) in BSON/JSON format, with tools for the database management; 

2) The gemsfit2 parameter optimization code that reads the experimental data from the database, executes 

a “fitting task” as described in the task specification file (exported from the task definition database record, 

or edited separately), and writes results into a set of csv format output files; 

3) The GEMS3K chemical solver (including the TSolMod library of mixing models) (Wagner et al., 2012; 

Kulik et al., 2013) embedded into the gemsfit2 code, which reads the chemical system definition from the 

set of GEMS3K input files provided, and calculates chemical equilibria and/or phase activity models 

whenever called by the parameter optimizer; 

4) The gfshell2 GUI with graphics widget and help viewer that assist the user in accessing the database, 

preparing the input files, running the fitting tasks, and exploring the results. It keeps track of the task 

definition (which generates the task specification file) and task results records in the database, and provides 

text editors and graphics for input and result data. 

The GEMSFITS GUI-based workflow is organized in projects consisting of one or more fitting 

tasks, as illustrated in Fig. 1. A project defines one general parameter optimization application. Each project 

refers to an experimental database file and a set of GEMS3K chemical system definition files. A fitting task 

is defined by a task specification record containing all the settings for the optimization process. The user can 
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configure alternative task definitions with different optimization options, save task definitions to the 

database, run these different optimization tasks, and view and save their results. 

 

Fig.1. Flow chart of the gfshell2 code illustrating the four main modes of code operation (Project Mode, Database 

Mode, Fitting Task Mode and Fit Results View Mode) and the links to the EJDB database. 

 

4.2. Experimental and task database management 

Currently, the NoSQL database is implemented as files within the local computer application using the EJDB 

library (Embedded JSON Data Base engine, http://ejdb.org), which is a lightweight variant of the MongoDB 

database (http://mongodb.org). GEMSFITS databases can be transferred to a MongoDB server in the future, 

if required for distributed database development projects. The database is initially created, extended, or 

updated by importing the experimental data in csv format, using the gfshell2 menus. The csv files can be 

exported from pre-formatted spreadsheets. 
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The database operations can be performed directly in the database using the EJDB console 

(http://ejdb.org) or via the gfshell2 GUI. The latter allows also for exporting the data into JSON format 

files. The database stores the data in a BSON (Binary JSON) format (http://bsonspec.org/). 

An advantage of the JSON format is that the data is represented through a hierarchical structure as { 

<key>: <value> } pairs, such as { “phase“: “aq_gen” }. In place of <value>, an array of ordered values [  

<value1>, <value2>, … ] can be used, e.g. { “phase“: [ “aqueous”, “gaseous”, “calcite” ] }, or a subordinated 

{ <key>: <value> } pair, for instance { “phase“: { “aggrstate”: “electrolyte”, “name”: “aqueous” } }. This 

recursive notation can represent any hierarchical, structured, and ordered data objects such as those used in 

advanced object-oriented programming languages. This format makes it easy to handle data that describe 

various experimental settings and chemical systems, allowing for streamlined expansion of new database 

documents (records) without modifying the already existing data records or the entire database architecture. 

The EJDB stores all data records (‘documents’) in ‘collections’. A collection is a group of 

documents having similar (but not necessarily the same) structure. In a GEMSFITS project database, the 

experimental data is stored in the collection “experiments”. The optimization task specification is saved in 

the “tasks” collection; after each successful optimization run, the results can be saved in the “fits” collection 

of the project database file. In this way, the data records can be viewed, edited and used at any later time. 

Experimental data records are identified by two keywords “expdataset” and “sample”, a combination of 

which should be unique in the entire database collection, and forms a ‘data record key’. The “expdataset” 

value (string) typically refers to a paper or a report, or part of it describing a substantially different setup of 

the experiments. The “sample” value (string) refers to a single sample or a measurement point with defined 

temperature, pressure, and composition. The experimental data consists usually of three subsets or sections, 

which are ‘Experiment description’, ‘System composition’, and ‘Measured results’ (Table 2). 

The major advantage of using the EJDB with standalone files is that these files are part of the 

GEMSFITS application and can be easily packaged together with the rest of the fitting project, without 

requiring access to a database server. Because EJDB uses the same BSON C Application Programing 

Interface (API) as the MongoDB, the data can be backed-up to JSON format files (http://www.json.org/) and 

restored from them into a MongoDB server (Plugge et al., 2010), if necessary. 
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Table 2. Main types of experimental data that can be added to the database and used in calculation of 
the objective function for the sum of residuals (Measured results). 
 

Experiments description System composition Measured results 
   • Experimental dataset 
(expdataset) 

• Sample name (sample) 

• Comment 

• Temperature (sT) 

• Pressure (sP) 

• Volume (sV) of the system 

• Chemical composition of the 
system in formula units (comp) 

• Upper and lower additional 
metastability constraints for 
phases or species (UMC, LMC) 

• Unit of measurement and 
estimated error for all entries  

• Concentration of elements (independent 
components IC) in aqueous phase 

• Mole amount of independent components (IC) in 
phases-solutions 

• Mole ratios (MR) of elements in gaseous, solid, 
melt, and aqueous phases 

• Phase properties: mass (Q), volume (pV), excess 
Gibbs energy of mixing (Gex), density (RHO), pH, 
pe, eH, ionic strength (IS), alkalinity (alk), surface 
area (sArea), osmotic coefficient of water (oscw) 

• Amounts or concentrations of dependent 
components (DC) in non-aqueous phases 

• Units of measurement and estimated experimental 
errors for all entries 

   
 

4.3. Parameter optimization code 

The gemsfit2 code performs the actual parameter optimization as described in the task specification file, 

according to the flow chart shown in Fig. 2. The program reads in the experimental data from the database 

according to the "DataSelect" query. Using the GEMS3K input chemical system definition files, 

gemsfit2 creates an array of chemical system definitions in the computer memory, one per ‘experimental 

sample’. At the next step, the program checks if there is any nested objective function defined in the 

"DataTarget" section of the task specification file. If no nested function is defined, the program proceeds 

with computing the equilibrium state for each given sample by calling the embedded GEMS3K chemical 

speciation solver. For certain objective functions, an alternative to computing the equilibrium is to use direct 

access to the TSolMod code library (Wagner et al., 2012) of geochemical-thermodynamic mixing models. 

This significantly reduces computational time in cases when the equilibrium phase composition is known 

and the calculation of phase equilibrium is not necessary (e.g., optimizing activity model parameters against 

data such as osmotic coefficients of aqueous solutions or excess Gibbs energies of a solid-solution). 

The sum of residuals is computed using the objective function terms that are defined in the 

"DataTarget" section. Each term describes what measured data should be compared with the computed 

counterpart (e.g., measured concentrations of dissolved elements like Al and Si in solubility experiments). 
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The sum of residuals can be computed as a classical “sum of squares” or other implemented variants , and 

several  

alternative weighting methods can be applied (Table 3). The sum of residuals (the “target”) is then 

transferred to the chosen optimization algorithm, which will generate new input parameter values, trying to 

minimize the sum of residuals. This loop consists of computing the equilibria (or phase property) for all 

samples, calculating the sum of residuals, and refining the fitting parameters. It is repeated until the defined 

threshold for convergence is reached. At the end of the optimization process, the output (results and 

statistics) is written into csv formatted text output files. 

 

Fig. 2. Flow chart of the gemsfit2 global optimization loop illustrating the connections to GEMS3K and TsolMod 

code libraries. 

