
Diss. ETH No. 22111

Convex Optimization with
Random Pursuit

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by

Sebastian Urban Stich

MSc ETH Mathematics
born on 21 May 1985

citizen of Kleinlützel SO, Switzerland

accepted on the recommendation of

Prof. Dr. Bernd Gärtner, examiner
Prof. Dr. Yurii Nesterov, co-examiner
Prof. Dr. Emo Welzl, co-examiner

Dr. Christian L. Müller, co-examiner

2014

Abstract

Optimization problems are ubiquitous in science and engineering. In
this thesis, we study unconstrained black-box optimization problems
that can only be accessed by an oracle that returns the function value
at a query point. The theory of convex optimization problems is well-
developed and such problems are typically solved with gradient-based
methods. For non-convex problems, there is no unifying theoretical
treatment and one has to rely on, typically gradient-free, search heuris-
tics. Here, we analyze gradient-free optimization algorithms on convex
functions.

In the first part of this thesis, we study Random Pursuit algorithms.
These are iterative search schemes, where each iteration consists of two
steps: (i) the generation of a (random) search direction and (ii) per-
forming a step along this direction. We present a general framework
to study such algorithms and prove convergence on smooth convex and
strongly convex functions. The convergence rates depend on a sufficient
decrease condition that measures the quality of the generated steps.
This condition is for instance met by schemes that use a line search to
generate the steps. For line search algorithms, we extend the conver-
gence analysis to functions that are not necessarily everywhere strongly
convex, but only at the optimum. Line search algorithms do not need
any problem specific parameterization as input and are invariant un-
der strictly monotone transformations of the objective functions. They
thus enjoy identical convergence behavior on a wider function class. We
discuss several kinds of random search directions and provide estimates
for the expected convergence rates.

In the second part, we present three, at first sight seemingly un-
related, optimization algorithms that can be analyzed in the Random
Pursuit framework. The examples comprise (i) solving linear systems
with Kaczmarz’ method and (ii) Hessian learning with Leventhal and

iii

iv

Lewis’ estimation algorithm. Both these algorithms are instances of
Random Pursuit algorithms with exact line search. We show this by
demonstrating that these algorithms do only require the computation
of scalar products, which in turn (iii) amounts to special Random Pur-
suit algorithms in Hilbert spaces, that have a simple geometric inter-
pretation. We provide exact rates for the expected convergence. The
Hessian learning scheme has a specific application: it can be used to
estimate the underlying metric of an optimization problem which helps
to accelerate the subsequent optimization with Random Pursuit. We do
not only derive precise convergence rates, we also show that a specific
implementation of this combined scheme converges equally fast on all
quadratic functions, i.e. it is affine invariant.

In the last chapter, we review Nesterov’s gradient-based accelerated
random search scheme. Each iteration of this scheme comprises two
steps: (i) a simple search step like the one in the Random Pursuit algo-
rithms and (ii) a model building step that allows for acceleration. We
show that the step (i) can harmlessly be replaced with a line search,
whereas the situation in step (ii) is more delicate. We cannot show that
implementing step (ii) with a line search still yields acceleration, how-
ever, the resulting scheme does not diverge and converges on quadratic
functions at least as fast as the simple Random Pursuit—with the pos-
sibility to accelerate.

Zusammenfassung

Optimierungsprobleme sind allgegenwärtig in der Wissenschaft und der
Technik. Wir betrachten Black-Box (schwarzer Kasten) Optimierung
ohne Nebenbedingungen. Bei solchen Problemen ist die Zielfunktion a
priori unbekannt, ihre Werte können aber für jedes fest gewählte Argu-
ment mit Hilfe eines Orakels in Erfahrung gebracht werden. Während
zum Lösen konvexer Optimierungsprobleme normalerweise gradienten-
basierte Suchverfahren zur Anwendung kommen, ist dieser Zugang nicht
sehr erfolgreich bei nichtkonvexen Problemen. Die Theorie solcher Pro-
bleme ist weniger gut verstanden und man muss auf, meist gradienten-
freie, heuristische Verfahren zurückreifen. In dieser Arbeit analysieren
wir gradientenfreie Suchverfahren auf konvexen Funktionen.

Im ersten Teil dieser Arbeit untersuchen wir eine bestimmte Klasse
von Verfahren, die wir “Zufallsjagd” (Random Pursuit) nennen. Dies
sind iterative Suchverfahren deren Iterationen aus zwei Schritten be-
stehen: (i) dem Auslosen einer (zufälligen) Suchrichtung und (ii) dem
Auswählen eines neuen Suchpunktes entlang dieser Richtung. Wir prä-
sentieren eine generelle Methode um solche Verfahren zu analysieren
und beweisen Konvergenz auf glatten konvexen und streng konvexen
Funktionen. Die Konvergenzrate hängt von der Effektivität der einzel-
nen Schritte ab, die wir mit Hilfe einer ausreichenden Abstiegsbedin-
gung (sufficient decrease) messen. Diese Bedingung wird zum Beispiel
von Suchpunkten erfüllt die mittels einer Liniensuche generiert werden.
Für Suchverfahren mit Liniensuche können wir die Konvergenzresulta-
te auf Funktionen ausweiten die nicht überall, sondern nur am Opti-
mum, streng konvex sind. Verfahren mit Liniensuche haben den Vorteil,
dass sie parameterfrei arbeiten und invariant sind gegenüber monotonen
Transformationen der Zielfunktion. D.h. sie weisen das gleiche Konver-
genzverhalten auch auf einer allgemeineren Klasse von Funktionen auf.
Wir diskutieren verschiedene Verteilungen von zufälligen Suchrichtun-

v

vi

gen und schätzen für jede Verteilung die erwartete Konvergenzrate ab.
Im zweiten Teil stellen wir drei Verfahren vor, die auf den ersten

Blick keinen gemeinsamen Bezug aufweisen. Wie zeigen aber, dass sie
alle zur Klasse der Zufallsjagdverfahren gehören und mit unserer Metho-
de analysiert werden können. Die Beispiele umfassen (i) das Lösen von
linearen Gleichungssystemen mit der Kaczmarz-Methode und (ii) das
Schätzen einer Hesse-Matrix nach einer Methode von Leventhal und Le-
wis. Beide Verfahren sind spezielle Anwendungen von Suchverfahren mit
exakter Liniensuche, deren Schritte durch die Werte von bestimmen Ska-
larprodukten eindeutig festgelegt sind und eine einfache geometrische
Interpretation erlauben. Als letztes Beispiel (iii) analysieren wir die-
ses spezielle Verfahren in allgemeinen Hilberträumen und leiten exakte
Konvergenzraten her. Das Verfahren zum Schätzen einer Hesse-Matrix
hat auch eine weitere konkrete Anwendung: es kann verwendet werden
um die intrinsische Metrik eines Optimierungsproblems zu schätzen.
Wird diese Schätzung bei der Wahl der Suchrichtungen berücksichtig,
kann dies die Konvergenz von Zufallsjagdverfahren beschleunigen. Wir
zeigen, dass eine bestimmte Implementierung dieses zweistufigen Ver-
fahrens auf allen quadratischen Funktionen gleich schnell konvergiert,
d.h. dieses Verfahren ist affin invariant.

Im letzten Kapitel diskutieren wir Nesterovs gradientenbasierte Be-
schleunigungstechnik für zufallsgesteuerte Suchverfahren. Jede Itera-
tion dieses Verfahrens besteht aus zwei Schritten: (i) einer einfachen
Suche nach einem besseren Suchpunkt, wie in den Zufallsjagdverfah-
ren, und (ii) der Aktualisierung einer Schätzung der Zielfunktion (Mo-
dell), welche die Grundlage bildet für die schnellere Konvergenz. Wir
zeigen, dass in Schritt (i) gefahrlos eine Liniensuche verwendet wer-
den kann, aber wir können dies im allgemeinen Fall nicht auch für
Schritt (ii) zeigen. Auf quadratischen Funktionen konvergiert das be-
schleunigte Verfahren mit Liniensuche mindestens gleich schnell wir die
einfachen Zufallsjagdverfahren—möglicherweise aber deutlich schneller.

Acknowledgements

First and foremost, I would like to express my gratitude to both my
advisers Christian Müller and Bernd Gärtner. I like to thank Christian
for his excellent support at the beginning of my PhD, uncountable many
encouraging discussions and his hospitality during my visit in New York;
and Bernd for his continuous support, encouragement, and guidance
when needed most. Without both of you, this would not not have been
possible!

My thanks go to Emo Welzl for letting me be part of his research
group and providing such a perfect working environment, and to Ivo
Sbalzarini for taking me on in the mosaic group in the early days. Many
group meetings and intensive discussions allowed me to gain diversified
insight in many interesting applications. I would like to thank Jonathan
Goodman for inviting me to visit the Courant Institute in New York.

My sincere thanks go to Yurii Nesterov for accepting to review my
thesis and his helpful remarks.

I gratefully acknowledge the funding received from the Computa-
tional Geometric Learning (CGL) project. CGL was funded by the
Future and Emerging Technologies unit of the European Commission
(EC) within the 7th Framework Programme for Research of the EC,
under contract No. 255827.

I would like to thank all the current and former gremos whom I had
the pleasure to work with: Yves Brise, Tobias Christ, Andrea Francke,
Heidi Gebauer, Anna Gundert, Timon Hertli, Michael Hoffmann, Mar-
tin Jaggi, Vincent Kusters, Robin Moser, Gabriel Nivasch, Andrea Sa-
low, Dominik Scheder, Marek Sulovský, May Szedlák, Antonis Thomas,
Hemant Tyagi, Uli Wagner, and Manuel Wettstein. I would also like to
thank all the members of the mosaic group, especially Omar Awile and
Janick Cardinale for their help and hospitality, Grégory Paul, Rajesh
Ramaswamy and Sylvain Reboux for their expertise.

vii

viii

I like to thank all other colleagues whom I had the pleasure to meet
at a conference or workshop—or much simpler: on the same floor in
CAB—and whom I had the opportunity to get to know better. In
particular, I am also grateful to my office mates: long-term companion
Timon, Manuel, and the long-term guests Zuzana Safernová and Arnau
Padrol. I also shared the pleasure to work together with Martin and
Hemant on some Machine Learning problems that did not find their
way into this thesis.

I am grateful to my family; to my girlfriend Eva; and to my best
friends for all their support and the great time. In particular, I like
to mention my frequent teammates Daniel and Marco for not getting
desperate when loosing once more against Christian and “Schiltenpulli”
Reto; as well as Avanti, Buzz, Frostie, Geno, Hathi, Idefix, Onari, Nils-
son, Piano, and Zippo for the epic battles of elements and all other
adventures.

