mzuriCh ETH Library

Guard Files: Stabbing and
Intersection Queries on Fat Spatial
Objects

Journal Article

Author(s):
Nievergelt, J.; Widmayer, P.

Publication date:
1993

Permanent link:
https://doi.org/10.3929/ethz-b-000099348

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
The Computer Journal 36(2), https://doi.org/10.1093/comjnl/36.2.107

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000099348
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1093/comjnl/36.2.107
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Guard Files: Stabbing and Intersection
Queries on Fat Spatial Objects

J. NIEVERGELT AND P. WIDMAYER
Informatik, ETH Zurich, CH-8092, Zurich, Switzerland

The design of spatial data structures has made great strides in recent years in response to the increasing

importance of applications such as CAD that require great efficiency in spatial database technology and

in computational geometry. The variety of spatial data structures and retrieval algorithms known suggests

that it is difficult or impossible to design general purpose structures that perform well across the entire

spectrum of objects to be stored and queries to be processed—generality comes at the cost of performance

and increased algorithm complexity. Thus simple algorithms that perform efficiently on a restricted class
of problems are clearly of interest.

The guard file is a new data structure, with its access and update algorithms, designed to answer
stabbing and intersection queries on a dynamic collection of spatial objects that satisfy a shape constraint.
The objects stored must be ‘fat’ in a technical sense, namely convex with an aspect ratio (width/length) > f,
where f is a constant characteristic of the class, 0 < f < 1. The collection of objects is pre-processed so
every object is attached to a cell or to some vertices (‘guards’) of a hierarchical grid that tessellates
space. The retrieval and update algorithms are simple and use standard data structures (radix tree). For
restricted classes of objects, such as aligned regular polygons, efficiency may be enhanced by designing
a suitable spatial grid tailored to the particular type of objects stored. We present examples, general
results that relate guard grids to the fatness f of objects, and experimental results for the 2-d case.
All the relevant concepts generalize readily to multi-dimensional space, though the theory becomes

more complicated.

Received June 1992, revised October 1992

1. SPATIAL DATA STRUCTURES: PROBLEMS
AND APPROACHES

The growing interest in spatial data structures stems
from the confluence of two trends. First, the push from
spatial data base technology (and its applications such
as geographic information systems) for structures that
efficiently support access based on geometric criteria,
such as intersection, containment, or nearest-neighbour-
properties—a variety of retrieval criteria that can be
lumped under the general term proximity queries. Second,
the pull from the thriving field of computational geo-
metry, where powerful novel techniques raise the level
of expectation about the performance to be expected.
Monographs [2], dedicated conferences [1, 3], and text-
books [9] document the recognized importance of spat-
ial data structures, and provide a survey of this
expanding field.

The variety of spatial data structures and retrieval
algorithms proposed suggests that it is difficult or
impossible to design general purpose structures that
perform well across the entire spectrum of objects to be
stored and queries to be processed—generality comes
at the cost of diminished performance and increased
algorithm complexity. Thus simple algorithms that per-
form efficiently on a restricted class of problems are
clearly of interest.

Spatial data structures organize space by superimpos-
ing a structure of cells of suitable shape and size. This

cell structure may be static (determined a priori, inde-
pendently of the specific objects to be stored) or dynamic
(modified by every object newly inserted or deleted); it
may be flat or hierarchical; cells may be disjoint or
overlapping—the variety of grids investigated is extens-
ive, since the choices listed above are not just binary,
but often admit intermediate forms and compromises.
As an example, consider the two extremes of cells that
may overlap in arbitrary ways, and disjoint cells that
partition space. In the first case, by packing every object
in its own cell we gain a simple relationship between
objects and cells at the expense of a random cell struc-
ture. In the second, with cells forming a regular tessella-
tion of space, we gain a simple cell structure at the
expense of a complicated relationship between objects
and cells. Thus intermediate forms are of interest, where
cells may overlap in restricted ways. Of these, hierarch-
ical grids are most common: Each level of the hierarchy
has its own space partition, and the relationship between
these partitions is easily computed. Such hierarchical
grids are the cell structures used in this paper.

All space partitioning schemes run into the same
fundamental problem: When storing spatial objects, as
opposed to points, we cannot easily assign an object in
a natural way to a unique cell. The larger the object, the
more cells it covers or intersects, the more difficult is the
task of assigning an object to a representative ‘home
cell’ that locates the object in space. By selecting a

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

108 J. NIEVERGELT AND P. WIDMAYER

representative point for each object, such as its centre of
gravity, and storing an object in the cell of its representat-
ive point, we solve only the easy part of the problem.
The harder task of retrieving an object in response to a
query is not addressed at all: Although an object may
cover the query cell and thus needs to be retrieved, there
is no evident relation between the query cell and the
object’s home cell.