The nested objective function, for the first time implemented in gemsfit2, allows the possibility to 

set up a fitting task in which the GEM input properties for each experiment (such as temperature, pressure 

and bulk elemental composition) must always be adjusted against measured data such as pH, alkalinity, or 

fugacities of gases (Fig. 3). Typical examples of such experimental data include pH-dependent solubility 
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data for minerals, or pH edges for ion adsorption, where pH is measured, but not explicitly defined in the 

experimental sample compositions. Most GEM algorithms do not allow to set pH, alkalinity or fO2 as a direct 

input. For a given system definition, these activity-based measurable output properties can only be adjusted 

to desired (measured) values by changing the bulk composition (e.g., titration with acid or base), temperature 

or pressure. 

Table 3. Functions for calculating the residuals and weights in gemsfit2.  

Residual functions and weights 
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Properties: f : computed property; y : measured property; y : measured property average;   : error; n : number of 

experiments; F : sum of residuals; iw : weight related to error or measured property value; ow : weight related to an 
objective function term (e.g. measurements of Si concentration can have a different weight than the ones of Ca 
concentration); ew : individual experiment weight.  
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Fig. 3. Flow chart of the gemsfit2 nested objective function loop (inverse modeling). 
 

If a nested objective function is defined in the "DataTarget" section of the task specification file, 

the program first loops through all simulated experiments (samples). For each experiment, the program 

calculates the absolute difference between the measured and the computed property specified in the nested 

function (any GEM output with experimental counterpart, e.g., pH). The optimization algorithm then adjusts 

the parameters involved in the nested function until the computed properties achieve the best agreement with 

the measured ones. When the optimization algorithm converges, the same procedure is done for the next 

simulated experiment, until the end of the list of experiments. After executing the nested function 

optimization for all simulated experimental samples, the program proceeds with the main loop for optimizing 

the global fitting parameters using the top-level objective function (Fig. 2). If no top-level objective function 

is defined, the program writes the results of the nested function optimization into a csv file as the inverse 

modeling result. 

Parameters that can be optimized by the gemsfit2 code are summarized in Table 4. Parameters 

that influence the computed properties in many experiments are optimized using the global objective 

function (with one or more terms) by minimizing the total sum of residuals 


M

res FStotal
0

0)(min          (1) 
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where 0F  is the sum of residuals calculated as described in Table 3, and M is the number of terms in the 

global objective function. 

Table 4. Main classes of adjustable parameters for fitting tasks and parameter fitting modes. 
 

Parameter Fitting mode Objective function 
   • Standard state Gibbs free energy (25 °C and 1 
bar) of phase components “G0” 

• Free (F) 
• Reaction constrained (R) 
• Set (S) 

Global 

• Mixing models interaction parameter coefficients 
“PMc”, “DMc” 
• DQF parameters of end members pure gas 
fugacities “fDQF” 

• Free (F) 
• Set (S) 

Global 

• Temperature and pressure “TK”, “P” • Free (F) 
• Set (S) 

Nested 

• Element bulk composition“bIC“ • Independent (F) 
• Linearly constrained (L) 
• Set (S) 

Nested 

    

Parameters specific to an individual experiment only (inverse modeling) are optimized using the 

nested objective function, by minimizing the absolute residual values of the difference between the computed 

property f and the measured property y 

iii yfres min)(min    (2) 

Three different parameter-fitting modes can be used, which are free (independent) (F), reaction 

constrained (R), and linearly constrained (L) fitting. Parameters marked as free ‘F’ are optimized 

independently of each other. Some standard-state molar Gibbs energies of components (25 °C and 1 bar), 

marked as ‘R’, can be optimized using an additional reaction constraint. This means that at each optimization 

step, the new value is re-calculated using a (user-provided) reaction equilibrium constant K and the 

independently optimized values of molar Gibbs energies of any other species that take part in the reaction: 
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Here, Rp is the value of the reaction-constrained parameter, R is the gas constant, T is the temperature in 

Kelvin, K is the equilibrium constant, Nr is the number of parameters involved in the reaction other than the 

constrained one, Pj is the value of the parameter involved in the reaction (can be reaction constrained, freely 

fitted, or fixed), and cj is the reaction stoichiometry coefficient. The reaction always involves one species 

constrained by the equilibrium constant, and several others that are independently fitted or have been fixed. 
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To give an example, the solubility data for halite (NaCl) could be fitted by regressing the properties of 

aqueous Na+ and Cl- species, but adjusting the properties of the aqueous species NaCl0 through equilibrium 

constants obtained for the ion association reaction (Na+ + Cl- = NaCl0) from independent sets of experiments 

(e.g., conductance data). Note that temperature and pressure cannot be adjusted simultaneously with 

implicitly T and P dependent parameters such as "G0" or "PMc". Bulk composition parameters, if marked 

with ‘L’, can be linearly constrained to independently fitted composition variables, in order to reproduce the 

stoichiometry of compounds such as titrants. 

 An additional “Set” mode (S) is available, to set the input parameter to a new value (different from 

that initially given in GEMS3K input files, perhaps already fitted in a previous step) to be kept constant 

during the optimization procedure. This limits the applicability of that new parameter value to a given task 

while not affecting other tasks. 

 

4.4. GEMS3K chemical solver and its input data 

GEMS3K (Kulik et al., 2013) is a chemical equilibrium speciation solver that performs modeling of 

multiphase-multicomponent geochemical equilibria using a GEM algorithm. GEMS3K provides a built-in 

selection of equation-of-state and activity models for multicomponent phases available in the TSolMod 

class library (Wagner et al., 2012). The chemical system definition (CSD) and the thermodynamic data 

arrays are usually set up and exported to GEMS3K input files using the GEM-Selektor v.3 (GEMS3) code 

package. When setting up the chemical modeling project in GEM-Selektor GUI, the user is guided through a 

stepwise wizard where the elements comprising the system compositions, the thermodynamic database, and 

the thermodynamic models of mixing in aqueous and gaseous phases are selected. When defining the 

chemical system (including components, species and phases), the user can select for each phase one of 

several non-ideal mixing and activity models or equations of state, depending on the thermodynamic 

framework of the model. The TSolMod class library contains most of the commonly used mixing models 

for aqueous solutions, gas mixtures, fluid mixtures and solid-solutions (Wagner et al., 2012). 

Internally, the gemsfit2 code calls GEMS3K in the ‘-init’ mode to read GEMS3K CSD input files 

for creating an array of nodes for chemical systems representing the selected experimental samples, to 

further simulate these experiments. During the parameter optimization, the chemical equilibrium state and 

speciation are calculated for each sample using the GEMS3K solver, or the solution models are directly 
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accessed and the phase properties calculated without computing the complete equilibrium. This is all done 

based on the chemical system definition specified in the GEMS3K input files. 

 

4.5. GUI and help functionality 

The graphical user interface gfshell2 is designed to assist the user throughout the complete workflow of 

parameter optimization, including editing of the database, setup of the fitting task, running the regression 

procedure, and analyzing the results. The gfshell2 operates in ‘Database Mode’, ‘Fitting Task Mode’, 

and ‘Fit Results View Mode’ (Fig. 1). Any fitting project created in gfshell2 GUI refers to an 

experimental database file and to a set of GEMS3K chemical system definition files. 