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

1 Introduction 1
1.1 Black-Box Optimization 1

1.1.1 Convex Optimization 2
1.1.2 Outside the Box 3
1.1.3 Towards Theory 4

1.2 Random Pursuit Framework 5
1.2.1 Previous Work 8

1.3 Contents and Contributions 8

2 Background 11
2.1 Methods for Optimization 11

2.1.1 Global Optimization 12
Lipschitzian Optimization 12

2.1.2 Convex Optimization with Derivatives 13
Nonsmooth Functions 13
Smooth Functions 14

2.1.3 Convex Optimization without Derivatives 15
Gradient-Based Methods 15
Gradient-Free Methods 16
Variable Metric Methods 17

2.2 Complexity . 18
2.2.1 Algorithmic Schemes and Solutions 18
2.2.2 Complexity of Convex Problems 19

ix

x Contents

First-Order Oracles 19
Zeroth-Order Oracles 20

2.3 The Components of Search Schemes 22
2.3.1 Step Size . 22
2.3.2 Search Directions 24
2.3.3 Accelerated Schemes 25
2.3.4 Constraints and Non-Smooth Functions 28
2.3.5 Randomization as a Design Principle 29

2.4 Evolution Strategies . 30
2.4.1 Step Size Adaptation 31
2.4.2 Covariance Estimation 33

2.5 Notation and Definitions 33
2.5.1 Vector Spaces, Norms and Eigenvalues 33
2.5.2 Condition Number 34
2.5.3 Quadratic Norms 35
2.5.4 Function Classes and Quadratic Bounds 35
2.5.5 Probability Distributions 37

2.6 Benchmark Functions 38

3 Convergence of Local Search 39
3.1 Local Search with Sufficient Decrease 41
3.2 Smooth Convex Functions 42
3.3 Convergence in Expectation 44
3.4 Line Search with Sufficient Decrease 47
3.5 Improvements for Line Search Oracle 49

3.5.1 One Step Progress 49
3.5.2 Improved Results 50

3.6 Two Concentration Bounds 52
3.6.1 Linear Convergence 53
3.6.2 Small Deviation 54

4 Random Pursuit 55
4.1 Line Search . 57

4.1.1 Bisection . 59
4.1.2 Gradient Oracles 59
4.1.3 Special Case: Quadratic Functions 60
4.1.4 One-Fifth Success Rule 60

4.2 Search Directions . 62
4.2.1 Deterministic Search Directions 62
4.2.2 Towards Random Search Directions 63

Contents xi

4.2.3 Spherical and Elliptical Distributions 64

4.2.4 Discrete Distributions 66

4.2.5 Rank-One Matrices 67

4.2.6 Sampling from Random Sets 68

4.3 Discussion . 70

4.3.1 Summary of Selected Results 70

Simple vs. Improved Bounds 70

The Exact Convergence Factor 71

4.3.2 Viewed from a Different Angle 72

5 Applications of Random Pursuit 75

5.1 Random Pursuit in a Hilbert Space 77

5.1.1 Random Pursuit on the Reals 78

5.1.2 Random Pursuit on Symmetric Matrices 78

5.2 Learning the Hessian . 81

5.2.1 On the Complexity of Hessian Learning 83

5.2.2 Affine Invariant Hessian Estimation 84

5.2.3 A Note on General Convex Functions 85

5.2.4 Example and Implementations 85

Unconstrained 86

Rejection Sampling 87

Projection Step 88

5.3 Kaczmarz’ Method . 88

6 Accelerated Random Search 91

6.1 Summary of the Results 92

6.1.1 Gradient Oracles 93

6.1.2 Convergence of SARP 94

6.2 Numerical Demonstration 97

Benchmark Functions 97

Algorithmic Schemes 97

Discussion of the Results 99

6.3 Estimate Sequence Method 100

6.3.1 Facts . 100

6.3.2 Probabilistic Construction 102

6.4 Acceleration with Gradient Oracles 103

6.4.1 Convergence of Two SARP Instances 105

7 Conclusion 107

xii Contents

A Tools and Lemmas 111
A.1 Selected Random Variables 111

A.1.1 Normal Random Variables 111
A.1.2 Products of Quadratic Forms 111
A.1.3 Ratios of Quadratic Forms 113
A.1.4 Scaled Normal and Elliptical Vectors 114

A.2 Ratio of Quadratic Forms 115
A.3 Perturbation . 115
A.4 Slow Convergence with Additive Error 116

B Deferred Proofs 117
B.1 Convergence with Sufficient Decrease 117
B.2 Interpolation of Quadratic Functions 118
B.3 Typical Search Position 119
B.4 Weighted Sampling of a Discrete Set 119
B.5 Approximating the Covariance Matrix 120
B.6 Exact One Step Progress 120
B.7 Matrix Valued Random Pursuit 121
B.8 Bound on the Convergence Factor 123
B.9 Estimate Sequence Construction 123

Bibliography 125

Index 147

Chapter 1

Introduction

In this thesis we study the unconstrained optimization problem

f∗ := inf
x∈Rn

f(x) (OPT)

where f : Rn → R is a continuous function on an n-dimensional vector
space over R. We are given oracle access to f , that is we can query the
value of f at any point x ∈ Rn. Our goal is twofold: by querying the
values of f at multiple points we (i) aim to find an approximate solution
x′ ∈ Rn, that is a point x′ whose function value f(x′) is close to f∗, and
(ii) the number of function evaluations should be as small as possible.
For problem (OPT) the minimum need not be attained. Therefore we
will either have to enforce the existence of a minimum by additional
constraints, for instance by restricting the minimization to a bounded
domain, or, and this is what we do in the remainder of this chapter,
simply assume that at least one point x∗ ∈ Rn with f(x∗) = f∗ exists.

1.1 Black-Box Optimization

In the optimization problem (OPT) the objective function f is “hidden”:
we don’t have any a priori knowledge about f but we can observe its
values f(x) for any point x ∈ Rn of our choice. It behaves like a “black
box” and we thus refer to problem (OPT) as a black-box optimization
problem.

One might wonder where we actually encounter such black-box func-
tions. One unlimited source of black-box problems is obviously nature

1

2 Chapter 1. Introduction

itself. The functions could for instance measure energies (or “qualities”)
of some physical particle, chemical system or biological structure. How-
ever, we are often not interested in only finding extremal values of such
functions, but science is all about understanding the structure behind it.
In its purest form, the structure can be captured by a simple formula—
a law in physics—but in most applications from biology, chemistry or
physics one has to settle for a partial description of the energy function
(see e.g. [166] and references therein).

The optimization problem (OPT) is more prominent in engineering.
There the primary goal is not to study the structure of the function,
but to find the best (or a suitably good) solution. For a typical en-
gineering task it is certainly plausible to assume that we can indeed
evaluate the objective function f for a large number of search points,
in contrast to the black-box functions from nature. Thus we can design
algorithms that try to find an approximate solution to problem (OPT)
by repeatedly evaluating the function f at various inputs points.

Before studying the design of specific schemes we must emphasize
at this point that there cannot be one universal algorithm that ap-
proximates all optimization problems (OPT) in reasonable time. This
follows for instance from the “no free lunch theorem” of Wolpert and
Macready [218, 256, 257]. Thus, for every algorithmic scheme one should
also specify a certain class of problems, i.e. a set of functions with well-
specified properties, on which the scheme can (i.e. is intended to) be
applied.

1.1.1 Convex Optimization

Some of the most important problem classes are convex problems. Con-
vex functions exhibit a very strong global structure: for every segment,
the value of the function at the segment midpoint does not exceed the
mean of the values at the end of the segment.1 This property espe-
cially implies that every local solution2 is also a global solution of prob-
lem (OPT).

The development of optimization algorithms that only use function
values dates back to the 1950’s [33, 37]. However, the interest in these
simple schemes dropped rapidly in the 1970’s. The reason is simple: the
special structure of convex problems allows for very efficient optimiza-

1A function f : Rn → R is convex if f
x+y

2


≤ f(x)+f(y)

2
for all x,y ∈ Rn. This

is equivalent to f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y) for all x,y ∈ Rn and t ∈ [0, 1].
2A point y ∈ Rn such that there is an ϵ > 0 with f(y) ≤ f(x) for all ∥x− y∥ ≤ ϵ.

1.1. Black-Box Optimization 3

tion algorithms if in addition to the function values also gradient vectors
(or subgradients for non-smooth functions) are available [178]. This as-
sumption is well-justified for many applications: the development of the
fast differentiation technique in the 1980’s showed that if the objective
function is explicitly given by a sequence of differentiable operations
(say, a computer program that computes the function values) one can
also write down an (efficient) program for computing the whole vector
of its partial derivatives [72, 131, 206]. Nowadays, the theory of convex
optimization is well-understood [34, 178, 181, 197] but still an active
field of research. We will review a few important results in Section 2.1.

From an efficiency point of view it makes in general no sense to
neglect the gradient information if it is available [44, 184, 239]. How-
ever, it was noted in [44] that “computing the derivative is the great-
est single source of errors” in many programs, thus it can make sense
to trade computation-time versus the time it takes to write a pro-
gram that computes the gradient. Among the algorithms that only
use function values we distinguish two classes: gradient-based algo-
rithms (see e.g. [184]) that rely on an approximation of gradient infor-
mation by e.g. finite-differences, and gradient-free or direct algorithms
(see e.g. [106, 175, 243]) that neither compute nor approximate the gra-
dient explicitly and can even be applied on problems where no gradients
exist.

1.1.2 Outside the Box

We now leave the convex world and risk a glimpse on non-convex opti-
mization problems. Gradient-based schemes struggle on functions with
many local optima, as they get often stuck in local minima and fail to
find a global solution. However, gradient-free schemes can show good
performance when applied to practical problems—at least empirically.
But strong theoretical results have typically still not been attained.

Simple schemes for non-convex problems have been around since the
early days (see e.g. [159, 169, 207, 208, 220]). The advances of modern
computers made it possible to implement more advanced schemes and
attack various interesting problems. Starting in the 1990’s, these in-
cludes applications in engineering design, circuit design, medical image
registration, dynamic pricing (see [44]), molecular geometry (see [166]),
error analysis of Gaussian elimination [103], parameter tuning of non-
linear optimization methods [11], quantum control [35], and parameter
estimation in systems biology networks [241].