Since the concept of a home cell, or equivalently, a
single grid point as an anchor, causes retrieval problems,
many spatial data structures avoid this concept by using
variations of a scheme we call ‘mark inhabited space’.
But each variation introduces other problems. By cutting
an object into sufficiently many pieces, for example, each
piece ends up in its natural, unique home cell, but
retrieval and processing of the entire object may become
more costly. The alternative of maintaining a pointer
from every cell touched by an object to the unique
description of this object makes for fast retrieval but
slow updating of many pointers. In general, any scheme
that replaces the concept of a single home cell or anchor
by some form of ‘mark inhabited space’ will make it
costly to move an object through space, even if the
object is rigid and has a simple description. Restricted
classes of objects, such as those definable by some small,
fixed set of parameters, yield to simpler solutions, such
as transforming an object into a point in parameter
space [6]. Many schemes, as well as combinations and
hybrids, have been described in the literature. We refer
to our surveys [7, 12] for an overview and classification.

This paper presents the guard file, a data structure
designed to answer stabbing and intersection queries on
a dynamic collection of spatial objects that satisfy a
shape constraint. The objects stored must be ‘fat’ in a
technical sense, namely convex with an aspect ratio
(width/length) > f, where f is a constant characteristic
of the class, 0 < f< 1. ‘Fatness’ makes these objects
sufficiently ‘spherical’ that we can salvage the idea of
assigning each one to a single home cell, or anchoring
it at a grid point, while retaining an efficiently computed
relationship between any query cell and the object’s
home cell or anchors. The collection of objects is pre-
processed so every object is attached to a cell or to a
small, constant number of vertices (‘guards’) of a hier-
archical grid that tessellates space. The retrieval and
update algorithms are simple and use standard data
structures (radix tree). For restricted classes of objects,
such as aligned regular polygons, efficiency may be
further enhanced by designing a suitable spatial grid
tailored to the particular type of objects stored. We
present examples, general results that relate guard grids
to the fatness f of objects, and experimental results for
the 2-d case. All the relevant concepts generalize readily
to multi-dimensional space, though the theory becomes
more complicated.

Are restricted classes of objects defined by properties
such as convex, fat’, or aligned (i.e. with sides parallel
to a given set of directions) relevant in practice? Although

such restricted objects do occur in a few applications
(aligned rectangles used in integrated-circuit design are
a prominent example), the vast majority of applications
(e.g. geographic information systems, computer-aided
design of machinery or of buildings) rely on objects of a
great diversity of shapes. What then, one may ask, is the
role of data structures that can handle only a few types
of spatial objects?

The answer is that, the more complicated and diverse
the objects to be processed, the more it pays to pack
them into simple containers: A comb-shaped object
might be packed into a rectangular bounding box, a
wheel with spokes into a circle, any object might be
data-compressed into its convex hull. The point of
packing irregularly-shaped objects into simple containers
is to process queries (such as intersection queries) in two
steps: First, against the collection of containers, thus
eliminating most containers; second, against the objects
in only those containers that survived the first filter.
Since containers are chosen to have simple shapes, this
two-step process greatly enhances efficiency. Of course
there are important spatial objects, such as roads or
rivers, that resist being squeezed efficiently into simple
containers. Nevertheless, the technique of packing com-
plicated objects into simple containers is widely-used
and motivates the search for data structures that handle
only restricted classes of objects, but do so very
efficiently.

2. STABBING AND INTERSECTION
QUERIES: CONCEPTS, TERMINOLOGY,
NOTATION

We consider a class of problems of which the following
is a typical simple example:

Given a collection D of circles embedded in the plane,
design data structures and corresponding retrieval and
update algorithms to efficiently answer stabbing queries
of the type: For an arbitrary query point q in the plane,
retrieve all circles d € D that overlap g, i.e. g€ d.

In general, we consider intersection query problems
of the following type.

Given:

A (usually oo) class S of spatial objects embedded in
k-dimensional Euclidean space R¥,

A finite subset D = S of data, i.e. objects d € D to be
stored; |D| = n,

A (usually o) class Q of query regions g = R,

Answer intersection queries:

For an arbitrary query q e Q, list all objects de D
with d nq # {}.

In the example above, S is the set of all circles
embedded in R, D a finite subset of n circles, and Q the
set of points in R? (the special case of point queries is
often called ‘stabbing queries’).

The solution sought consists of data structures and

THE COMPUTER JOURNAL,

Vor. 36, No.2, 1993

GUARD FILES: STABBING AND INTERSECTION QUERIES ON FAT SPATIAL OBJECTS 109

corresponding retrieval and update algorithms to answer
stabbing and intersection queries efficiently. These will
naturally depend on the object class S and query class
Q. The solution presented, the Guard File, works well
for homogeneous classes S consisting of simple objects
that meet a certain shape constraint. Let us clarify these
concepts:

® ‘Simple’ and ‘homogeneous’ are intuitive concepts.
For guard algorithms to be practical, objects must
have simple and similar descriptions. The theory can
be extended to inhomogeneous classes of complicated
objects, but at the cost of correspondingly more
complicated algorithms.

® The shape constraint states that the objects must be
‘fat’. Fatness can be defined in different ways, but
always implies two conditions: The objects are convex
with an aspect ratio (width/length) > f, where f is a
constant characteristic of the class, 0 < f < 1. Defini-
tions may differ in how width and length of a convex
object are defined. The exact definition of fatness
naturally influences the exact results one obtains, but
the latter are always of the same form: They relate
object fatness to the data structure needed to manage
the objects, and to the number of probes needed to
answer queries.