In Database Mode, the experimental records from the project database can be viewed in a list and 

edited in JSON format (Fig. 4). Bulk data can be backed up and restored form JSON format files or imported 

and exported from preformatted spreadsheet files previously saved in csv format. Database selection queries 

can be added and edited in the “Search Query Editor”. The record (sample) list retrieved from the database 

by a search query can be then exported into the task specification file with the help of a menu command. 
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Fig. 4. Screen image of the gfshell2 graphical user interface illustrating the appearance of the Database Mode. The 

view shows the query result that was retrieved from the experimental database and one sample entry in JSON format. 

The column on the right-hand side shows the chemical system definition (lists of components, phases and species) that 

is read from the GEMS3K files. 

 

In Fitting Task Mode, the task specification file is viewed and edited (Fig. 5). The specification file 

contains all the options related to one fitting run. The task specification is viewed in JSON format, where 

each key has a value and the options. For instance, the pair "DataSelect":"search_query" has the 

value represented by the database search query, or the key-value pair "OptAlgo":"GN_ISRES" defines the 

type of optimization algorithm to be used. Fitting task specifications can be edited, saved to database, or new 

tasks created from them, and they can all be exported to task input files and executed in the gemsfit2 

code. 
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Fig. 5. Screen image of the gfshell2 graphical user interface illustrating the appearance of the Fitting Task Mode. 

The view shows the list of fitting tasks, the specification file for one task in JSON format and the chemical system 

definition. 

 

In the Fit Results View Mode, the results can be imported from gemsfit2 output csv files, viewed, 

and plotted. This functionality is useful for rapid evaluation of the quality of the fitting results. In this mode, 

the gemsfit2 output can be displayed in several tabs in a spreadsheet format (Fig. 6). The output contains: 

1) Fitted Parameters with the initial and fitted values of the parameters and the associated parameter 

statistics; 

2) Fit for Samples containing the dependent/calculated and measured properties, residuals, as well as the 

weights and other user pre-defined output (Fig. 6); 

3) Sum Statistics with the summary statistics describing the quality of the fit; 
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4) Sensitivity Data containing the calculated sensitivities for each measured value to each regressed 

parameter; 

5) Quantile Residuals with the ordered residuals and their respective quantiles (points taken at regular 

intervals form the cumulative distribution function of the residuals); 

6) MC results containing the resulting parameter values for each Monte Carlo generated optimization run; 

7) Inverse Modeling Results; 

8) gemsfit2 log containing some diagnostic information related to the fitting run. 

 

Fig. 6: Screen image of the gfshell2 illustrating the appearance of the Fit Result Viewing mode with different 

spreadsheet tabs (Fitted Parameters, Fit for Samples, Summary Statistics, Sensitivity Data, Quantile Residuals, Monte 

Carlo Residuals, Inverse Modeling Results, gemsfit2 log). 

 

 

4.6. The gemsfit2 task specification 

The fitting task specification contains all the options and information that are required by gemsfit2 for 

performing the computations. It exists as a property-value JSON format editable in gfshell2. It has four 

main sections, which are ‘Data Selection’ (starts with keyword "DataSelect"), ‘Data Target’ (with 

"DataTarget"), ‘Parameter Markup’ (with different parameter lists/arrays e.g. "G0" for Gibbs free 

energy parameters; "bIC" for elemental bulk composition), and ‘Optimization and Statistics’ (with different 

options such as "OptAlgo" for defining the algorithm; "StatMCruns" for defining the number of Monte 

Carlo runs). Before running the task, each section must be defined and edited by the user. The query for 
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selecting the experimental data, the definition of the objective function, and the markup of the parameters to 

be adjusted are all defined as JSON objects. Using the gfshell2 program, any task input file can be 

imported and edited in JSON format, and then saved in the “tasks” collection of the project database. The 

task specification is automatically exported into the gemsfit2 input file when the task calculation is started 

from gfshell2. 

 

4.7. Optimization library 

Handling complex parameter optimization tasks with numerous parameters and a complex objective function 

requires a versatile selection of efficient and numerically robust optimization algorithms. Multi-dimensional 

fitting exercises almost invariably result in convergence difficulties, because of possible local minima and/or 

highly correlated fitting parameters. For this reason, gemsfit2 uses the NLopt nonlinear optimization 

library (http://initio.mit.edu/nlopt) that was also employed in the earlier prototype (Hingerl et al., 2014). This 

library provides several global and local minimization algorithms, which can be gradient or non-gradient 

based (derivative-free). The algorithms implemented in NLopt and thus available in gemsfit2 are listed 

in Table 5. In the ‘Optimization’ section of the task specification, several options can be used to control the 

use of NLopt, e.g., the type of algorithm, a global upper and lower bound percentage for all parameters, the 

relative and absolute tolerance for the convergence criterion, the initial step of the parameters, and the 

maximum number of iterations. 

Table 5. Optimization algorithms in gemsfit2.  
 

Optimization algorithms (NLopt library) 
 Global (only bound-constrained problems): 
• GN_ISRES: Improved Stochastic Ranking Evolution Strategy (Runarsson and Xin, 2005) 
• GN_CRS: Controlled Random Search with local mutation (Kaelo and Ali, 2006) 
• GN_ESCH: Evolutionary algorithm (da Silva Santos et al., 2010) 
• GN_ORIG_DIRECT: Dividing Rectangles algorithm (Jones et al., 1993) 
• GN_ORIG_DIRECT_L: A locally-biased form of the DIRECT algorithm (Gablonsky and Kelley, 2001)   
• GD_MLSL: Multi-Level Single-Linkage (Rinnooy Kan and Timmer, 1987) 
 
 Local: 
• LN_BOBYQA: Bound Optimization By Quadratic Approximation (Powell, 2009) 
• LN_SBPLX: modified Subplex (Rowan, 1990) algorithm 
• LN_NEWUOA: using quadratic approximation (Powell, 2004), superseded by BOBYQA (above) 
• LN_PRAXIS: PRincipal AXIS method (Brent, 1972) 
• LD_MMA: Method of Moving Asymptotes (Svanberg, 2002) 
• LD_SLSQP: Sequential Least-Squares Quadratic Programing (Kraft, 1994) 
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• LD_VAR1: shifted limited-memory variable-metric algorithm (Vlcek and Luksan, 2006) 
 

In the definition of optimization algorithms, G stands for Global, L for Local, N for non-derivative, and D for derivative 
(gradient-based). 
 

 

4.8. Weighting and outliers 

In many datasets, outlying samples may result in significantly degrading the quality of the fitting and may 

also cause convergence problems for the fitting algorithms. The simplest way of dealing with extreme 

outliers is to exclude them from the selection of experiments from the database. 

Another option available in gemsfit2 for moderately outlying samples is to assign the outliers a 

lower weight. This can be done systematically using a Tuckey’s Biweight function that reduces the influence 

of outliers (Motulsky and Christopoulos, 2004). The function uses a cutoff value C calculated as the median 

of all absolute values of residuals multiplied with an arbitrary scaling factor (6 by default) set in the task 

specification file. Each sample whose absolute value of the residual exceeds C is assigned a weight of 0 (i.e., 

it will be ignored during the fitting). Other samples are given weights determined by the following equation 

(where Ri is the absolute value of residual, i is the sample index, and C is the cutoff value as defined before): 
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Sample weights are recomputed at each iteration of the optimization algorithm. These weights are computed 

for each different data type that is included in the objective function term (e.g., different medians for 

dissolved aqueous Al and Si concentrations). Weights can be set for each individual experimental sample, 

but also for each term of the objective function, as user defined values. More than one weighting option can 

be selected for one fitting task; Table 3 gives an overview of all possible weighting options. 