4 Chapter 1. Introduction

Just to name one exemplary scheme, we would like to point out the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [89, 93–
95]. This scheme shows excellent performance on benchmark prob-
lems [92, 148, 149], and has proven its efficiency also in several ap-
plications (see e.g. [90]). Together with highly related schemes it forms
the state of the art in the field.

Above we have seen that there is a vast area of black-box optimiza-
tion problems that have been successfully tackled with schemes that only
query function values, but theory is lagging behind. However, there is
no clear mathematical description of the function classes on which such
schemes perform well. Practitioners sometimes claim—or observe—that
their schemes work well for so-called “real-world problems”. This ob-
scure term does certainly not comprise all real “real-world” problems,
only the ones that can nowadays be handled to certain satisfaction.
To give the reader a rough picture, we would like to emphasize that
functions which are “close” to a convex function on a global scale (but
with maybe many local minima), and mixtures (convex combinations)
or noisy versions of such functions can be considered tractable to some
extent.

There have been advances towards descriptions of non-convex func-
tion classes [52, 109, 193, 198], or descriptions of complicated functions
by summary statistics [164, 166, 168]. Popular benchmark suites (cf. [92,
148]) assess the performance of such heuristics by comparing their per-
formance on “typical” problems. Thus from a far fetched view, those
examples could give a definition of what is considered to be a “real-
world problem”. Whilst there are certainly a lot of gaps to fill in this
area, we did not step into this direction.

1.1.3 Towards Theory

We have already mentioned that for any specific scheme, we can only
expect strong convergence results to hold for a subclass of problems.
Hence, it is desirable that this class at least comprises some easy prob-
lems, e.g. convex or sometimes also quasi-convex (functions with convex
level sets) problems. Therefore, mostly due to lack of alternatives, such
algorithmic schemes are studied not on the problem class that they have
been designed for, but only on convex functions. These theoretical re-
sults serve the purpose to show that the schemes do not just accidentally
work in rare circumstances, but that they actually are able to find the
minimum of simple convex functions with high probability. The results

1.2. Random Pursuit Framework 5

can be classified into two types: (i) pure convergence results, that show
that the schemes do not prematurely converge to suboptimal points or
even diverge, but typically these proofs come without concise bounds
on the running time. The second type is more practical: by proving (ii)
upper bounds on the convergence rate one immediately gets bounds on
the running time (to solve the problem up to a given accuracy), and one
has a qualitative measure to compare the efficiency of different schemes.
One should not forget that this approach can in general not measure
the ability of the schemes to generalize to non-convex problems.

There has been a lot of progress in this area lately (see e.g. [44]), but
let us just mention some exemplary results related to the aforementioned
CMA-ES. Some early predecessors of this scheme [112, 169, 207, 220]
have been studied on very simple example problems, like for instance lin-
ear functions or quadratic functions of the form f(x) = 1

2x
TAx. Setting

A = In, the n-dimensional identity matrix, yields the “sphere” func-
tion, other popular examples comprise of matrices with only two differ-
ent eigenvalues: the smallest appearing with multiplicity one (“cigar”),
the largest with multiplicity one (“discus” or “tablet”) or both with
equal multiplicities (“two-axes”) (see e.g. [93, 95]). This approach has
also been used for more advanced schemes (see e.g. [25, 27]). How-
ever, the arguments are often very “geometric” and don’t allow for
easy generalization to arbitrary convex functions. Some pure conver-
gence results (without rates) have for instance been recently derived
in [4, 12, 13, 116, 117]. In the past few years—almost in parallel to
this thesis—a promising approach has become popular: the framework
of “information-geometric optimization” tries to explain schemes like
CMA-ES [5, 26, 191], or variants termed Natural Evolution Strategies
(NES) from a more abstract point of view [20, 75, 219, 252, 253, 260]. In
a nutshell, these schemes can be interpreted as a version of Gradient De-
scent on an abstract space of probability distributions, see e.g. [26, 252].
This approach is very appealing, as it treats large classes of objective
functions. However, exact convergence rates are still not known.

1.2 Random Pursuit Framework

We started out to find a theoretical framework that would allow to derive
convergence rates for variants of CMA-ES or similar schemes. CMA-ES
is an iterative algorithm that works roughly speaking as follows. At each
iteration (i) it explores the neighborhood of a search point by sampling

6 Chapter 1. Introduction

trial points from a probability distribution and evaluating the objective
function at these points; (ii) a new search point is generated, for instance
simply as a weighted average of the trial points; and (iii) a new sampling
distribution is generated, for instance by updating the old distribution
and incorporating some acquired knowledge of the objective function.
We will provide a slightly more detailed description of this scheme later
in Chapter 2 below. Now we present the contents of this thesis.

We study a certain class of schemes for problem (OPT) that only
query function values. We assume that the schemes iteratively gener-
ate a sequence of search points. Each iteration comprises two simple
elementary primitives: (i) generation of a search direction and (ii) gen-
eration of a step, that is, picking the next search point from a line that
is defined by the old search point and the search direction. For a search
point x ∈ Rn, a search direction u ∈ Rn and a step size σ ∈ R, we can
express one step of such a scheme as

x+ = x+ σ · u ,

where x+ ∈ Rn denotes the next iterate that is reached after this step.
We refer to schemes that can be cast into this framework as Random
Pursuit algorithms. The name avers that the search direction in (i) can
be generated by simply drawing a random sample from a probability
distribution. For instance, the uniform distribution on the unit sphere
determines an unbiased “pure” random scheme, whereas a Dirac distri-
bution is equivalent to a deterministic scheme. We measure the quality
of the new search point x+ by means of a sufficient decrease condition
and derive convergence rates on smooth convex functions. The derived
rates depend on the sufficient decrease condition and on the full eigen-
value spectrum of the objective function. For example, for the quadratic
function f(x) = 1

2x
TAx from above, these are the eigenvalues of the ma-

trix A. This extends the classical literature [34, 182] which often only
considers the extremal eigenvalues.

Due to the generality of the assumptions, many existing black-box
optimization algorithms can be described in terms of the above two
primitives and therefore fit in our framework. For instance, we consider
examples where the directions u are sampled from the surface of a hy-
persphere (or -ellipsoid), and the steps σ are generated by gradient-free
(pure theoretical) exact line search or a (more practical) inexact line
search procedure. These sampling distributions are exactly the same
as used in CMA-ES and, as we will argue, the steps of CMA-ES can
be regarded as inexact line searches. Considering an exact line search

1.2. Random Pursuit Framework 7

oracle has the following benefit: the generated steps σ are independent
of the exact shape of the objective function along the search direction.

For the one-dimensional functions |x|2, |x| and even |x|1/2, an exact line
search oracle will always identify 0 as the unique optimum. This allows
generalization of the results to broader function classes.

We derive convergence rates for various fixed sampling distributions
for search directions u. Many successful optimization schemes, including
CMA-ES, comprise a mechanism to adapt the sampling distribution in
order to fit better to the optimization problem (OPT); allowing faster
convergence. We address this topic by reviewing a mechanism from
Leventhal and Lewis [141]. This scheme is different from the one in
CMA-ES, but it only uses function values, too. However, it cannot be
termed gradient-free as it relies on finite differences. This scheme not
only converges to the optimal sampling distribution on convex functions,
it is also interesting from a second point of view: it can be analyzed in
the Random Pursuit framework. The scheme samples in each iteration
search directions from a (simple) distribution on the unit sphere and
uses exact line search to generate the steps.

Leventhal and Lewis [141] use their scheme in the setting of opti-
mization: when facing an optimization problem (OPT) one should first
use this scheme to estimate a good sampling distribution, and then use
a Random Pursuit algorithm which samples from this estimated distri-
bution. If the problem requires it, one could also repeat these two steps.
By changing between estimation and search in every iteration, we ob-
tain an optimization algorithm that is conceptually similar to CMA-ES
and amenable to theoretical investigation.

As a further application, we remark that the problem of learning
the optimal sampling distribution is related to solving a linear system
of equations and illustrate that the randomized Kaczmarz method [122,
240] is also a Random Pursuit algorithm, even with exact line search.
We see that although the assumptions above—especially the exact line
search—sound restrictive at first sight, Random Pursuit schemes can
have many applications. However, they might only reveal themselves
after a closer look.

As a last topic, we investigate whether it is possible to accelerate
the Random Pursuit algorithms. For this, we have to consider schemes
whose iterations comprise steps that are slightly more involved than
the two primitives mentioned above. Recently, Nesterov [184, 185] has
shown that gradient-based randomized schemes can be substantially ac-
celerated. We investigate if gradient-free schemes, especially line search

8 Chapter 1. Introduction

based methods, can attain the same optimal rates.

1.2.1 Previous Work

As a start, we studied a specific example of a Random Pursuit algo-
rithm [239]. A scheme that samples search directions uniformly from
the unit sphere and determines the steps by a line search. The idea to
use an (exact) line search was inspired by a paper of Kleiner, Rahimi
and Jordan [134]. These authors present an algorithm called Random
Conic Pursuit (RCP) which accesses in each iteration a two-dimensional
optimization (or line search) oracle. This oracle makes the proofs quite
elegant and thus we tried to follow this idea.

Random Pursuit with isotropic sampling distribution, i.e. the uni-
form distribution on the unit sphere, has already been discussed in the
literature, it appears in the work of Mutseniyeks and Rastrigin [169]
and was analyzed later by Karmanov [126, 127, 264]. The decision to
present the results in this thesis with respect to the sufficient decrease
condition (instead of more direct assumptions on the line search, as we
did in [239]) was inspired by the presentation in [264]. We enhance Kar-
manov’s results in a number of ways: (i) we prove expected convergence
rates also under certain versions of approximate line search; and (ii) for
much more general sampling distributions.

As already mentioned, the scheme for learning an optimal sampling
distribution is due to Leventhal and Lewis [141]. The accelerated scheme
for gradient-based methods is due to Nesterov [184, 185] and we were
also influenced by a recent presentation by Lee and Sidford [140].

1.3 Contents and Contributions

Chapter 2. We provide background information to familiarize non-
expert readers with (convex) optimization. We present a review of com-
plexity results and important and popular algorithms, especially present
some schemes related to CMA-ES. We discuss general challenges that
algorithmic schemes are facing, allowing to appreciate the abstractions
and simplifications that were taken in the Random Pursuit framework.
Chapter 3. We provide convergence results for Random Pursuit algo-
rithms that respect a sufficient decrease condition. The results apply
to deterministic and randomized schemes. We strengthen the general
results for Random Pursuit algorithms that explicitly use a line search.