The solution sought also assumes that the data set D is
dynamic, subject to insertions and deletions of individual
data objects d—the usual case in applications. It follows
that the data structure and algorithms must be designed
based only on information about S, Q, and the fatness
parameter f, independently of D. Two other cases where
D is assumed static occur more rarely in practice:

1. If D can be inspected before the data structures are
designed (as in the case of perfect hashing, for
example), it may be possible to design algorithms of
superior performance that are tailored to the specific
data set D; the ideas behind the guard file may well
apply to this case.

2. If we build the data structures according to the
general scheme to be described, based merely on
knowledge of S and Q, then the assumption of no
insertions into D or deletions from D does not appear
to simplify the algorithms, as updating the radix tree
used by a guard algorithm is a rather simple opera-
tion anyway.

Guard algorithms are designed to process data efficiently
off disk, in that objects that are close are likely to be
stored in the same data bucket. Under reasonable
assumptions about the data distribution, most of the
objects that might cover a query point q (i.e., either
cover g or come so close that they must be inspected)
are stored in just a few data buckets that must be read
to process the query.

3. EXAMPLE: STABBING QUERIES FOR
CIRCLES AND ALIGNED REGULAR
HEXAGONS

The concept of ‘guard file’ is general enough to allow
different realizations adapted to distinct problems. The
key ideas are best explained by an example, rather than
a theory formulated in terms sufficiently general to
encompass all the cases we wish to include. We will
continue with the introductory example of storing a
collection D of circles embedded in the plane so as to
efficiently answer stabbing queries. But the explanation
turns out to be simpler if we begin by approximating a
circle by an aligned regular hexagon, i.e. by a hexagon
with sides parallel to the boundaries of a given grid of
triangular cells. Circles are harder to deal with than
hexagons because of a technical difficulty soon to be
encountered. We develop these ideas in three steps:

1. A grid of fixed size illustrates the concepts of cells
and guards, and their functions.

2. A hierarchical grid is used to illustrate a complete
guard algorithm.

3. Various solutions to the difficulty posed by circles
illustrate the flexibility inherent in guard algorithms.

3.1. A cell and its guards

Given an equilateral triangle T; in the plane, let Sg be
the set of regular hexagons aligned with T, i.e. every
side of every hexagon is parallel to some side of T;. Let
the equilateral triangle T;, shown in the figure below,
be the ‘centre one-fourth’ of T, and assume initially that
the query set Q is the set of points interior to T;.
Figure 1 shows 5 hexagons d,, d, d,, d; and d, from
the data set Dg = S¢, and a query point g. We call T;
the ‘cell of ¢, a concept to be refined later when
considering hierarchical grids.

None of the hexagons happens to cover the query
point ¢, but d, and d, come close, in the sense of
intersecting T, = cell(q). Our example involves point
queries for simplicity’s sake, but the relevant concepts
generalize directly to region queries g, where cells(q)
denotes the set of cells intersected by q. We call an object
d e D a ‘candidate’ w.r.t. a (point- or region-) query g if
it intersects cell[s](q). C or C(q) denotes the cell or cells
intersected by a query q.

The guard file is designed to quickly recognize candid-
ate objects and filter out non-candidates. The decision
whether a candidate actually intersects the query g is
left to a routine specific to the object class S and the
query class Q. For the purpose of this paper, any query
q is identified with the cell[s] C(q) intersected by g, and
processing ends when the set of candidates has been by
identified.

In Figure 1, neither d, nor d; nor d, is a candidate,
but we can still make a useful distinction between them.
We call d5 and d, ‘suspect’ because if they were slightly
larger, as are d, and d,, they might intersect cell(q), and
thus turn into candidates, without any ‘topological’

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

110 J. NIEVERGELT AND P. WIDMAYER

FIGURE 1. Candidate objects d, and d,, suspects d; and d,, and non-suspect d,.

change in the sense of covering any new guards of cell(g),
i.e. the vertices of T, and T;. On the other hand, d, is
not suspect: If we enlarge d, to intersect cell(q) it will
bump into a vertex, i.e. a guard. The guard file works
on the principle that only candidates and suspects need
be examined: It attacks the problem of efficiently selecting
candidates and suspects from the typically much larger
set D, and filtering out non-suspects without wasting
any time on them. The intuitive idea behind the guards
approach is to distinguish objects that are guaranteed
to be small from those that are potentially large, and to
treat the two types separately. The reason is that we
wish to locate, or anchor, a data object in that region
of space where its centre lies, and from this point of view
small objects are much simpler to locate than large
objects:

® For a small object such as d, to be a candidate, i.e.
intersect cell(q), it must have its centre in cell(g) or in
its immediate vicinity.

® A large object, on the other hand, may have its centre
arbitarily far away. In order to avoid searching the
entire space, we aim to ensure that any large object
that intersects cell(q), such as d;, ‘gets caught’ by
‘guards’ posted around C(q); in other words, any
large object that escapes ¢’s guards cannot possibly
cover q. If this condition is met, we only have to
inspect the objects caught by g¢’s guards.

Let the vertices of T, and those of T, be the 6 guards of
T, = cell(q), and partition the hexagons in D into two
classes:

® the guarded hexagons are those that overlap at least
one guard (e.g. d,, d; in Figure 1),

® the unguarded hexagons overlap no guards (e.g.
do, d,, dy).