 

4.9. Statistics 

The majority of the statistics options implemented in gemsfit2 remain the same (with minor corrections) 

as in the early prototype GEMSFIT; a detailed summary of them can be found in Hingerl et al. (2014). The 

main statistics features that can be analyzed are goodness of fit, sensitivity analysis, correlation of parameters 

(Hill and Tiedeman, 2007), and confidence intervals from Monte Carlo simulations (Motulsky and 

Christopoulos, 2004). All the statistics options can be set in the ‘Statistics’ section of the task specification. 
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4.10. Confidence intervals for parameters by Monte Carlo simulation 

The philosophy of this method is to generate many datasets (experimental pseudo-data), and perform the 

optimization of fitting parameters for each generated dataset (Motulsky and Christopoulos, 2004). The 

resulting distributions of adjusted (fitted) parameters are then used to calculate their standard deviations and 

confidence intervals. The random scatter is generated as an array of values randomly extracted from a 

synthetic set of normally distributed data, which have the mean value and the standard deviation equal to that 

of the residuals resulting from the nonlinear regression. Another option is using a “bootstrap sampling” 

(DiCiccio and Efron, 1996) of the residuals (useful when the residuals are not normally distributed). This is 

done by randomly sampling the residuals with the possibility of sampling one residual more than once. The 

random scatter is then added either to the computed property values or to the respective experimental values, 

as in eq. (5) or (6) (option set in the Statistics section of the task specification): 

 ioldinewi syy  ,,           (5) 

 ioldinewi sfy  ,,           (6) 

Here, yi represents the measured value, f i is the computed value, si represents the random scatter value, and 

subscripts new and old refer to the new ‘synthetic’ measured value and the one used in the actual fitting 

before the Monte Carlo iterations. 

The resulting randomly modified values are then used as new “measured values” for the optimization 

procedure. The random scatter is computed for each objective function term (different types of data that are 

included into the objective function) on a normalized scale. For example, one scatter array is computed for 

all aluminum solubility measurements, and a separate one is computed for the silicon solubility 

measurements. In the case of bootstrap sampling, the random scatter is computed for each type of the data 

and the experimental dataset (i.e. one literature reference or set of experiments). 

The MC procedure is repeated many times (>100), to make it possible to evaluate the standard 

deviation of fitted parameter values, which represents the error of the parameters for the given scatter of the 

experimental data. Symmetric confidence intervals are estimated from standard deviations of parameters by 

multiplying them with a suitable quantile of Student’s t-distribution (Hill and Tiedeman, 2007). 
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Due to the large amount of computing required for the Monte-Carlo simulations or, in some cases, 

for the nested functions and global algorithms, these options may be very time consuming. For this reason, 

the gemsfit2 code is parallelized, and it can manage many processing tasks using the OpenMP (Open 

Multi-Processing) shared-memory multiprocessing library (http://openmp.org/). The master process is split 

into parallel tasks (depending on the type of configuration) that are simultaneously executed, thus 

dramatically reducing the required computation time. 

 

4.11. Fit-independent statistics 

The fit-independent statistics are calculated without invoking the optimized parameter values, using only 

sensitivities and weights (Hill and Tiedeman, 2007). Sensitivities represent the change in the computed value 

(yi) divided by the change in the respective parameter value (bj). They are calculated using central 

differences, in which the parameters are both increased and decreased. Mathematically speaking, sensitivity 

is a partial derivative of a computed value (yi) with respect to the parameter (bj). It is approximated from the 

finite difference: 
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The change in the parameter value is calculated using a perturbator value (), which can be set in the 

gemsfit2 task specification file. In most cases, when using a small perturbator value, the calculated 

sensitivities approach the real sensitivities (Poeter and Hill, 1998), although a too small value could result in 

insignificant changes in the computed values. It is recommended to investigate the effect of different 

perturbation values until an optimal one is found. The sensitivities indicate the importance of the 

observations for determining the estimated parameter. 

To better reflect the importance of observations in the parameter optimization, sensitivities have to 

be scaled. This is because their units are calculated as the measured value divided by the parameter, both of 

which can have very different units. For this purpose, sensitivities of each observation and parameter are 

multiplied by the value of the parameter (bj) and by the weight assigned to the observation (wi), resulting in 

the dimensionless-scaled sensitivities (DSS): 
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Information about the sensitivity of one parameter to the observations is provided by the composite scaled 

sensitivities (CSS) (Hill and Tiedeman, 2007). They are calculated for each parameter using the 

dimensionless-scaled sensitivities, as follows (n is the number of observations): 
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The variance-covariance matrix is then calculated as: 
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where VarCov(b) is a square matrix (the size of which is the number of parameters); s2 is the error variance, 

i.e., the weighted squared sum of squared residuals divided by the degrees of freedom (number of 

observations minus the number of parameters); X is the matrix of sensitivities; and w is the weight matrix. 

The correlation coefficient between the j th and the k th parameter is then calculated as follows: 
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5. Application examples  

The practical utility and efficiency of the GEMSFITS code package is demonstrated with examples that 

represent typical classes of optimization problems in geochemical-thermodynamic modeling. These include 

(1) fitting of interaction parameters of mixing models, (2) optimization of thermodynamic properties such as 

the standard molal Gibbs energies of aqueous species or the equilibrium constants of formation reactions, (3) 

thermobarometry, (4) inverse titrations, and (5) combined nested problems. 

 

5.1. Boehmite solubility and Al speciation 

Aluminum is an important element in many rock-forming minerals. Because of its low solubility, Al 

determines fluid-mineral equilibria and the reaction progress during fluid-rock interaction (Pokrovski, 1998; 
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Bénézeth et al., 2001; Tagirov and Schott, 2001; Manning, 2006; Mookherjee et al., 2014). Modeling 

aluminum solubility in geologic fluids has always been problematic and controversial due to the 

inconsistency of thermodynamic data that involve Al, contradictions between different experimental studies 

of the pH-dependent solubility of Al minerals, discrepant thermodynamic properties of aluminum-bearing 

minerals that were used for extracting properties of aqueous Al species from solubility experiments, and 

because different activity models were used in deriving thermodynamic properties of aluminum aqueous 

species (Tagirov and Schott, 2001). 

In this example, the standard molal Gibbs energies ( 0
298Gf ) of aqueous aluminum species at 25ºC 

and 1 bar were fitted using in situ boehmite solubility experiments performed by Bénézeth et al. (2001). The 

0
298Gf  of Al3+, AlOH2+, Al(OH)2

+, Al(OH)3
0 and Al(OH)4

-, were simultaneously fitted. The thermodynamic 

properties of boehmite AlOOH(cr) were accepted from Verdes et al. (1992) and Hemingway et al. (1991), and 

these have also been used by Bénézeth et al. (2001) for interpreting their experimental results. 

Thermodynamic properties of aqueous species at the experimental conditions were calculated in the GEM-

Selektor v.3 code using the revised Helgeson-Kirkham-Flowers (HKF) model (Helgeson et al., 1981); water 

properties were calculated from the Haar-Gallagher-Kell (HGK) model (Kestin et al., 1984). The extended 

Debye-Hückel aqueous electrolyte model (Helgeson et al., 1981; Oelkers and Helgeson, 1990) was used for 

calculating the activity coefficients of individual species. The standard state thermodynamic properties and 

HKF parameters of other species present in the system were taken from Shock and Helgeson (1988) for OH -, 

Cl-, Na+, from Tagirov et al. (1997) for HCl0, from Sverjensky et al. (1997) for NaCl0 and from Shock et al. 