This chapter is based on [237, 239].

1.3. Contents and Contributions 9

Chapter 4. We detail specific algorithms that fit into the Random
Pursuit framework. We discuss exact and inexact line searches that
generate the steps and a variety of sampling distributions to generate
the search directions.

The examples are mostly extracted from [237, 239], with a few new
additions.
Chapter 5. We present applications of three (almost identical) Ran-
dom Pursuit algorithms. We revisit a recent scheme of Leventhal and
Lewis [141] that can be used to estimate an optimal sampling distribu-
tion for Random Pursuit algorithms. We show that the error bounds
from [141] are optimal up to a factor of 2 and present an implementation
of this scheme that is independent of the initial approximation error.
Hence, an algorithm that uses this technique to estimate the sampling
distribution converges equally fast on all quadratic functions, i.e. is affine
invariant. The last example comprises Kaczmarz’ method [122, 240] for
solving systems of linear equations.

This chapter is based on [237], the technical reports [234, 238] and
motivated by empirical data from [235].
Chapter 6. We discuss an acceleration technique for simple Random
Pursuit algorithms. We review results for gradient-based schemes and
provide preliminary results for truly gradient-free, line search based
schemes on quadratic functions.

This chapter summarizes so far unpublished ongoing work and ideas.
The study of accelerated schemes for line search algorithms was moti-
vated by promising empirical data reported in [233, 236, 239].
Chapter 7. We conclude this thesis in Chapter 7.

Chapter 2

Background

Here, we present some fundamental background material for convex
optimization. In the first two Sections 2.1 and 2.2 we present (classical)
optimization algorithms and complexity results; Section 2.4 is devoted
to Evolution Strategies. In Section 2.3 we discuss the components of
algorithmic schemes in more detail. In particular, we comment on the
search directions and step sizes, and how we measure their quality.

2.1 Methods for Optimization

We give an overview of the most fundamental optimization algorithms.
We present the cornerstones of the field and focus on schemes that are
in some way related to the work in this thesis. That is, we empha-
size especially schemes that do not rely on derivatives, and neglect the
numerous advances in various areas of gradient-based optimization.

We structure our listing by function classes that can from a theo-
retical point of view be addressed with the specific schemes. However,
sometimes this classification is unclear or yet undecided, thus we will
subsume most of the derivative-free search “heuristics” in the last Sec-
tion 2.1.3.

To avoid technicalities at the moment, we consider throughout this
section the constrained problem

f∗ := min
x∈Rn∩B0(R)

f(x) , (OPTR)

where B0(R) is the ball of radius R around the origin. It is clear that

11

12 Chapter 2. Background

when (OPT) has a solution x∗ ∈ Rn, it will be contained in B0(R) for
R large enough.

2.1.1 Global Optimization

There is no algorithm that efficiently computes an approximate solution
for any arbitrary objective function [218, 256, 257] (see also Section 2.1.1
below). Still, we would like to point out two popular approaches that can
be applied to arbitrary objective functions—though one might have to
wait forever to approximately solve problem (OPTR). Both are related
to sampling. Generating random samples from B0(R), picking each
point x ∈ B0(R) with probability proportional to max{c− f(x), 0}, for
some (arbitrary) normalization c = f(0), allows to identify the neigh-
bourhood of a global optimum—if the function behaves nicely. A related
approach is to iteratively explore the search space by generating sam-
ples only in the neighborhood of the current iterate and move to points
with better function values. At first, to allow exploration of the whole
space, also points with worse function values are accepted with a spec-
ified acceptance probability. Over time, the acceptance probability is
decreased in such a way that the algorithm converges to a local opti-
mum. Those two ideas can be turned into algorithmic schemes. The first
one is known as the Metropolis-Hastings (Markov chain Monte Carlo)
algorithm [97, 162], the second one as Simulated Annealing [132, 247].
Asymptotic convergence results to a global optimum have been pre-
sented but there is no guarantee that a good solution will be obtained
in a finite number of iterations [211]. Interesting finite-time performance
aspects are discussed in [41, 192].

Those algorithms can be sped up when using an appropriate prior
distribution that encodes some knowledge about the function. Alter-
natively, promising regions could also be learned during optimization
and the sampling distribution accordingly adapted [6, 87, 146]. Vari-
ants of these heuristics are nowadays applied in various fields of re-
search [21, 46, 73, 88, 244].

Lipschitzian Optimization

One of the nice properties of the objective function could for instance
be Lipschitz continuity1: function values can only change continuously
and not too fast. Thus, points in a small neighborhood of the global

1A function f : Rn → R with
|f(x)−f(y)|

∥x−y∥ ≤ L for an L ≥ 0 and all x,y ∈ B0(R).

2.1. Methods for Optimization 13

optimizer will be approximate solutions of problem (OPTR). However,
the expected time to find such a solution by either random sampling or
exploring the space along predefined meshes is still exponential in the
dimension (see e.g. [182]).

Other schemes make use of the Lipschitz property in a more clever
way: they determine lower bounds on the function values inside a hy-
perrectangle if the function values at its corners are known. Thus if
already a better search point has been found, this hyperrectangle can
be excluded from the search [119, 227]. However, it is not hard to see
that all those schemes still need exponential (in the dimension) time to
find a search point in the neighborhood of the global optimum [36].

2.1.2 Convex Optimization with Derivatives

Now we discuss convex objective functions. Each convex function on
Rn is necessarily continuous, but not necessarily differentiable. Smooth
functions can be linearly approximated at any point x ∈ Rn with first-
order Taylor expansion, i.e. a linear function passing through f(x) at
x, whose slope is given by the gradient ∇f(x) (vector of first-order
derivatives). By convexity, this linear function underestimates the con-
vex function everywhere. If f is not differentiable at x, the linear lower
bound is not unique anymore. The set of slopes of all linear lower
bounds that pass through f(x) at x is called the subdifferential2, and
its elements subgradients.

Nonsmooth Functions

The subgradient is a separation oracle: it allows to identify regions of
the search space, where the global optimizer cannot be. The Center of
Gravity method [142, 189] makes use of this very explicitly. This method
localizes all of the minimizers x∗ of problem (OPTR) it the following
way: starting from the bounded domain Q0 = B0(R), it computes in
each iteration k a halfspace Hk that does contain x∗ and has the center
of gravity of Qk on its boundary. Then set Qk+1 = (Qk ∩ Hk). By
Grünbaum’s inequality3 [85], the volume of the feasible sets decreases
by a constant factor in each iteration, and therefore only a linear num-
ber of iterations are necessary to decrease the volume by an exponential
factor. However, we must note that this method is not practical, as

2Formally, ∂f(x) := {v : f(y)− f(x) ≥ ⟨v,y − x⟩ , ∀y ∈ Rn}.
3For convex set C and halfspace H containing the c. of gravity:

vol(C∩H)
vol(C)

≥ 1
e
.

14 Chapter 2. Background

the computation of the center of gravity of a convex set is a compu-
tationally hard problem, even for polytopes [205]. There are at least
two ways to overcome this issue: the classical approach is the Ellip-
soid method [29, 84, 225, 246, 262, 263] which introduces the following
trade-off: instead of working with arbitrary convex sets Qk it relies on
ellipsoids Pk. The intersection of a halfspace with an ellipsoid is not
any more an ellipsoid, thus in every iteration an ellipsoid Pk+1 has to
be computed that contains (Pk ∩Hk). This can be done efficiently with
O(n2) simple arithmetic operations, but the volume of the ellipsoids
decreases only by a factor of roughly


1 − 1

2n


each time and a linear

number of iterations are required to reduce the volume of the feasible
set by a constant factor. Hence, this scheme requires Θ(n) times more
iterations than the center of gravity method. A different approach is
to use only approximations of the center of gravity, for instance ob-
tained by Monte Carlo integration. This line of research is stimulated
by the breakthrough result of Dyer et al. [55, 150, 152] who showed that
random samples of a convex body can be generated in polynomial time.

Smooth Functions

Smooth optimization4 makes use of the fact that the negative gradi-
ent points always to regions with better function values. Following the
(negative) gradient direction leads to the minimizer of (OPTR). This
idea dates back to Cauchy [40] and is the base of the Gradient De-
scent method (see e.g. [34, 178, 181, 197]). Although very popular,
Gradient Descent is not the most efficient method. We will elaborate
on this in Section 2.3.3. Optimal schemes are Nesterov’s Fast Gradi-
ent method [179, 180, 182, 186], Powell’s Heavy Ball method [197], and
variants thereof [16, 17, 245].

So far, these methods use only gradient information. The Hessian
matrix (i.e. second derivative) defines a metric that describes the local
(quadratic) structure of the objective function. Methods that make use
of this information can converge much faster (see e.g. [190]). Important
examples are the Conjugate Gradient algorithm [61, 102] which belongs
to the general class of Krylov subspace methods (see e.g. [228]), and
the general Newton-Raphson scheme (see e.g. [190, 261])indexNewton-
Raphson scheme. Such schemes are termed variable metric methods.
Despite this speed-up, there are two main disadvantages: (i) the second-

4In this thesis we mostly consider continuously differentiable functions and some-
times also twice continuously differentiable functions.

2.1. Methods for Optimization 15

order information is rarely available, and (ii) most crucially: this amount
of information (typically an n×nmatrix) has to be processed and stored.
For instance, for one iteration of Newton’s method, the inverse of the
Hessian matrix has to be computed (typically implemented by solving
a system of linear equations). This prohibits their use in nowadays
big-scale data processing tasks.

Quasi-Newton methods (see e.g. [190]) are a special case of variable
metric methods that do not compute the Hessian directly, but instead
maintain and update an approximation to the Hessian only using gra-
dient vectors. The first quasi-Newton method has been proposed in the
late 1950’s by Davidon [48]. The BFGS method [38, 60, 78, 224] and
its low-memory extension L-BFGS [145] belongs among others [19] to
the most popular schemes (see e.g. [190]). Instead of approximating the
Hessian, those schemes typically directly compute an approximation of
the inverse Hessian matrix, avoiding the necessity to solve a linear sys-
tem. Quasi-Newton methods are ubiquitous in all areas of science and
engineering.

2.1.3 Convex Optimization without Derivatives

In the following, we give a short overview of some important methods for
derivative-free optimization; for further reference we direct the reader to
the comprehensive surveys [25, 128, 136, 143, 202, 210, 222, 259]. Many
of the following schemes are randomized algorithms, that is they use in
addition to the observed function values some internal randomness to
guide the search. It was already recognized in the 1950’s that random-
ization is one of the keys for successful derivative-free optimization [37].