Observe the following elementary geometric fact, the
‘guard lemma’, stated in two equivalent ways:

1. If hexagon d intersects Ty, then d is either guarded,
or is an unguarded hexagon with its centre in Tj.

2. An unguarded hexagon d with its centre outside T,
cannot intersect T;.
This geometric fact serves as a filter for excluding

parts of the data set D from inspection. In order to

answer the stabbing query for any g in T, = cell(q), we
must inspect all guarded hexagons, but only those
unguarded hexagons whose centre is in one of 4 cells
whose union is the circumscribed triangle Ty: namely,
cell(q) and its 3 adjacent cells.

3.2. Hierarchical grids

The grid used above, consisting of triangles T, and T,
shows how the guards of a cell serve to exclude from
inspection data objects that cannot possibly be candid-
ates or suspects. In designing an algorithm for rapid
retrieval of the candidate hexagons for any query g in
some query set Q, we use this idea at varying levels of
granularity and introduce space tessellations consisting
of an arbitrary number of cells, not just 4 as in the
example above. With a slight change of assumptions,
consider the triangle Ty to be our universe in the sense
that S is the set of all hexagons with centre in Tj, and
Q is the set of interior points of T,. We introduce a
hierarchical triangular tessellation of T, as illustrated
in the figure below.

T, is the only cell at level 0, or 0-cell; its 3 vertices are
called ‘level 0 guards’. We partition T, into 4=4'
triangles Ty, Toy, Toa, Tp; shown at left, called cells at
level 1, or 1-cells; their vertices introduce 3 new level 1
guards. Proceeding recursively, we obtain 4% new cells
at level 2, called 2-cells, which introduce 9 level 2 guards.
This recursive partition defines a radix-4 tree with T
at the root, 4 children Ty, Ty, To,, Tos of the first
generation, and so on, down to some depth or height H
which determines the desired resolution of partitioning
the universe into smallest cells. For an arbitrary point

FIGURE 2. The top levels of a hierarchical triangular tessellation
of Ty.

THE COMPUTER JOURNAL,

VoLr. 36, No.2, 1993

GUARD FILES: STABBING AND INTERSECTION QUERIES ON FAT SPATIAL OBJECTS 111

q, let cell,(q) denote the cell at level h, or h-cell, that
contains ¢. In particular, celly(q) is the finest cell con-
taining ¢, and celly(q) = Ty is the coarsest cell. Figure 3
shows a typical node of the radix tree and its 4 children;
the node corresponding to the central cell introduces 3
new guard points.

In considering how to organize the data set D for
rapid retrieval of the candidate and suspect hexagons
for any query g in T;,, we choose a different scheme for
guarded and unguarded hexagons.

1. Each unguarded hexagon is uniquely associated with
the finest cell of its centre point p, celly(p), and every
H-cell has a data bucket to store all its unguarded
hexagons. Given a query ¢, say by its coordinates
(x,y), a simple and rapid computation yields the
unique identifier of celly(q), from where a pointer
leads directly to its bucket.

2. Each guarded hexagon is associated with some
guard[s]. Whereas an unguarded hexagon is naturally
associated with a unique cell, a guarded hexagon may
cover any number of guards and thus is not readily
associated with any one guard. If every guard points
to every hexagon that covers it, such unbounded
multiple references introduce redundancy that leads
to inefficient update algorithms. A simple rule bounds
the number of multiple references by a small constant
(3 in this example): Among all the guards covered by
a hexagon d, let (all and only) the highest-level guards
point to d.

With this convention, a stabbing query for an arbitrary
point g is answered as follows:

1. Retrieve and examine all unguarded hexagons d with
centre in celly(q) and in the <3 adjacent H-cells.

2. Retrieve and examine all guarded hexagons d along
the path from root to celly(q). The ‘path’ consists of
exactly one cell at each level h, with the guards at its
3 vertices.

The discussion so far ignores a technical detail: How to
define the meaning of ‘a point p lies in cell ¢’ in such a
way that every point of Ty belongs to a unique cell at
given level h, a problem that arises only for points p on

A V ALevel et

FIGURE 3. Hierarchical triangular tessellation represented as a
radix 4 tree.

cell boundaries. Everything can be made to work even
if we fail to disambiguate the cell membership of bound-
ary points: For example, by storing an unguarded hexa-
gon whose centre lies on a boundary in both adjacent
cells, and by treating a query g on a cell boundary (but
not on a guard point) as if g belonged to both adjacent
cells. A query g on a guard point is easy to handle, since
only guarded circles can cover it, namely those on the
path from the root to the guard at q.

But it is both more efficient and more elegant to
disambiguate the cell membership of a boundary point.
Among many ways of doing so we suggest the following
scheme. Notice that at every level h, ‘upright triangles’
(with a vertex on top, oriented the same way as Tp)
alternate with ‘triangles that stand on their head’, like
T,. We define an upright triangle to be a closed point
set, i.e. to contain the points on its boundary; whereas
a triangle that stands on its head is open and contains
only the points in its interior. This takes care of all
points except guard points, which are vertices of up to
three upright triangles. It is unnecessary to disambiguate
the cell-membership of vertices, as any hexagon with its
centre on a vertex is guarded and thus gets stored with
some guards, not with any cell.