(1997) for NaOH0. 

The boehmite solubility experiments were performed over a wide range of pH (from 2 to 10) at a salt 

concentration of 0.03 mol/kg (NaCl), at temperatures between 100 and 290°C, and at saturated water vapor 

pressures. The experimental method, described in Palmer et al. (2001), has been demonstrated to produce 

consistent results for numerous samples. The pH of the system was measured in situ using a hydrogen-

electrode concentration cell (Bénézeth et al., 2001). 

To be able to simulate the exact experimental conditions in the GEM-Selektor v.3 code, the complete 

chemical composition for each system (experimental sample) must be known. Because concentrations of 

HCl and NaOH (that were used to adjust the pH in the experiments) were not reported by Bénézeth et al. 
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(2001), we had to apply the inverse titration approach in GEM-Selektor for adjusting the pH in each 

experiment (sample) to the experimentally measured value, using the nested objective function as 

implemented in the gemsfit2 code. The bulk composition of each simulated experimental sample was first 

adjusted by adding HCl and NaOH titrants by the free fitting of Na and Cl amounts (‘F’ type) with linearly 

constrained O and H amounts (‘L’ type) to reproduce the titrant stoichiometries. 

Using gemsfit2, the 0
298Gf  values of the aqueous Al species were adjusted and three different 

fitting cases were considered. In the first case (A), the regression yielded 0
298Gf values for Al3+, AlOH2+, 

Al(OH)2
+, Al(OH)3

0 and Al(OH)4
- fitted independently. In the second case (B1), the 0

298Gf  of AlOH2+ was 

constrained through the equilibrium constant for the species-forming reaction (Al3+ + H2O = AlOH2+ + H+). 

In an additional third case (B2), the initial values for all standard state Gibbs energies were set to 10 kJ/mol 

more negative, while keeping the same reaction constraint as in the second task (B1). Although the species 

NaAl(OH)4
0 is included in the chemical system, it is not controlling solubility at low Na concentrations and 

the 0
298Gf was therefore fixed at the value from Tagirov and Schott (2001). Initial values of the 0

298Gf  and 

other standard molal thermodynamic properties for the aqueous aluminum species were adopted from 

Tagirov and Schott (2001). Only the 0
298Gf values were adjusted during regression, while other standard 

molal properties of aqueous species were kept unchanged. 

In all three fitting tasks, the local BOBYQA (Powell, 1994) optimization algorithm was used, and 

the search bounds for parameters were set to ±5% of the initial value. Initial values, final values, and the 

associated uncertainties for all fitting runs are given in Table 6. The standard sum of squares function was 

used with equal weights of 1.0 for all experimental data points: 
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The solubility data were treated as log10 of the molality. In all runs, the resulting final 0
298Gf values 

of each species were similar, within their uncertainties (set to two times the standard deviation as estimated 

using the Monte Carlo method by simulating 1000 random sets of experiments). 

In the first task (A), all 0
298Gf  values were independently fitted (‘F’ type). In systems with several 

independently fitted parameters, where the target function is not highly sensitive to each parameter, typically 
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some fitted parameters are highly correlated, which makes it difficult to obtain physically meaningful values 

and to find the optimum solution. In the chemical system investigated, the total solubility is not very 

sensitive to the independent contributions of Al3+, AlOH2+ and Al(OH)2
+ at pH values below 5, where their 

predominance fields overlap (Fig. 7). The situation is different at neutral to alkaline pH, where Al(OH)3
0 and 

Al(OH)4
- dominate the speciation. Uncertainties resulting from the independent fitting show that the 0

298Gf

values of all species except AlOH2+ could be constrained within reasonable bounds, and that the high 

uncertainty associated with the 0
298Gf of this species is clearly due to correlations. The resulting correlation 

coefficients of the independently fitted parameters can be found in Table 7; they show that the correlation 

coefficient between AlOH2+ with Al3+ is statistically significant (r = -0.71). 

Therefore, for the second case (B1), the 0
298Gf  value of AlOH2+ was reaction-constrained (‘R’ 

type) using the equilibrium constants associated with the hydrolysis reaction: 

Al3+ + H2O = AlOH2+ + H+         (14) 

KRTGr ln0            (15) 

Values of equilibrium constants (log10K) for the above reaction for each experimental temperature were 

taken from Palmer and Wesolowski (1993), who determined them by a potentiometric method. After each 

optimization iteration, the new value for 0
298Gf of AlOH2+ was recalculated using the log10K of the above 

reaction and a new independently adjusted 0
298Gf  of Al3+. The final results (Table 6) of the two fitting 

approaches show that the 0
298Gf  value of Al3+ is quite well constrained. 

In the third task (B3), the initial values of 0
298Gf of all Al species were set to 10 kJ/mol more 

negative than in two previous tasks, in order to investigate the significance of initial guesses for the final 

regressed parameters; all other settings were kept the same. In the first run, the BOBYQA algorithm 

converged to a local minimum (Table 6), clearly identified by the sum of squares being two times larger than 

in the two other tasks. A second run was performed using the final values from the first run as initial values. 

This time, the algorithm converged to a similar minimum as for the preceding cases, and the final values 

were almost identical. 
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The main improvement compared to other datasets for aqueous Al speciation is that the final 

optimized 0
298Gf values were derived fully consistent with the selected aqueous electrolyte model 

(extended Debye-Hückel equation), the HKF EoS, the selected thermodynamic properties of boehmite, and 

all the selected experimental data. This opens up the possibility to derive alternative geochemical-

thermodynamic datasets using different standard state data for the solubility-controlling mineral phases, 

different sets of aqueous species, different activity coefficient models (e.g., derive standard state properties 

based on a Pitzer model), or different experimental datasets. Furthermore, if new high-quality experimental 

data would become available in the future, thermodynamic properties of the aqueous Al species could be re-

derived using the same approach. The key message here is that GEMSFITS optimized values will always be 

consistent with the selected models and input data, best reproducing the experimental data. Figure 7 shows 

log10 activity values of aluminum species and total aluminum concentration as function of increasing pH, 

comparing directly the values calculated with the initial thermodynamic data and with the final adjusted 

ones. Experimental data points are plotted for comparison, and final regressed 0
298Gf  values obviously 

show a much better agreement with the experimental Al solubility data. 

Table 6. Initial and regressed (final) values of 0
298Gf (kJ mol-1) for selected aluminum species. The 

uncertainty (2σ) represents 2 times the standard deviation estimated from 1000 Monte Carlo runs. 
 