Gradient-Based Methods

Gradients can either be estimated directly or indirectly. The latter
methods estimate a model of the objective function and use its gradi-
ent. Box and Wilson [33] described such a method already in 1951.
Typical schemes of this kind are Trust-Region methods. They use a
surrogate model that is usually smooth, easy to evaluate, and presumed
to be accurate in a neighborhood (trust region) of the current iterate.
Powell [199] first proposed to use a linear model of the objective within a
Trust-Region method, this was later also extended to quadratic models
in [200, 201] or by Conn et al. [43]. For other extensions see e.g. [118].

In addition to, or instead of developing a surrogate of the objective
function, one may develop an estimate of the gradient and use it to ex-

16 Chapter 2. Background

pedite the search. Implicit Filtering [74] uses an approximation of the
gradient to guide the search, resembling the Gradient Descent method
when the gradient is known. Nesterov [184] presented a method that
moves along random directions; the step sizes are proportional to direc-
tional derivatives (estimated by finite differences with fixed increment).
A similar approach is taken in [54]. Gradient-based methods are re-
ported to be not very reliable if the objective function is noisy or has
many local minima [136].

Gradient-Free Methods

A first class of gradient-free algorithms uses the localization approach
from Section 2.1.2. For instance Protasov [203] mimics the behavior of
the Ellipsoid method in terms of convex cones, and Bertsimas and Vem-
pala [22] the behavior of the Center of Gravity method by approximat-
ing the center of gravity with random samples. Somewhat related are
sampling-based ideas as encountered in Section 2.1.1. Ball-Walk [150]
and Hit-and-Run [18, 30, 230] are two schemes (see also [248]) that can
be used to generate a uniform distribution in a convex body, e.g. the
level set of a convex function. Each iteration of Hit-and-Run is based
on two random experiments: a line passing through the current iterate
is sampled uniformly at random, and a step is generated by sampling
uniformly a feasible point from this line. This scheme can be used for
optimization by only accepting points with better function values.

Other schemes are more “direct” in the sense that they explore the
function in a more local way, similar to Gradient Descent. For instance
Hooke and Jeevis’ Pattern-Search [50, 106, 243] from 1961 explores the
search space by probing function values along predescribed directions
(“patterns”) for various step sizes. Only a few years later, Spendley
et al. [231] and Nelder and Mead [175] presented their simplex-based
algorithms. Those schemes maintain n + 1 search points arranged in
a simplex and use reflecting and contracting steps to replace the worst
search point by a better one. However, this can fail to converge [258].
Other schemes sample points from (adaptive) meshes [1, 2, 11] or similar
partitions [120].

Another line of research resulted in Evolution Strategies (ES). Ras-
trigin [169, 207, 208] introduced the fixed step size random search that
samples search directions uniformly from the unit sphere and uses con-
stant step sizes. For example Matyas [159] and Schumer and Stei-
glitz [220] soon proposed schemes with variable step sizes. Schumer

2.1. Methods for Optimization 17

and Steiglitz [220] performed a thorough theoretical investigation of
their scheme on some selected quadratic functions. Their scheme is
almost identical to the ES studied by Rechernberg [209] and Schwe-
fel [221]. ES use bio-inspired operators to generate new search points.
Typically, they not only use single points to describe iterates, but a
set (or population) of points, and in each iteration many new search
points are evaluated (offspring) and a new population is formed (selec-
tion). Hansen’s Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES) [89, 93–95] is a state-of-the-art variant of this scheme that
evaluates the fitness of a population by weighted ranking, comprises
elaborate step-size control strategies and variable metric functionality.
We will add to the discussion of ES in Section 2.4.1 below.

Among related schemes that we did not mention so far are more
bio-inspired schemes, like Genetic Algorithms [77], Artificial Neural
Networks [98], Tabu-Search [76], Particle Swarms [129] or the recent
Natural Gradient Descent [75, 219, 252, 260] which seems amenable to
theoretical investigations [5, 26, 252].

Variable Metric Methods

A variable metric upgrade goes along well with most schemes from both
of the above mentioned classes—if a correct metric can be estimated.
Although “directional adaptation” has been conjectured to be useful for
randomized gradient-free schemes in the late 1960’s [220, 232] the early
literature on this topic is scarce and scattered across different commu-
nities. Important examples include the Gaussian Adaptation algorithm
developed by Kjellström and Taxen [133, 167] in the context of ana-
log circuit design and Marti’s controlled random search schemes using
concepts from optimal control [155]. Nowadays, most of the successful
derivative-free schemes comprise a mechanism to adapt and learn an
underlying metric of the objective function. Such schemes are in partic-
ular implemented in Trust-Region methods [44], Powell’s model based
optimizers [200, 201] and CMA-ES [89, 95].

Despite their great appeal in practice, many randomized gradient-
free variable metric schemes often lack a thorough theoretical conver-
gence analysis.

18 Chapter 2. Background

2.2 Complexity

In this section, we formally define what it means to solve problem (OPT)
approximately and present a few key results regarding the complexity of
convex optimization problems. Here, complexity measures the number
of oracle calls, i.e. function evaluations or gradient computations, that
are required to solve problems from certain classes. The term should not
be confused with computational complexity that counts the simple arith-
metic operations that are necessary if the algorithms are implemented
on a computer, say.

2.2.1 Algorithmic Schemes and Solutions

In order to define the complexity of an optimization problem (OPT),
we must agree on the amount of information an algorithm is allowed to
query. We assume oracle access to the objective function f . A p-th order
oracle is a function O that returns for every query point x ∈ Rn the
(p + 1)-tuple (f(x),∇f(x), . . . ,∇pf(x)), if these derivatives exist. For
instance for non-differentiable functions, as encountered in Section 2.1.2,
a first-order oracle is defined to return an arbitrary subgradient instead.

For a given initial position x0 ∈ Rn (starting point) and a (given)
algorithm, we denote by (xk)k≥0 the sequence of iterates generated by
the algorithm. That is, all the oracle values (O(xk))k≥0 will sequen-
tially be made available to the algorithm, and iterate k can depend on
x0, . . . ,xk−1 and their respective oracle values.

The algorithm has to find an approximate solution x′ ∈ Rn. Given
a constant ϵ > 0, we measure the absolute error as

f(x′)− min
x∈Rn

f(x) ≤ ϵ . (2.1)

If the function f is M -Lipschitz continuous, then we can estimate the
initial error


f(x0)−minx∈Rn f(x)


by the Lipschitz parameter M and

the radius of the initial level set, simply R in case of the bounded prob-
lem (OPTR) (see e.g. [181]). Similarly for smooth functions with L-
Lipschitz continuous gradients, see Section 2.5.4.

For ϵ ≥ 0, the running time Nf
A(ϵ) of an algorithm A on an objective

function f is the smallest integerN such that x′ = xN satisfies (2.1). For
randomized algorithms, the running time is defined likewise, requiring
that (2.1) holds in expectation. Typically, we are not interested in the
performance of an algorithm on a specific function, but on a certain class
or set F of functions. The running time on a class of problems is the

2.2. Complexity 19

smallest number of oracle calls such that (2.1) holds for every problem

of this class, NF
A (ϵ) = supf∈F N

f
A(ϵ). The complexity of a class F is

the minimal number of function evaluations that any algorithm needs
to solve all problems of the class, NF (ϵ) := infAN

F
A (ϵ). To give an

upper bound on the complexity, it is sufficient to present an algorithm
that solves all problems f ∈ F . For a lower bound, typically a problem
instance has to be constructed that is hard for all algorithms—a so
called resisting oracle.

2.2.2 Complexity of Convex Problems

The complexity of convex optimization problems with first-order oracles
is well studied, slightly less is known for zeroth-order oracles. Although
the focus of this thesis lies on gradient-free schemes, we review results
for both types of oracles for comparison reasons. To avoid degenerate
situations, we always consider the bounded problem (OPTR). For a
more detailed presentation we refer to the books of Nemirovski and
Yudin [178], Nesterov [181] and the lecture notes [176].

First-Order Oracles

The most important complexity bounds for first-order optimization are
summarized in Table 2.1 and will be mentioned in our discussion below.

Convex optimization. For M -Lipschitz continuous functions one
distinguishes two regimes: (i) high dimensional problems with nϵ2 ≥ 1

4
and complexity Θ(ϵ−2), independent5 of the dimension n; attained e.g.
by the Subgradient method [184]. When (ii) nϵ ≤ 1

2 the problem is low
dimensional with complexity Θ


n ln 1

ϵ


; attained e.g. by the Center of

Gravity method [142, 189] which needs O

n(lnM + lnR+ ln 1

ϵ)

itera-

tions. Here, see that the notation of complexity shall not be confused
with computational complexity. The Ellipsoid method [225, 262, 263]
in turn needs O


n2(lnM + lnR + ln 1

ϵ)

iterations, but each one can

efficiently be implemented with O(n2) simple arithmetic operations.
The Monte Carlo scheme [22] needs the same number of oracle calls,
but each iteration (generating the random samples) has computational
complexity O(n6). For 1

ϵ ∈ [2
√
n, 2n] the complexity is known up to a

logarithmic factor.

5The complexity of high dimensional constraint problems depends on the geom-
etry of the feasible set [176].

20 Chapter 2. Background

problem class dimension n
vs. accuracy ϵ lower bound optimal method

M -Lipschitz
n ≥ 1

4ϵ2 O


M2R2

ϵ2


Subgradient method

n ≤ 1
2ϵ O


n ln MR

ϵ


Center of Gravity method

L-Lipschitz
gradients

n2 ≥ LR2

ϵ O


L1/2R
ϵ1/2


Fast Gradient method

n≪ LR2

ϵ O

n ln LR2

ϵ


Center of Gravity method

κ-convex O

κ1/2 ln LR2

ϵ


Fast Gradient method

Table 2.1: Complexity of first-order convex optimization. The lower com-
plexity bound is reached by the optimal methods.

Smooth convex optimization. For f smooth with L-Lipschitz con-
tinuous gradients, the complexity in high dimensions, (n2ϵ ≥ LR2),
is Θ(L1/2Rϵ−1/2); attained by e.g. the Fast Gradient Method but not
by Gradient Descent which needs Θ


LR2 1

ϵ


oracle calls. For low di-

mensions, n2ϵ ≪ LR2, the complexity is Θ

n(lnL + lnR + ln 1

ϵ)

.