3.3. How to catch circles in a triangular grid

This completes the outline of a guard algorithm for
answering stabbing queries on aligned regular hexagons
embedded in the plane. In considering the similar
example where S is the set of circles we run into a tricky
problem: Almost the entire argument used for hexagons
carries over, except for one crucial detail. The key ‘guard
lemma’, rephrased in terms of circles rather than hexa-
gons, reads: “Observe the following elementary geomet-
ric fact stated in two equivalent ways:

1. If circle d intersects T;, then d is either a guarded
circle or an unguarded circle with its centre in Tj,.

2. An unguarded circle d with its centre outside Ty
cannot intersect T,.”

But unfortunately in this form it is wrong! There are
unguarded circles, such as d, in Figure 4, with centre
(slightly) outside T that intersect cell(q)—just barely!

From the point of view of developing a theory of
guard algorithms, this example of ‘it almost works, but
not quite’ is not a big hurdle, as we can readily think of
ways to catch the few wayward unguarded circles such
as d, that sneak into cell(q) from a distance:

1. A brute-force fix—general, simple, costly. We recog-
nize that it is insufficient to inspect the unguarded
circles in cell(q) and its 3 adjacent cells. Rather, we
must widen the protective rim around g to include 6
cells at distance 2 from cell(q), labelled 2 in the figure
below, and further described in the section where we
analyze triangular grids. Anticipating the terminology
of section 4, this brute-force solution protects cell(q)
by a cell-disk of radius ro =2 with ¢(2) =10 cells to

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

112 J. NIEVERGELT AND P. WIDMAYER

FIGURE 4. The algorithm developed for hexagons fails for circles:
unguarded circle d, with centre outside T, nevertheless intersects T;.

FIGURE 5. T, = cell(q) with a protective cell-disk of radius 2.

be inspected, and a guard-disk of radius rg =1 with
g(1)=6 guards to be inspected at each level of the
hierarchy.

2. ‘Haloing’. We recognize that a ‘wayward’ unguarded
circle such as d, can miss a guard by at most some
small quantity ¢ that depends on the cell size. By
redefining a circle d € D, of radius r, to be ‘guarded’
if its slightly expanded (‘haloed’) circle d' of radius
r + ¢ covers a guard, the wayward unguarded circles
become guarded by definition. The protective rim
around g required to catch unguarded circles remains
at a total of four cells, but we must inspect a (slightly)
larger number of guarded circles that are not part of
the answer.

3. A speculative issue, raised only as an illustration of
the flexibility inherent in guard algorithms. Plausibly,
but without justification, we have assumed that the
cell T; is guarded by the 6 vertices of T, and T;. But
the main purpose of guards is to make the guard
lemma true: ‘An unguarded circle d with its centre
outside T, cannot intersect T,’, and for this there
might be better ways of posting guards than insisting
on cell vertices! E.g., by retaining as guards the 3
vertices of Ty, but moving the other 3 guards slightly
inwards from the vertices of Ty, the newly posted 6
guards will protect cell T; perfectly. The trouble with
this particular solution is apparent when considering
hierarchical grids, where we must protect not only
T;, but also its sibling cells. Then we notice that a
single guard at a vertex of T, protects up to 6 cells

reasonably well, whereas a guard ‘shifted inwards’ to
better protect T; does a poor job of protecting T;’s
neighbours and might have to be supplemented with
additional guards.

So far we have introduced, by example, most of the
concepts and techniques needed to design a guard file
and its access algorithms. Notice that an algorithm
designer retains much freedom in designing grids, guards,
and protective rims tailored to exploit geometric features
of the class S of objects to be stored. Thus guard
algorithms constitute a rather general approach to object
retrieval. They rely on the presence of only one property
that objects must possess: They must be ‘fat’, so as to
guarantee that an object whose centre of gravity is far
away cannot sneak into a cell unobserved by the cell’s
guards.

4. HIERARCHICAL CELL AND GUARD
GRIDS

A variety of hierarchical grids may serve for posting
guards, and some grids are more efficient than others
for a specific class of objects to be stored. Next to the
triangular grid of Section 3, we consider two other useful
hierarchical grids: the well-known square grid used in
quad trees, and the hexagonal grid.

The structure of the hierarchical hexagonal grid differs
from the triangular and the square grid in that a cell at
level h is partitioned not only into whole cells at level
h+ 1, but rather into a combination of cells and parts
of cells. Since a cell at level h+ 1 may be shared by 3
cells at level h (may have 3 parents), the ‘hierarchy’ is
not a tree, but a directed acyclic graph (dag). This causes
no problems, since guard algorithms impose only two
important requirements on a hierarchical grid:

1. aregular structure that permits efficient address com-
putation and thus a fast computation of the path to
be followed from the root of the dag to a leaf, and

2. at each level h, the h-cells tessellate the entire space.

As Figure 6 shows, a hierarchical grid defines a
sequence of refined regular tessellations of space into
cells, one tessellation per level h. When we emphasize
cells, we speak of cell grid. For a given cell grid there
may be several reasonable ways of posting guards, as

FIGURE 6. Two other hierarchical grids: Quad-tree and
hexagonal grid.