Species (1)Initial
0
298Gf  

(2)Final 

0
298Gf  

(2)Error 
(2) 

(3)Final  

0
298Gf  

(3)Error 
(2) 

(4)Final  
0
298Gf  

(5)Final 
0
298Gf  

        AlOOH(cr) -917.82 -917.82 1.9 -917.82 1.9 -917.82 -917.82 

Al3+ -487.5 -486.8 1.4 -486.3 0.5 -486.4 -486.4 

AlOH2+ -696.3 -695.8 10.0 -695.1 0.7 -695.2 -695.3 

Al(OH)2+ -899.5 -897.9 1.2 -898.6 1.0 -897.1 -898.0 

Al(OH)30 -1101.7 -1105.0 1.0 -1104.6 0.9 -1106.2 -1104.9 

Al(OH)4- -1305.8 -1307.2 0.4 -1307.2 0.4 -1303.9 -1307.2 

NaAl(OH)40 -1567.4 -1567.4  -1567.4  -1567.4 -1567.4 

                Sum of squares 23.03 13.99  13.97  27.12 13.96 
        

(1)The initial 0
298GΔf value for AlOOH(cr) was adopted from Verdes et al. (1992) initial values for all aqueous Al species 

were taken from Tagirov and Schott (2001). The 0
298Gf values for AlOOH(cr) and NaAl(OH)40 were fixed in the 

regression. 
(2)Case A, the 0

298Gf of all species was fitted independently. 
(3)Case B1, the 0

298Gf of Al3+ was fitted directly, while the 0
298Gf of the AlOH2+ species was constrained by applying 

the equilibrium constant for the species -forming hydrolysis reaction (Al3+ + H2O = AlOH2+ + H+). For this species, the 
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2 error was calculated from the error of the 0
298Gf for Al3+ and the error of the equilibrium constant for the species -

forming reaction. 
(4)Case B2, fitted by setting all initial values of 0

298Gf  smaller with 10.0 kJ/mol. The 0
298Gf of Al3+ was fitted directly, 

while the 0
298Gf of the AlOH2+ species was constrained by applying the equilibrium constant for the species -forming 

reaction. 
(5)Case B2, same as (4) and using as starting values the final values of (4). 
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Fig. 7 Plots showing the aluminum solubility and speciation as function of increasing pH and the total aluminum 

concentration, calculated with GEM-Selektor before (dashed lines) and after the optimization (solid lines) of the 

standard state properties of the aqueous Al species Al3+, AlOH2+, Al(OH)2+, Al(OH)30 and Al(OH)4-. Filled circles 

represent the experimental data points. Plots are shown for temperatures of (A) 101.3 ºC, (B) 152.4 ºC, (C) 154.3 ºC, 

(D) 203.3 ºC, (E) 254.3 ºC and (F) 290.3 ºC. 

 

Table 7. Parameter correlation matrix for the final regressed 0
298Gf values of Al species.  
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 Al3+ AlOH2+ Al(OH)2+ Al(OH)30 Al(OH)4- 

      Al3+ 1.0 -0.71 0.30 -0.11 -0.02 

AlOH2+  1.0 -0.56 0.25 0.04 

Al(OH)2+   1.0 -0.65 0.16 

Al(OH)30    1.0 -0.29 

Al(OH)4-     1.0 
      

The correlation matrix was calculated for the case where 0
298Gf  values of all species were fitted independently. 

 

5.2. Ti in quartz: Solid-solution geothermometry 

Several authors studied the temperature and pressure dependence of the substitution of Ti for Si in quartz 

(Ostapenko et al. 1987; Wark and Watson, 2008; Thomas et al., 2010; Huang and Audétat, 2012). This solid-

solution is commonly applied as a thermobarometer (Rusk et al., 2008; Smith et al., 2010; Wilson et al., 

2012; Kidder et al., 2013). 

The objective of this example was to test the optimization of mixing model parameters for solid-

solutions using GEMSFITS. Therefore, a regular SiO2-TiO2 (quartz-rutile) solid-solution model was 

constructed in the GEM-Selektor database. Then three coefficients (constant term and linear terms for 

temperature and pressure dependence) of the regular interaction parameter were fitted against the 

experimental data (Wark and Watson, 2008; Thomas et al., 2010). The optimized solid-solution model was 

then used in a GEMSFITS inverse modeling task aimed at determining the temperature of quartz 

crystallization using measured Ti concentration data in natural quartz samples from Kidder et al. (2013) 

along with those from low-grade metamorphic quartz veins in accretionary-wedge sediments of the Swiss 

Alps (Miron et al., 2013). 

The solubility of Ti in quartz in the presence of pure rutile was experimentally measured between 

600 and 1000 °C and between 5 and 20 kbar using a piston-cylinder apparatus (Wark and Watson, 2008; 

Thomas et al., 2010). A total number 31 data from these experimental studies were added to the GEMSFITS 

TiQ database. The chemical system was set up using GEM-Selektor and exported to a set of GEMS3K input 

files. The Peng-Robinson multicomponent fluid model (Anderson and Crerar, 1993) was used to describe the 

fluid phase (with fluid species H2O, H2 and O2). The solid phases in the system were pure rutile and a quartz-

rutile solid-solution phase. Thermodynamic properties of solid-solution end-members were taken from the 

Holland and Powell (1998) database (as revised in Thermocalc datafile ds55). The regular binary mixing 
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model (Anderson and Crerar, 1993) was used, where the end-member activity coefficient is calculated from a 

single interaction parameter: 

 
22222

)1(ln TiOSiOSiOTiOSiO WXXRT         (16) 

 
22222

)1(ln TiOSiOTiOSiOTiO WXXRT         (17) 

Here, 
2SiO  and 

2TiO  represent the activity coefficients, and 
2SiOX  and 

2TiOX  the mole fractions of SiO2 

and TiO2 in quartz. 
22 TiOSiOW   is the regular interaction parameter, which is a simple function of temperature 

and pressure: 

 cPbTaW TiOSiO  22
         (18) 

Here, T is the temperature in Kelvin and P is the pressure in bar. The coefficients a, b and c are adjustable 

parameters in the regression of experimental data (measured Ti concentrations in quartz at given temperature 

and pressure). 

For the first fitting task (A1), a global optimization setup was prepared (Table 8). The chosen global 

fitting algorithm was GN_ISRES (Runarsson and Xin, 2005), and the weighting used was the inverse square 

of the measured value. Results of fitting tasks are listed in Table 8, and calculations from the model are 

compared to experimental data in Fig. 8. Optimized values of the a, b and c coefficients obtained from the 

global optimization run were then used as initial values for the second task (A2) using the BOBYQA 

(Powell, 1994) local optimization algorithm. Parameter correlation coefficients using the local algorithm are 

given in Table 9, showing that coefficients a and c are highly correlated (-0.91). Parameter composite scaled 

sensitivities from the statistical analysis show that the second coefficient (b), which describes the 

temperature dependence of the interaction parameter, is the least sensitive to the experimental data. 

A third fitting task (A3) was produced using the initial values of parameters obtained from the first 

task (A1), but setting the calculated and measured concentrations of Ti in quartz in the natural logarithm 

scale. The resulting parameter values are almost identical to the ones obtained from the second fitting task, 

but their computed errors (2 times the standard deviation of the parameters resulting from 1000 Monte Carlo 

runs) are half as large as the errors from the second fitting task (Table 8). The change in error values is a 

consequence of the change in the shape of the minimized function surface due the conversion to logarithmic 

scale. 
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Table 8. Results of optimization runs for the Ti-in-quartz solid solution model.  
 