Nemirovski [176] points out: “in fixed dimension, the advantages of
smoothness can be exploited only when the required accuracy is not too
high”.

Strongly convex optimization. On smooth functions with condi-
tion number κ (see Section 2.5) the complexity is Θ


κ1/2(lnL+ lnR+

ln 1
ϵ)

; achieved e.g. by the Fast Gradient Method. The logarithmic

dependency on ϵ is also achieved by the Gradient Descent, which needs
Θ

κ(lnL+ lnR+ ln 1

ϵ)

oracle calls, scaling with κ instead of κ1/2.

Zeroth-Order Oracles

The lower bounds on the complexity from Table 2.1 still apply here, as
we consider a more restricted oracle. Running times of specific algo-
rithmic schemes imply upper bounds that we will present below and are
summarized in Table 2.2.

The complexity theory of zeroth-order optimization is not as well
developed as for first-order schemes and not many non-trivial lower
bounds are known. Jägersküpper [114] shows a lower bound of O


n ln 1

ϵ


for a specific method (equivalent to Random Pursuit). However, his
bound does not reveal the dependence on the condition number κ or on
the Lipschitz parameter L.

2.2. Complexity 21

Convex optimization. Again we assume f to be M -Lipschitz con-
tinuous. If the dimension n = 1, then the problem (OPTR) reduces to a
line search. The localization scheme (or simply bisection-search) solves
this problem with at most O


lnM + lnR+ ln 1

ϵ


function evaluations.6

The higher dimensional analogues of these methods are the gradient-
free localization schemes. Focusing only on the dependency on ϵ and n,
we can state the following bounds: Protasov’s method [178, 203] needs
O

n2 lnn(lnM +lnR+ln 1

ϵ)

function evaluations; a factor of only lnn

more oracle calls than the Ellipsoid method. Bertsimas and Vempala’s
Monte Carlo scheme [22] is worse as it requires O


n5(lnM+lnR+ln 1

ϵ)


function evaluations. Nesterov’s Random Gradient Descent [184] needs
O(nM2R2ϵ−2) function evaluations, if the oracle can compute exact di-
rectional derivatives or O(n2M2R2ϵ−2) pure function evaluations. The
dependency on ϵ is the same as for the Subgradient method, but the
schemes need O(n) or O(n2) iterations more, depending on the accuracy
of the oracle.

Smooth convex optimization. For f smooth with L-Lipschitz con-
tinuous gradients, the running time of Random Gradient Descent [184]
can be bounded by O


nLR2 ln 1

ϵ


, a factor of n more oracle calls than

required by Gradient Descent. We will obtain qualitatively similar es-
timates for the Random Pursuit algorithms considered in this thesis.

Strongly convex optimization. On smooth functions with condi-
tion number κ (see Section 2.5). The one-dimensional problem can
again be solved with a simple localization scheme (or bisection-search).
Strong convexity can be used to estimate the initial error, yielding a
bound of O


lnκ + lnR + ln 1

ϵ


function evaluations, see e.g. [239]. A

bound of the same order was later also derived in [115], but extending
the results to optimization with inexact oracles.

In dimension n, Random Gradient [184] only needs O

nκ(lnL +

lnR+ ln 1
ϵ)

function evaluations, in analogy to Gradient Descent. The

Fast (or Accelerated) Random Gradient derived in the same paper [184]
improves this to O


nκ1/2(lnL+ lnR+ ln 1

ϵ)

. We will discuss gradient-

based and gradient-free types of acceleration of the simple Random
Pursuit algorithm in Chapter 6.

6The best constant is obtained for the Fibonacci method—a scheme dividing the
segments according to ratios of subsequent Fibonacci numbers [130].

22 Chapter 2. Background

problem class oracle upper bound method

M -Lipschitz

f(x) O

n2 lnn ln M2R2

ϵ


Protasov

f(x) O

n2M2R2

ϵ2


Random Gradient (RG)

⟨∇f(x),u⟩ O

n2M2R2

ϵ2


L-Lipschitz
gradients

f(x) O

nLR2

ϵ


Random Gradient (RG)
Random Pursuit (RP)

κ-convex

f(x) O

nκ ln LR2

ϵ


Random Gradient (RG)
Random Pursuit (RP)

f(x)
O

nκ1/2 ln LR2

ϵ

 Accelerated RG

⟨∇f(x),u⟩ Accelerated RP (SARP)

Table 2.2: Upper bounds on the complexity of zeroth-order convex opti-
mization and methods that reach these bounds. Upper bounds for RP are
presented in Chapters 3 and 4, for SARP in Chapter 6.

2.3 The Components of Search Schemes

The Random Pursuit algorithms as introduced in Section 1.2 gener-
ate a sequence (xk)k≥0 of iterates if applied to an optimization prob-
lem (OPT). We can write this sequence as:

xk+1 = xk + σk
step size

· uk
search direction

(2.2)

where (σk)k≥0, with σk ∈ R is a sequence of step sizes and (uk)k≥0,
with uk ∈ Rn is a sequence of search directions. Thus (xk)k≥0 is de-
fined, or generated, by the initial iterate x0 and the sequences of search
directions and step sizes. In Chapter 3 we study the convergence of
the sequence of function values (f(xk))k≥0. To this end, we introduce
conditions that both the sequences of step sizes and search directions
have to satisfy. Below, we motivate these conditions by some (rather
trivial) introductory examples. We also discuss fundamental aspects
of randomized and accelerated schemes and comment on the bounded
optimization problem (OPTR).

2.3.1 Step Size

To study the convergence of the function values of a sequence (xk)k≥0

we investigate the one step progress, that is the quantity f(xk)−f(xk+1)

2.3. The Components of Search Schemes 23

for every k ≥ 0. We would like to emphasize that a simple decrease,
i.e. simply a nonnegative one step progress is not enough to ensure
convergence to a minimum. We demonstrate this with an example:
consider the function f1(x) = x2 and let (xk)k≥0 be a monotonically
decreasing sequence with x0 = 1 and limk→∞ xk = 1

2 . This sequence
suffers from too small steps. Likewise ((−1)kxk)k≥0 does not converge
to 0; the steps are too large. The sequence ((ln k)−1)k≥0 converges to
0, but very slow.

To overcome this issue, one has to guarantee that the one step
progress is not too small. This is enforced by a sufficient decrease con-
dition. For instance, if gradients are available then such conditions can
be formulated in terms of the gradient. Well-known conditions are the
Armijo-Goldstein [7, 79], and Wolfe [254, 255] conditions.

In derivative-free optimization, the gradient cannot be accessed and
it cannot easily be checked if the aforementioned conditions are satisfied.
Thus, we impose even stronger conditions, that can be verified without
accessing the gradient, but in turn imply sufficient decrease. We show in
Chapter 3 that we can use a line search to enforce sufficient decrease. A
line search oracle LS is a function that provides an exact solution to the
one-dimensional optimization problem (OPT). Whilst this is a purely
theoretical construct, in practice a (zeroth-order) line search algorithm
solves the problem (OPTR) approximately , as discussed in Section 2.2.2.

In some cases, sufficient decrease can also be obtained differently. We
would like to point out an interesting approach. Consider the following
scheme: given xk, chose xk+1 uniformly from the level set {x | f(x) ≤
f(xk)}. However, if the function f is not as simple as f1(x) = x2,
or high dimensional, it is not clear how this idea could be efficiently
implemented in a black-box setting. A more promising local approach
is the following: choose the step size σk such that for a random normal
direction uk ∼ N (0, 1n), say, the success probability

Pr

f(xk + σkuk) ≤ f(xk)


= c , (2.3)

for a constant 0 < c < 1
2 . Intuitively, this prevents the two extreme

cases of too small or too large steps. The steps cannot be too small, as
for continuous convex f , we have limσ→0 Pr[f(x + σu) ≤ f(x)] = 1

2 ;
unless x is the optimum. Likewise, the success probability approaches
zero for too large steps. Calculating the exact value of σk is typically not
required to implement the idea (2.3) in an algorithmic scheme. What
people typically do is to rely on crude approximations of the success
probability [209, 220]. We come back to this in Section 2.4.1 below.

24 Chapter 2. Background

2.3.2 Search Directions

The second component in scheme (2.2) are the search directions (uk)k≥0.
Like bad steps, suboptimal search directions can hamper the conver-
gence. Consider the 2-dimensional analogue of the function f1, that is
f2(x) := x21+x

2
2, with gradient∇f2(x) = 2x. In iteration k, the one step

progress can only be positive if uk is not orthogonal to ∇f(xk). Hence,
a sequence of bad search directions (uk)k≥k0

with ⟨∇f(xk),uk⟩ = 0 and
∇f(xk) ̸= 0 for k ≥ k0, prevents convergence to the minimizer x∗ = 0
of f2, even if for instance the step sizes are always optimally determined
by a line search. Let θk denote the angle between the gradient direction
∇f(xk) and the search direction uk. For a parameter c ≥ 0, the squared
angle condition

cos2 θk =
⟨∇f(xk),uk⟩2

∥∇f(xk)∥2 ∥uk∥2
≥ c , (2.4)

provides a lower bound on |θk|, and the aforementioned degeneracy
is avoided if the scheme satisfies (2.4) in every step. For randomized
schemes, we measure the expected value of (2.4). This condition can be
enforced in different ways. Suppose we have a set of candidate search
directions that span Rn. Then directions can either be picked at random
from this set, or one can deterministically identify and pick the best
direction. The angle condition (2.4) holds for c = 1

n if uk is picked
uniformly at random from the set {ei : i = 1, . . . , n} of standard unit
vectors (see Example 4.14 below). This implies that there exists an
index i such that (2.4) also holds for uk = ei. This observation is
for instance used in the Pattern-Search algorithms [50, 106, 243]. The
variant termed Compass Search [243] probes exactly the unit vectors ei
in each iteration.

Although a lower bound on the angle condition (2.4) together with
sufficient decrease is enough to guarantee convergence, it might not
be the right condition to ensure fast convergence. This can happen,
if the gradient direction is not the “best” search direction that we
should follow. Consider a skewed version of the function f2, namely
f3(x) := 100x21 + x22. The condition number7, denoted as κ, measures
the sensitivity of the function value subject to small changes in the argu-
ment, here κ = 100. Consider x∗ = 0 with f3(x

∗) = 0. If we move one
unit in direction e1, we reach f3(e1) = 100, as opposed to f3(e2) = 1.

7For a general definition of the condition number see Section 2.5.2 below.