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

GUARD FILES: STABBING AND INTERSECTION QUERIES ON FAT SPATIAL OBJECTS 113

we discussed in Section 3.3, so we also need to define a
corresponding guard grid. In this paper we follow the
convention that the guards are precisely the vertices of
cells, and we may use two near-equivalent ways of
assigning a level to these guards:

1. a vertex of an h-cell has a guard at level h; this implies
that, since one and the same point in the plane may
be a vertex of cells of many different levels, it may
also have multiple guards of different levels; or

2. each vertex has exactly 1 guard, whose level is the
highest among all the cells of which it is a vertex.

In devising an algorithm to answer a stabbing query
for g, we set up different rules to catch the unguarded
objects and the guarded objects. For the unguarded
objects, it suffices to inspect the leaf cell;(q) and a
sufficiently wide protective rim of leaf cells in its vicinity.
For guarded objects, it is sufficient to inspect a carefully
chosen subset of all the guards, the ‘active guards’; at
each level h, the active guards are in the h-vicinity of
cell,(q). In order to characterize useful neighbourhoods
of an h-cell ¢, we define two types of distances among
cells within a given level h of the hierarchy: e-dist is based
on edge-adjacency, v-dist on vertex-adjacency.

Definition. Cell distances. Every cell is at distance 0
from itself. An h-cell ¢” is at distance i from h-cell ¢ if

1. ¢” shares an edge (in the case of e-dist) or a vertex (in
the case of v-dist) with an h-cell ¢’ at distance i — 1
from ¢, and

2. i is the smallest such integer.

For both e-dist and v-dist, Figure 7 shows rings of
equidistant cells in triangular, square, and hexagonal
grids.

The following definitions all come in two versions,

depending on whether we use the e-dist or the v-dist
metric. As a rule of thumb, e-dist defines useful neigh-
bourhoods for aligned objects, whose edges are parallel
to grid edges; whereas v-dist is more useful for arbit-
rary objects.

Definition. Cell-disk, guard-disk. The cell-disk of
radius r >0 around h-cell ¢ consists of all h-cells at
distance <r from c¢. The guard-disk of radius r>0
consists of all guards in ¢’s cell-disk of radius r.

Notation:

® ;. =radius of a cell-disk.

® ;. =radius of a guard-disk.

® ¢ or ¢(r)=#(cells in a cell-disk of radius r), usually
the number of cells to be inspected.

® ¢ or g(r)=#(guards in a guard-disk of radius r),
usually the number of guards to be inspected.

Figure 8 shows the values of ¢(1) and g(1) for the grids
and metrics we consider.

5. DEFINITION AND PROPERTIES OF FAT
OBJECTS

The property of objects being fat works to our benefit
for both guarded and unguarded objects: Intuitively, the
fatter an object is, the fewer guards and cells are required
to catch it. Whereas a long, thin object with its centre
far away can sneak through the grid of guards and
intersect cell,(q), a fat object that intersects cell,(q) and
has its centre far away must cover (and get caught by)
some high-level guard of cell,(q).

We capture the intuitive concept of ‘fatness’ by
insisting on two conditions necessary to make guard
algorithms work: The objects are convex with an aspect
ratio (width/length) > f, where f is a constant character-

: ﬂa

|2 ﬂ.

2 1
1 0
2 1
3 2
1 1
1 0
1 1
2 2

FIGURE 7. e-distances (top) and v-distances (bottom) in various grids. No difference for hexagonal grid.

THE COMPUTER JOURNAL,

Vor. 36, No.2, 1993

114 J. NIEVERGELT AND P. WIDMAYER

o1)=13, g(1)=12

o(1)=9, g(1)=16

a(1)=7, g(1)=24

FIGURE 8. Number of cells and guards in protective disks of radius 1 in various grids. For e-distances (top) and v-distances (bottom). No
difference for hexagonal grid.

istic of the class, and 0 < f < 1. There remains the issue
of defining ‘width’ and ‘length’. For objects aligned with
the grid (e.g. the hexagons of Section 3), it is natural to
restrict the directions in which width and length are
measured to a few directions characteristic of the grid.
Example: To store aligned rectangles in a square grid,
we would develop an algorithm that measures width
and length along the horizontal and vertical axes only,
and expect it to be more efficient than one based on a
definition that allows width and length to be measured
in any direction. But in this Section we consider convex
objects of arbitrary orientation, for which rotation-invari-
ant definitions of fatness are appropriate. The following
definitions may be of general interest: One is based on
the aspect ratio of enclosing rectangles, another on
fractional area [8], and the third on distances within
the object.

Definition. The r-fatness f,(d) of a convex object d is
the minimum aspect ratio width/length of a rectangle of
arbitrary orientation that tightly encloses d.

Examples. f,(circle) =f,(square) = 1;
fr(equilateral triangle) = /3/2 ~ .87.

Definition. The a-fatness f,(d) of a convex object d
is the ratio A(d)/A(c), where A(d) is the area covered by
d and A(c) is the area of the minimal enclosing disk ¢
that covers d.

Examples. f,(circle) = 1; f,(square) = 2/n ~ .64;
f+(equilateral triangle) = 3,/3/(4n) ~ 41.

We have chosen to study the consequences of the
technically most convenient concept, to be called cut-
fatness f,(d), presented in the following definitions and
illustrated in Figure 9.