Coefficient (1)Initial (1)Final 
(global) 

(2)Final 
(local) 

(2)Error  
(2) 

(2)CSS (3)Final 
(local) 

(3)Error  
(2) 

        a 10000 60300 60316 2300 35.4 60717 1100 
(1000 – 100000)       

b -1 -1.168 -1.159 0.568 1.32 -1.577 0.42 
(-100 – 100)       

c 1 1.791 1.780 0.180 13.5 1.762 0.1 
(-100 – 100)       

        

 Coefficients a, b and c of the interaction parameter W = a +bT + cP. The uncertainty (2σ) represents the 2 times 
standard deviation of the parameters from 1000 Monte Carlo runs. Numbers in parentheses represent the parameter 
bounds during optimization. CSS: composite scaled sensitivities. 
(1)Case A1, initial and final values as well as errors for the runs where the g lobal optimization algorithm was applied. 
(2)Case A2, final values and errors obtained from the optimization runs using the local optimization algorithm. The final 
values of the runs with the global optimization algorithm were used as initial guesses for t he subsequent runs with the 
local optimization algorithm. 
(3)Case A3, final values and errors obtained from the optimization runs where the measured Ti concentration in quartz 
was used as )ln(

2

Quartz
TiOX  

 
 

 

Fig. 8. Plot illustrating the temperature dependence of Ti concentrations in quartz. Filled circles are experimental data 

points (Wark and Watson, 2008; Thomas et al., 2010) and curves are calculated from thermodynamic solid -solution 

models. 
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Table 9. Correlation matrix for the final regressed values of the interaction parameter coefficients        
(W = a +bT + cP) of the Ti in quartz solid solution model. 
 

 a b c 

    a 1.0 0.32 -0.91 

b  1.0 -0.02 

c   1.0 
    

 

Thomas et al. (2010) used the following equation to describe their data: 

 
22

ln)()(ln TiO
quartz
TiO aRTkbarcPKbTaXRT        (19) 

where R is the universal gas constant, T is temperature in Kelvin, P is pressure in kbar, quartz
TiOX

2
ln is the mole 

fraction of TiO2 in quartz, and 
2TiOa is the activity of TiO2 in the system. Their fitted values for the 

coefficients (a: -60952 ± 3177; b: 1.52 ± 0.39; c: 1741 ± 63) agree within uncertainty with those obtained 

from our regression. This is because eq. (19) can be converted into a form that is equivalent to the regular 

mixing model (eqs. 16, 17 and 18) using the definition of the activity of end-members: 

 Quartz
TiOTiO

Quartz
TiO aX

222
lnlnln           (20) 

For the binary regular model: 

 
2222

2)(ln TiOSiO
Quartz
SiO

Quartz
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When Ti is present at trace element concentrations in quartz, the mole fraction of the SiO2 end-member can 

be closely approximated with unity, leading to the simplified expression: 

 
RT

W TiOSiOQuartz
TiO

22

2
ln 

           (22) 

This can be substituted into eq. (20) to arrive at a form that is identical to eq. (19). 

In an application to field-based geochemical data, the optimized coefficients obtained from the 

second fitting task (Table 8) were used to determine the temperature of crystallization of quartz (Table 10) in 

the presence of rutile from 6 natural samples reported by Kidder et al. (2013). For this inverse modeling 

problem, the Ti concentration data from Kidder et al. (2013) and our own data from quartz veins in low-



 37 

grade metamorphic rocks from the Central Swiss Alps (Miron et al., 2013) were added to the TiQ database 

file. All samples had 300 °C as starting value for the temperature. The parameter marked for fitting in the 

GEMSFITS task input file was temperature "TK" and in the "DataTarget" section, a nested function was 

used to compare the measured concentrations of Ti in quartz with the calculated ones. The gemsfit2 code 

adjusted the temperatures for each sample independently, until the calculated amount of Ti in solid-solution 

with quartz was close to the analyzed concentrations. The resulting equilibrium temperatures are in good 

agreement with the temperatures estimated from other independent geothermometers for the same samples. 

Other applications similar to the one above could be developed for modeling of trace element partitioning.  

One can easily use GEMSFITS for adjusting the mixing model parameters for different solid-solutions 

between major and trace elements in minerals (e.g. Zr in rutile, Zr in titanite, etc.).  

Table 10. Application of Ti in quartz geothermometry to two field examples.  
 

Sample Ti in quartz 
(ppm) 

(1)P (bar) (1)T (ºC) (1)Error (2) (2)T (ºC) (2)Error (2) Reference 

        ms-004 0.19 2600 237 26 234 24 K 

ms-34 0.48 3100 276 28 273 22 K 

ms-342 0.52 3000 279 28 277 22 K 

q-005 0.54 2800 282 28 274 22 K 

q-123b 0.30 3100 256 27 257 21 K 

q-148j 0.72 3200 295 29 292 23 K 

Thusis 1.00 3000* 320* 20* 302 23 M 

Temperatures were calculated using analyzed Ti concentrations in quartz, applying the solution model calibration from 
(Thomas et al., 2010) and this study. 
(1)Sample median temperatures reported by Kidder et al. (2013) (ref. ‘K’) and calculated by using TitaniQ thermometer 
(Thomas et al., 2010) and (*) estimated using mineral geothermometry (Miron et al., 2013). Pressures calculated using a 
geothermal gradient of 25°Km-1 and the mean temperature values reported by Kidder et al. (2013). Ref. ‘M’: 
G.D.Miron, unpublished data. 
(2)Temperatures calculated using inverse modeling with the solution model calibration obtained in this study. The 
analytical 2σ error has been propagated from the error on the regressed interaction parameters. 
 

6. Discussion 

The GEMSFITS code package can adjust separately or simultaneously any GEM input property parameters 

(standard state Gibbs energies of formation, interaction parameters of thermodynamic mixing models or 

equations of state, pressure, temperature, input bulk composition), provided that sufficient experimental data 

are available that can be compared to their computed counterparts. This is a substantial extension compared 
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to the previous prototype (Hingerl et al., 2014), which had only capabilities for fitting the interaction 

parameters of aqueous activity models. 

The user-defined objective function with one or multiple terms (one term for each type of property) 

makes it possible to calculate the sum of residuals for any measurable property from experiments performed 

in different, but related systems. GEMSFITS can therefore fit parameters simultaneously for several 

chemical systems and many individual experimental data points. The quality of fit can be improved by 

assigning conditional weights to experimental data points using a range of methods (Table 3). Weights can 

also be placed on each term of the objective function, thereby giving more weight to selected types of 

measured data (e.g., placing more weight on solubility data than on volumetric or calorimetric data of 

aqueous electrolytes). Weighting can also be used to normalize the observed and computed data, because 

even for a linear regression model it is recommended that all data sets are expressed in the same scale 

(Motulsky and Christopoulos, 2004). For datasets that cover a large range in parameter space (e.g., 

experimental solubility data that span several orders of magnitude in concentration), the data should be 

brought to the same units or at least to similar magnitudes, in order to avoid that the high-magnitude 

properties would strongly bias the fitting results. 

In the gemsfit2 code, one way of bringing the experimental data to the same magnitude is by 

using the squared inverse measured value as a weight multiplier. For certain types of data such as dissolved 

aqueous concentrations, the logarithmic scale is clearly preferable. A potential problem when using the 

logarithmic scale is that the residuals are asymmetric, i.e., that the absolute value of the positive residual is 

numerically larger than that of the negative residual (even if the residuals in the non-logarithmic scale are 

absolutely equal). It is often difficult to decide which experimental points should be treated as outliers. 

Samples identified as outliers can be skipped from the fitting task, or assigned a low weight (close to zero). 

A general way of treating outliers is using the GEMSFITS implementation of the Tuckey’s Biweight method 

(Motulsky and Christopoulos, 2004), which gives increasingly less weight to the points further away from 

the ideal value. 