2.3. The Components of Search Schemes 25

In Chapter 4 we show that for a Random Pursuit algorithm—with ex-
act line search oracle, say—that picks a search direction uniformly at
random from the unit sphere, the number of iterations to find an ap-
proximate solution scales proportionally to κ. This also matches our
intuition: every level set of f3 is a long and skinny ellipse, stretching
out along the x2-axis; if we start from a point close to the x2-axis, the
progress in a step will be small, unless we almost sample in x2-direction.
If we want to move faster along the x2-direction, we have to sample di-
rections (almost) parallel to the x2-axis more often. Hence, we have to
sample the search directions from a unit sphere in a different norm—one
that actually fits to the function f3. By sampling uniformly from the set
{x : 100x21 + 1x22 = 1}, the number of iterations to find an approximate
solution becomes independent of κ. Note that this anisotropic sam-
pling distribution is specifically tailored for the function f3. On other
functions (take simply f4(x) := x21 + 100x22) this distribution is bad;
even worse than the uniform distribution we started with at the begin-
ning. Without prior knowledge on the black-box optimization problem,
anisotropic sampling makes no sense at all. We emphasize that algorith-
mic schemes for problem (OPT) should therefore adapt their sampling
distributions to the objective function.

Algorithms that adapt their behavior to the underlying norm, or
metric, of the optimization problem (OPT) are referred to as variable
metric schemes. If the objective function f is twice differentiable (e.g.
as f3 from above), a good metric is given by the second derivative,
or Hessian matrix, at a point close to the optimum. We already have
encountered several variable-metric schemes in Sections 2.1.2 and 2.1.3.

The left panel of Figure 2.1 depicts a Random Pursuit algorithm with
a line search oracle LSf . The line search on line 5 could alternatively
also be replaced by any other method that guarantees sufficient decrease
as discussed previously in Section 2.3.1. If the scheme is equipped with
a routine to update the sampling distribution π, for instance by means
of estimating the Hessian matrix or its inverse, then the sampling distri-
bution can change either in every iteration or whenever some prescribed
criteria are met.

2.3.3 Accelerated Schemes

A big handicap of variable metric schemes is the (obvious) fact that
the correct metric is not automatically provided by the black-box opti-
mization problem (OPT). Especially, if the metric has to be estimated

26 Chapter 2. Background

RP(f,x0, π,N)
(schematic RP with line search and
w/o variable metric)

1 if variable metric then
2 π ← initialize(f,x0)

3 for k = 0 to N − 1 do
4 uk ∼ π
5 xk+1 ← LSf (xk,uk)
6 if variable metric then
7 π ← update(π, f,xk,xk+1,uk)

8 return xN

ES(f,x0, π,N, σ, a, b)
(schematic (1+1)-ES w variable metric)

1 for k = 0 to N − 1 do
2 repeat
3 uk ∼ π
4 if f(xk + σuk) ≤ f(xk) then
5 xk+1 ← xk + σuk; σ ← σ · a
6 else xk+1 ← xk; σ ← σ · b
7 π ← update(π, f,xk, σ,uk)

until xk+1 ̸= xk

8 return xN

Figure 2.1: Random Pursuit with line search LSf (left panel) and a (1+1)-
ES with adaptive step size adaptation (right panel). In the variable metric
version of RP, the sampling distribution π is updated in the beginning and
after every or every few iterations. A specific choice for the routines initialize
and update is discussed in Section 5.2; common updates used for ES are
mentioned in Section 2.4.2.

solely by zeroth-order information it is not a priori clear whether one
should invest these function evaluations to learn the metric or directly
use them to guide the search towards the optimum. We will come back
to this question later in Section 5.2.1. If the metric is represented by
an n× n dimensional matrix, then estimating every single entry of this
matrix might also not be very efficient from a computational point of
view. Many schemes, like for instance the (first-order) L-BGFS [145]
try to represent an approximation of the right metric with linear space,
for instance as a combination of a low rank and a sparse matrix.

Now we present a completely different approach that also aims at ac-
celerating the convergence rate of simple (random) search schemes. We
observed in Section 2.2.2 that Gradient Descent needs O


κ ln 1

ϵ


first-

order oracle calls to find an approximate solution to a strongly convex
problem (OPTR) with condition number κ. In 1983, Nesterov devel-
oped Fast Gradient method [179] which needs only O


κ1/2 ln 1

ϵ


oracles

calls to achieve the same. Similar accelerations can also be obtained for
zeroth-order schemes [184], as briefly mentioned in Section 2.2.2.

Now we come to the heart of the technique. The following very nice
theoretical argument aims at shedding some light on the acceleration
mechanism; it was brought to our attention by Hardt [96] and we would
like to repeat it here. Similar explanations can be found at other places

2.3. The Components of Search Schemes 27

in the literature, see e.g. [59, 67, 215, 226].

Consider the quadratic function f5(x) :=
1
2x

TAx− bTx, for a sym-
metric positive definite matrix; with gradient∇f(x) = Ax−b, optimum
x∗ = A−1b and condition number κ. For starting point x0 = b, stan-
dard Gradient Descent calculates a sequence (xk)k≥0 of iterates such
that

xk =

k
i=0

σ(In − σA)ib ,

where σ > 0 is a constant step size, chosen such that the spectral
radius8 ∥In − σA∥ < 1. Recall that 1

x =
∞

i=0(1 − x)i for |x| < 1.
The analogous result also holds for matrices, X−1 =

∞
i=0(In −X)i if

∥In −X∥ < 1. Hence, Gradient Descent computes a degree k polyno-
mial approximation to the inverse A−1. The error term is of the order
O
(In − σA)k = O


(1− κ)k


, which is exactly the convergence rate

of Gradient Descent.

Finding a better approximation to the function (X)−1 will provide
a faster algorithm. We are looking for a degree k polynomial qk such
that the residual error rk =

A(A−1 − qk(A))
 = ∥In −Aqk(A)∥ is

minimized. Or written differently: a polynomial of the form pk(X) =
In −Xqk(X) with pk(0n) = In. Here 0n denotes the n-dimensional all-
zero matrix. The value pk(A) depends only on the eigenvalues of A (see
e.g. [104]), therefore pk should map the eigenvalues of A as close to zero
as possible. Approximation by the Chebyshev polynomial9 Tk of degree
k yields the residual error rk = O


(1−κ1/2)k


, a quadratic improvement

in the convergence rate. The Chebyshev polynomial Tk of degree k
can recursively be computed from the two lower degree polynomials
Tk−1 and Tk−2 by the recurrence Tk+1(x) = 2xTk(x) − Tk−1(x) for
k > 1. Consequently, an algorithm implementing this idea does not
need to access the gradients of all previous iterates (xi)

k
i=0, but the two

belonging to xk and xk−1 are enough.

This convergence rate cannot further be improved. Nesterov [182]
gives an example of a quadratic function for which this convergence rate
cannot be beaten. The eigenvalues of this function are—when restricted
to finite dimension—the roots of Un, the Chebyshev polynomials of the

8Though we use standard notation in this paragraph, not everything has been
properly introduced up to now. We apologize to the non-expert readers and direct
them to Section 2.5 below.

9Defined as T0(x) = 0, T1(x) = x, and Tk+1(x) = 2xTk(x)− Tk−1(x) for k > 1.

28 Chapter 2. Background

second kind.10 The idea of acceleration by Chebyshev’s method is also
present in other fields. For instance in Lanczos method [47, 137, 139] to
compute extremal eigenvalues or Chebyshev’s iterative method to solve
linear systems [57, 81, 102].

2.3.4 Constraints and Non-Smooth Functions

The optimization problem (OPTR) is a constrained optimization prob-
lem. Here the constraints describe the very simple set B0(R), but in
general it could be an arbitrary convex set Q. A simple approach is the
following: use any standard algorithm that works for the unconstrained
problem (OPT), and if an iterate happens to fall outside of the feasible
domain Q, project it back. However, this only works if Q is simple
enough to allow for efficient computation of the projection. In general,
projection onto a convex set is itself a constrained optimization problem
(see e.g. [181])—and that is what we aim to solve.

There are two aspects to constrained black-box optimization: (i) if
the set Q is known, thus not given as a black-box, we can reduce the
constrained optimization problem in certain cases to an unconstrained
one. We sketch these techniques briefly below. If (ii) the set Q is
“hidden” in the objective function, for instance given as the set of points
with finite function values, the situation is quite hopeless in the following
sense. The geometry of Q has a major impact on the performance of
any algorithm. A scheme can get stuck in a corner of the feasible set Q.
Consider the positive orthant and let the origin be the current iterate.
Simply to find a feasible point (and thus identifying the right orthant)
takes exponential time. Lovász and Vempala [151] show that the Hit-
and-Run algorithm can “escape” from a corner if the first iterate does
not lie directly on the boundary, but sufficiently far away in the interior
of Q. The same escape problem also arises on non-smooth functions:
their level sets can have corners, and algorithmic schemes might get
stuck there for exponential time. For this reason, we neither treat black-
box constrained optimization problems nor non-smooth optimization
problems in this thesis. Some aspects of derivative-free optimization
with constrains are discussed e.g. in [8, 222].

The following methods (see e.g. [181, 187, 190]) can be applied if
the set Q of constraints is known and sufficiently simple. The Penalty
method solves a sequence of unconstrained optimization problems that
are formulated such as to punish search points outside of the feasible

10U0(x) = 1, U1(x) = 2x, Uk+1 = 2xUk(x)− Uk−1(x).
d
dx

Tk(x) = (k + 1)Uk(x).

2.3. The Components of Search Schemes 29

domain Q by an increasing penalty term, forcing the optimal solution
of the unconstrained problems to converge to the optimal solution of
the constrained problem. This method requires that the function values
of points outside the feasible set Q are well-defined. Barrier methods
instead, force the iterates to stay inside the feasible set Q by punishing
points close to the boundary (similar to the penalty methods). For
instance if the feasible set describes a polytope, such barrier functions
can be constructed by means of Dikin ellipsoids [181, pg. 182].

2.3.5 Randomization as a Design Principle

Our interest lies in the study of Random Pursuit algorithms of the
form (2.2), xk+1 = xk + σkuk, where typically the search directions
are sampled from a probability distribution, and in some cases even the
step sizes are influenced by randomness. One might wonder if this ran-
domness is indeed necessary, or if there are equally good deterministic
schemes. We don’t know the answer to this. One of the reasons is cer-
tainly that the interesting problem classes of non-convex problems are
not well-defined, and thus also this question.