Definition. A cut s of a convex object d at a straight

FIGURE 9. Centre-cut and reach of an object d w.r.t. a given
line L.

line L that intersects the interior of d is the intersection
of d with L.

A cut is a line segment that cuts the object into two
pieces. s denotes both the line segment and its length.

Definition. A centre-cut is a cut through the centre
of gravity of object d.

We are mainly interested in short centre-cuts, which
intuitively measure the ‘width’ of d.

Definition. The reach r of a convex object d w.r.t. a
centre-cut s is the maximum Euclidean distance of any
point p of d to the cut s: r = max, ., min, . dist(p, t).

Intuitively, the reach of an object is half its ‘length’, or
the extent to which it can penetrate into a cell if its
centre-cut s is held back at the cell boundary.

Definition. The cut-fatness f.(d)=min.s/2r of a
convex object d is half the minimum ratio of the length
of a centre-cut s and the reach r w.r.t. s.

Figure 10 shows that cut-fatness coincides with the
intuitive ratio ‘width’/length’ for symmetric objects.

Examples. f.(circle)=1; f.(equilateral triangle)=
1//3 ~.58; f.(regular p-gon) <f.(regular (p + 1)-gon).

For any notion of fatness considered we define:

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

GUARD FILES: STABBING AND INTERSECTION QUERIES ON FAT SPATIAL OBJECTS 115

L

FIGURE 10. A case where f.(d) = s/2r = ‘width’/‘length’.

Definition. The fatness f(S) of a set S of objects is
the smallest fatness of any object in S.

The fatness f(S) of a class of objects is used to determine
the size of the protective rim of cells and guards needed
to answer queries. The ‘cut-lemma’ illustrated in
Figure 11 establishes a quantitative relationship by
bounding the extent to which an object d can penetrate
into a cell in terms of d’s fatness f(d).

Cut Lemma. Given a convex object d, a cut s of d,
and a point p of d, such that p and d’s centre of gravity
are on opposite sides of s. Then

f(d)<s/2dist(p, s)

Proof. Let cs be the centre-cut of d parallel to s. By
convexity of d, cs is contained in the line segment
t=(t',t") whose endpoints t’, t” are the intersections of
the extended line of ¢s with the two lines L', L’ through
p and the endpoints s', s” of s. By the definition of fatness
and the similarity of the two triangles A(p,t’,t") and
A(p, s, s") we have:

or equivalently 2-dist(p, s)<s/f.(d)

2 f.(d) < cs/dist(p, cs) < t/dist(p, cs) < s/dist(p, s)

The inequality above holds both for the case shown in
Figure 11, where the distance from p to s involves an
endpoint s” of s, as well as when dist(p, s) is measured
by a segment orthogonal to s. Q.E.D.

6. FATNESS REQUIRED FOR VARIOUS
GRIDS

The cut-lemma readily yields results of the type: For a
given hierarchical grid and a class S of objects of fatness
f.(d), a protective cell- and guard-disk of radius r serves
to answer stabbing queries, and no smaller disk will do
in general. We illustrate this claim with typical results
together with the geometric arguments used to obtain
them. The grid metric used in this section is v-dist based
on vertex adjacency.

The following results are best-possible in the sense
that, for a given grid and protective disk, the stated
fatness bound cannot be improved. But there remains

FIGURE 11. Cut-lemma illustrated for the case where dist(p, s) is
measured at an endpoint s” of s.

plenty of room to change the rules of the game and
thereby hope to improve the efficiency of guarding
objects, measured in the number of cells and guards to
be inspected. For example, by using the haloing tech-
nique described in Section 3.3, or by studying other cell
configurations and guard placements than the cell- and
guard-disks of radius r used below.

6.1. Square grid

THEOREM. (a) A protective disk of radius 1 guards
objects of any class S of fatness f,(S) > 1/2. (b) In general,
objects leaner than 1/2 (i.e. of fatness f.(d) < 1/2) cannot
be thus guarded.

Proof:

(a) As shown in Figure 12, assume that the centre of
gravity g of an object d is outside the 3 x 3 cells, and
one of the 4 x 4 guards lies in d, yet d penetrates
into the centre cell. Let p be a point of d in celly(q).
Since d must pass between two adjacent guards,
there exists a cut s <1 (the grid unit). The distance
from p to s is at least 1. By the cut lemma, we get
fd)<1)2.

(b) Figure 12 also shows a class of objects of fatness
f.(d) < 1/2, but arbitrarily close to 1/2, that cannot be
guarded by a protective disk of radius 1. Q.ED.

Object classes of fatness f. > 1/2 that can be guarded by
a protective disk of radius 1 include circles and regular
p-gons, i.e. equilateral triangles, squares, etc.

By enlarging the protective rim to a disk of radius 2
and increasing the cost from c¢(1)=9, g(1)=16 to
c(2) =16, g(2) = 25 we halve the required fatness:

THEOREM. A protective disk of radius 2 guards
objects of any class S of fatness f.(S)>1/4. Objects
leaner than 1/4 cannot be thus guarded.

Proof. Same as above, except that ‘The distance
from p to s is at least 2, as Figure 13 shows.
6.2. Triangular grid

THEOREM. A protective disk of radius 1 guards
objects of any class S of fatness f.(S)>1//3~.58.
Leaner objects cannot be thus guarded.