Well constrained parameters for mixing models in non-ideal solution phases are important for 

accurately calculating activities of solutes or end-members, which is essential for realistic modeling of 

(geo)chemical systems. These models can have a large number of parameters (e.g., the Pitzer model; Pitzer 

and Kim, 1974), which imposes high demands on the fitting method. Therefore, it is important to utilize 
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numerically robust and stable optimization algorithms and to perform thorough statistical analysis of the 

fitting results. The gemsfit2 code therefore provides a selection of different global and local, gradient 

based or gradient-free, algorithms that can solve multidimensional non-linear optimization problems. Local 

optimization algorithms may experience problems when the surface of the function to be minimized is 

complex and has local minima. In this case, the parameter optimization may converge to incorrect values that 

represent a local rather than the global minimum. Global algorithms are much slower, but can search for the 

true global minimum. However, global algorithms are less precise close to the minimum compared to the 

local algorithms. Thus, a ‘smart’ procedure combines a global optimization run and then uses the resulting 

parameters as initial guesses with rather close upper and lower bounds in a subsequent local refinement step. 

Compared to a global algorithm, the parameter search space of a local algorithm is smaller, and this increases 

the calculation time required to find the optimal solution of the fitting problem. 

The standard state molar (molal) Gibbs energy values 0
298Gf of dependent components (e.g., 

aqueous species, solid-solution end-members, pure condensed substances, gaseous and fluid species) can be 

adjusted as free (‘F’) parameters, or by application of reaction-type (‘R’) constraints. Complex chemical 

systems contain many dependent components, which considerably increases the dimensionality of the fitting 

problem and makes it more difficult for the optimization algorithms to converge. Furthermore, some of the 

regressed 0
298Gf values may be highly correlated and may not be physically meaningful. For complex 

systems, the reaction-type constraints can greatly speed up the fitting process for poorly constrained or 

highly correlated 0
298Gf  values, especially if only low-quality or insufficient experimental data are 

available (see the example on fitting the 0
298Gf values of aqueous aluminum species). 

Inverse GEM modeling tasks include thermobarometry calculations and inverse titrations. 

Thermobarometry finds the temperature and/or pressure based on analyzed compositions of solution phases 

(e.g., Mg-Fe exchange equilibria between garnet and biotite, Ti concentration in quartz etc.). Mineral solid-

solutions record the P-T history of the rocks by continuous adjustment of the element partitioning between 

coexisting mineral phases, driven by changes in P-T conditions (Spear, 1993; Powell and Holland, 2008). 

The response and sensitivity of element exchange reactions to changes in temperature and pressure is 

determined from well-defined laboratory experiments or analytical data for rock samples where independent 

information on P-T conditions is available (Zhou et al., 1994; Dale et al., 2000; Worley and Powell, 2000). 
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These data are used to calibrate thermodynamic models that describe the mixing properties of the mineral 

solid-solution phases involved in the element partition reactions. Thermodynamic models can then be used to 

estimate the P-T conditions that natural rock samples have experienced. 

Inverse titrations involve the iterative adjustment of the bulk composition of the chemical system to 

match the calculated output properties with their given (experimental) counterparts (e.g., pH, pe, 

activities/fugacities of species in gas/fluid phases or in aqueous solution). Commonly, the exact amounts of 

titrants employed in the experiments to adjust some parameters such as pH are not reported in the 

publications, but only the measured output parameters (e.g. pH) are provided. For such cases, “nested” 

objective functions can be defined in GEMSFITS, and parameter optimization can be performed using 

experimental data such as measured mineral solubility as function of pH (as in the boehmite solubility 

example), or pH edges for adsorption of aqueous ions on solid surfaces. The gemsfit2 code then adjusts 

the amount of titrant through the nested inverse titration functions, until the computed equilibrium pH is in 

agreement with the measured pH at a prescribed precision. This option has to be treated carefully, because it 

could result in undesired changes in the ionic strength of aqueous solutions. 

In GEMSFITS, the experimental data are currently kept in a NoSQL database as local files within 

the project folder. The database contents can be exported to JSON text files for backup or further to be 

uploaded to a MongoDB server, if necessary. Maintenance of the database and editing data records can be 

straightforwardly performed through the gfshell2 graphical user interface. Compared to the SQL 

database that was used in the early prototype (Hingerl et al., 2014), the NoSQL database is much better 

suited for storing weakly structured data that describe samples with variable experimental conditions. In the 

NoSQL database, there is no need to know the data structure in advance before creating the database or even 

inserting new records (documents) into an existing database. The way in which the experiments are stored, 

handled and selected in GEMSFITS permits to test the fitting of many data combinations from different 

experimental settings, as well as to remove experimental data sets or single outliers without the need to 

prepare different experimental data input files for each fitting task. The latter is often required by other 

fitting tools (Herbelin, 1999; Karamalidis and Dzombak, 2010; Kinniburgh and Cooper, 2011). 

A major advantage of GEMSFITS is that both standard statistical and Monte Carlo based methods 

are available for analysis of the regression results. Monte Carlo methods are essential if the documentation of 

the analytical errors of the experimental data in the original publications is unavailable, incomplete, or 
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lacking appropriate consideration of all sources of uncertainty. When using the Monte Carlo method, 

performing global optimization of large systems, or optimizing a large number of fitting parameters, the 

gemsfit2 code can take advantage of the parallelization, which substantially decreases the computing time 

required to complete a fitting task. 

For example, fitting the Ti-in-quartz solid-solution model required to optimize 3 parameters using 

the global algorithm (ISRES) with 20000 iterations. To complete this task, the program executed 3.2 times 

faster when parallelized on 4 processor threads compared to one thread (32 compared to 101 seconds). When 

fitting standard state properties of aqueous Al species (using 4 free parameters and one parameter 

constrained by the species-forming reaction) with a local algorithm (BOBYQA), the program needed 54 

iterations to converge and executed 3.4 times faster when parallelized on 4 processor threads compared to 

one thread (644 compared to 2220 seconds). The speedup gained from parallelization will become more 

important in large chemical systems, where the number of fitting parameters and number of experiments will 

dramatically increase. Producing internally consistent thermodynamic datasets for large chemical systems 

will involve simultaneous regression of many standard state Gibbs energies of species using thousands of 

experimental data points. This work will only be feasible when taking advantage of the code parallelization 

that GEMSFITS offers. 

The GEMSFITS codes will be made freely distributable and open-source, as part of the GEM 

Software collection (http://gems.web.psi.ch). This will give other scientists the opportunity to use the codes 

and the possibility to improve them further. Free (as ‘freedom’) software is of great importance in modern 

research communities where scientists share their knowledge in a way that others can build upon and use it 

freely in their research. 

 

7. Outlook 

All the new features described above make the GEMSFITS code package a general, flexible, efficient, and 

user-friendly practical tool for fitting any input parameters of geochemical-thermodynamic models. Future 

implementations will include extensions to fit the parameters of electrostatic sorption models and mineral 

dissolution/precipitation kinetic models that are part of the current development version of the GEMS3K 

codes. When completed, these models will be included into the release version of GEMS and made available 

to the scientific community. This will increase the range of applications of GEMSFITS to surface adsorption 
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studies and mineral-aqueous reaction kinetics. Furthermore, GEMSFITS will be extended to be capable of 

fitting parameters of all equation-of-state models that are implemented into the GEM-Selektor v.3 code. 

Another long-term goal is to create an experimental database server accessible online via web applications 

that would be updated and improved using the scientific expertise and resources of different participants. 

This data can then be easily selected and used with GEMSFITS for optimizing various models for a large 

number of applications in geochemistry, petrology, chemical engineering, and materials science. 
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