FIGURE 12. Cell C penetrated at p by an unguarded object with
centre of gravity g outside the protective disk.

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

116 J. NIEVERGELT AND P. WIDMAYER

FIGURE 13. A protective disk of radius 2 guards objects of
fatness f.(S) > 1/4.

Proof. Similar to the square grid, but consider
Figure 14a. The distance between a point p in the cell C
to be guarded, and a cut s <1 (the grid unit) along the
perimeter is >(,/3)/2. Q.E.D.

Although a protective disk of radius 1 in a triangular
grid protects against fewer objects than in a square grid,
it suffices to guard circles and regular p-gons. Let us
compare the triangular and the square grid for storing
objects of a given class S. Depending on the fatness
£.(S), one or the other grid is more efficient, in terms of
the number of cells at level H and of guards at each
level that need to be inspected in a query. For
f:(S) = 1/{/3, the triangular grid needs only 12 guards
per level as against 16 for the square grid, whereas 13
as against 9 cells are needed on level H. For 1//3>
£.(S)=1/2, the square grid is better, since a protective
ring of radius 1 is insufficient in a triangular grid.

6.3. Hexagonal grid

THEOREM. A protective disk of radius 1 guards
objects of any class S of fatness f.(S)>1/2. Objects
leaner than 1/2 cannot be thus guarded.

Proof. Similar to the square grid, but consider
Figure 14b. The distance between a point p in the cell C
to be guarded, and a cut s <1 (the grid unit) along the
perimeter is >1. Q.E.D.

Compared with the square grid, the hexagonal grid uses
fewer cells (7 instead of 9), but 50% more guards (24
instead of 16). The comparison of grids in terms of guard
and cell efficiency immediately suggests the open prob-
lem of identifying optimal grids for various classes
of objects.

7. IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have experimented with two implementations of
guard files [11,5]. Peter Skrotzky implemented guard

FIGURE 14. Protective disks of radius 1 for (a) triangular and
(b) hexagonal grids, with critical objects.

algorithms for several grids and object classes to run on
the XYZ GeoBench [10], a programming environment
used to develop a program library for geometric compu-
tation. He emphasized tutorial algorithm animation to
explain object insertion and retrieval. Nguyen Viet Hai
wrote a stand-alone C program for square grids, with
aligned rectangles both as data objects and range queries.
He emphasized performance measurements using both
random and actual geographic data. His experiments
show how various performance criteria can be improved
by adapting the guard file to known statistical para-
meters of the data. An encouraging outcome of these
experiments is that the very first guard file implementa-
tion performed about as well as a highly optimized R-file
program [4].

Acknowledgement

Thanks to Peter Skrotzky and Nguyen Viet Hai for
implementing test versions of guard files, to Peter Schorn
and Oliver Giuinther for advice, and to the Swiss National
Science Foundation for financial support.

REFERENCES

[1] Buchman, Gunther, Smith, Wang (eds.), Design and
implementation of large spatial databases, Proc. Ist
Symp. SSD 89, Santa Barbara; Lecture Notes in CS 409,
Springer Verlag (1989).

[2] O. Gunther, Efficient structures for geometric data man-
agement, Lecture Notes in CS 337, Springer Verlag (1988).

[3] O. Gunther and H.-J. Schek, Advances in spatial data
bases, Proc. 2nd Symp. SSD 91, Zurich; Lecture Notes
in CS 525, Springer Verlag (1991).

[4] A. Hutflesz, H.-W. Six and P. Widmayer, The R-file: An
efficient access structure for proximity queries, Proc. 6th
Intnl. Conf. on Data Engineering, pp. 372-379 (1990).

[5] V.H. Nguyen, Implementation and performance of guard
files, in preparation.

[6] J. Nievergelt and K. H. Hinrichs, Storage and access
structures for geometric data bases. Proc. Kyoto 85
Intern. Conf. on Foundations of Data Structures (eds.
Ghosh et al.), pp. 441-455, Plenum Press, NY (1987).

[7]1 J. Nievergelt, 7 + 2 criteria for assessing and comparing
spatial data structures, pp. 3-27 in [1].

[8] M. Overmars, personal communication.

[9] H. Samet, The design and analysis of spatial data struc-
tures, and Applications of spatial data structures, Addison-
Wesley (1989).

[10] P. Schorn, Implementing the XYZ GeoBench: A pro-
gramming environment for geometric algorithms, in
H. Bieri and H. Noltemeier (eds.), Computational geo-
metry: methods, algorithms and applications. Proc.
CG'91, International Workshop on Computational Geo-
metry, Bern, March 1991, Springer LNCS, pp. 187-202
(1991).

[11] P.Skrotzky, Implementing guard algorithms on the XYZ
GeoBench, Diploma thesis, ETH Zurich (September
1992).

[12] P. Widmayer, Datenstrukturen fiir Geodatenbanken,
pp. 317-361 in G. Vossen, K. U. Witt (eds.), Entwicklungs-
tendenzen bei Datenbanksystemen, Oldenbourg (1991).

THE COMPUTER JOURNAL,

VoL. 36, No.2, 1993