One drawback of deterministic methods is that they often fail on
very simple functions. For instance the Gradient Method gets imme-
diately stuck in local minima, the Nelder-Mead simplex method may
not even converge [258]. Practitioners observe that it is generally a
good strategy to add some “random wiggles” to jump out of these min-
ima or degeneracies. On one hand, randomization makes it harder to
find examples where the methods certainly fail. This can also be ob-
served with problems from other fields, like for instance the pivoting
in the Simplex Method for Linear Programming. The Random Facet
method performs well on most problems, but its worst-case behavior is
(sub-)exponential [63, 66, 123, 124, 158]. On the other hand, there is
some theoretical justification that this randomization indeed simplifies
the complexity of non-convex optimization problems.

Let σ > 0 and f : Rn → R be a continuous function with bounded
support. For u ∼ N (0, In) the Gaussian smoothing is defined as

fσ(x) := E [f(x+ σu)] , with ∇fσ(x) =
1

σ
E [f(x+ σu)u] . (2.5)

This operation is also known under different names, like convolution
with a Gaussian kernel or lowpass frequency filtering. In general, fσ
has nicer properties than f (see e.g. [53, 178, 184]). For instance if

30 Chapter 2. Background

f is Lipschitz continuous, then fσ is differentiable with Lipschitz con-
tinuous gradient [184]. For the derivation of ∇fσ(x) see [53, 184]. In
general, fσ is not only nicer than f in terms of smoothness, but also
it is “more” convex. For instance Loog et al. [147] or Mohabi and
Ma [163] investigated in which cases fσ is a convex function even if f
was not. The latter authors call a function asymptotically convex if
limσ→∞ fσ is convex. For instance all functions with bounded support,
that is problems (OPTR), or rapidly decaying functions are asymptoti-
cally convex. Therefore if an algorithm queries function values at points
xk+1 = xk + σuk for uk ∼ N (0, In), it “observes” function values and
gradients of fσ instead of f . If fσ is convex, then the reasoning and
optimization strategies for convex functions can be applied. As a tech-
nical difficulty, the parameter σ is typically changing over time, thus the
algorithm observes different functions in every iteration (this is avoided
in [184], as σ is set to a fixed value). This idea seems to be a promising
way to analyze and justify the behavior of certain randomized optimiza-
tion algorithms, but so far no concise analysis appeared in the literature.
Intuitively, we might say that large values of σ will allow the algorithms
to “jump” over local minima if the function has a “convex-like” global
structure, but for small values of σ one cannot escape local minima any
more, like in Gradient Descent.

2.4 Evolution Strategies

The term Evolution Strategies (ES) describes a certain class of bio-
inspired iterative search schemes. Yet, the relation to biology is of a very
abstract kind. In contrast to the Random Pursuit schemes that update
only one search point in every iteration, the ES update sets of points.
That is, the state in iteration k is described by a set of λ search points
(“population”), where in general λ ≥ 1. In every iteration, the objective
function is evaluated at µ ≥ 1 new search points in the neighborhood of
the old ones (“mutation”). To complete one iteration, the scheme picks
a new set of λ points out of the total (µ+λ) points that are considered
in the current iteration (“selection”). Such a strategy is called (µ+ λ)-
ES. If the selection takes place only among the µ new search points,
one writes (µ, λ)-ES instead. To formulate this process as a Random
Pursuit algorithm we could for instance focus on the mean, or simply
only the best search point in each iteration. For simplicity, we consider
in the following only populations of size 1, i.e. (1+1)-ES.

2.4. Evolution Strategies 31

For a comprehensive introduction to ES and some concise mutation
and selection strategies see for instance [25, 27]. For instance in CMA-
ES, the new search points are sampled from a normal distribution whose
mean is the search point from the last iteration. An important feature
of the selection mechanism in CMA-ES is the following: the function
values are only used to compare the qualities of different search points
and to identify the best ones (ranking). The concrete function values are
not used anywhere else in the algorithm. This is in contrast to gradient-
based schemes that might use finite-differences to determine step sizes,
say. Whilst at first sight this might seem to be a handicap, the scheme
becomes robust in the following sense: its behavior is exactly the same
on the convex function f(x) = ∥x∥2 and on the non-convex function

g(x) = ∥x∥1/2; in general on any strictly monotone transformation of f ,
i.e. T (f(x)) for T : R → R strictly monotonically increasing. However,
note that we typically study the convergence in the function value (2.1).
This would not make sense for non-convex functions, like g, and one
could for instance look at the distance of the current search point to the
optimum instead.

Due to this invariance property, only the geometry of the level sets
of the objective function has an impact on the algorithm’s decision, but
not the absolute function values. This is also the case for two other
important features of CMA-ES that we will briefly sketch below. First,
we discuss the step size adaptation mechanism and then we explain how
CMA-ES adapts its sampling distribution to the objective function. For
a more complete introduction to CMA-ES we suggest the tutorial [91].

2.4.1 Step Size Adaptation

In this section we discuss the idea behind the step size adaptation of
CMA-ES or related (1+1)-ES. CMA-ES chooses the search direction
from a multivariate normal distribution, i.e. uk ∼ N (0, In). In Sec-
tion 2.3.1 we presented a step size adaptation scheme that is based on
the success probability (2.3), i.e. the step size σk is selected such that
the probability that xk + σkuk has a lower function value than xk is
equal to a constant value c, 0 < c < 1

2 . We have already observed that
the success probability increases if σk is decreased. This suggests the
following scheme to determine a step size σk that approximately satis-
fies condition (2.3): If the empirically observed success probability is
smaller than c, increase the step size by a constant factor; otherwise de-
crease it. A straightforward implementation of this idea is the following

32 Chapter 2. Background

scheme:

xk+1 =


xk + σkuk if f(xk + σkuk) ≤ f(xk),

xk otherwise,
(2.6)

and

σk+1 =


σk · a if f(xk + σkuk) ≤ f(xk),

σk · b otherwise,
(2.7)

where a > 1 and b < 1 are some parameters. For instance a = e1/3 and
b = e−c/(3(1−c)) were picked in our numerical study [235]. From a theo-
retical point of view, the exact value c in scheme (2.3) is not important
for convergence on quadratic functions [111–113], but it has an impact
on the convergence rate.11 If the success probability c is picked close
to 1/2 the steps tend to be too small, and on the other hand if c is too
small, then there is no progress in most of the iterations; thus an optimal
trade-off has to be found. Adaptive step size control was first presented
by Schumer and Steiglitz [220]. They suggest a value of c = 0.27, based
on theoretical investigations on the function f2(x) = x21 + x22. Rech-
ernberg [209] suggests a value of c = 1/5 and his scheme is nowadays
referred to as “1/5-th success rule”. The scheme (2.7) is very aggres-
sive: the step size is changed upon every success or failure. For the
original variants [209, 220, 221] the authors suggested to evaluate the
empirical success rate over the last (at least) n iterations. This regu-
larization is also present in CMA-ES through means of the Evolution
Path pk [91, 93, 95]. This variable accumulates the steps σkuk over the
past iterations and is updated according to pk+1 = d · pk + e · σkuk

for parameters d, e. Specific values can be found in [91]. Typically,
d ≈


1− 1

n


, hence the contribution of a single step σkuk is reduced by

a constant factor every n iterations. Based on the length of pk, the step
size is either decreased or increased, for instance similar to (2.7).

The right panel of Figure 2.1 on page 26 depicts a (1+1)-ES with the
adaptive step size adaptation (2.7) described above. In our description
above, the search directions where sampled in every iteration from the
same distribution, but naturally, the variable metric approach is very
common in Evolution Strategies. Slightly different approaches are used
for instance in Gaussian Adaptation [167] or CMA-ES. We introduce
the latter mechanism in the next section below.

11Note that so far there are no theoretical convergence results, yet rates, for the
specific implementation (2.7) of the scheme (2.3).

2.5. Notation and Definitions 33

2.4.2 Covariance Estimation

The most important feature of CMA-ES is the fact that it does not
necessarily sample the search directions from the isotropic distribution
N (0, In), but from a multinormal distribution N (0,Σ) with positive
definite covariance Σ. The covariance Σ is updated in every iteration,
to favour better search directions. This makes CMA-ES a zeroth-order
variable metric scheme.

The covariance Σk in iteration k is updated by a rank-one update:
Σk+1 = (1 − τ) · Σk + τ · yky

T
k , where τ is a damping parameter, typ-

ically roughly n−2 [95], and yk is a successful search direction. For
instance yk = σkuk, for a successful search step σkuk [95, 133]. Other
variants use the evolution path yk = pk instead [135], or a combination
of both [91, 95]. Especially, if the population size is larger than one, a
weighted combination of all µ (successful) steps can be used to update
Σk in a similar manner, that is a rank-µ update instead of only rank-
one [93]. Recently, Akimoto et al. [5] showed that the covariance matrix
update of CMA-ES can be interpreted as a Monte Carlo approximation
to an underlying natural gradient [26, 252].

2.5 Notation and Definitions

Here we introduce some basic notation and definitions, and review some
well known facts from linear algebra, see e.g. [80, 107].

2.5.1 Vector Spaces, Norms and Eigenvalues

We denote by Rn the standard n-dimensional vector space over the real
numbers R, with inner product ⟨x,y⟩ := xTy for x,y ∈ Rn and induced

Euclidean norm ∥x∥2 = ⟨x,x⟩1/2. If there is no risk of confusion, we
omit the index and write ∥x∥ := ∥x∥2.

We denote by Rm×n the set of all real m × n matrices. An inner
product is defined by ⟨A,B⟩ = Tr[ATB] = Tr[BAT] for A,B ∈ Rm×n

and the Frobenius norm by ∥A∥F = ⟨A,A⟩1/2. The set of symmetric
matrices A ∈ Rn×n with A = AT is denoted by SYMn. A symmetric
matrix A ∈ SYMn is positive definite if xTAx > 0 for all x ∈ Rn \ {0}
and we write A ∈ PDn. Every matrix A ∈ PDn has a positive root,
that is, there exists a matrix A1/2 ∈ PDn with A1/2A1/2 = A. The set
PDn is a convex cone, and a partial ordering is defined by the Löwner
ordering A ≼ B if B −A ∈ PDn.

34 Chapter 2. Background

For a symmetric matrix A ∈ SYMn we denote by λ(A) = {λi(A) ∈
R, i = 1, . . . , n}, the set of eigenvalues of A, that is the set of numbers
satisfying λi(A)vi = Avi, for pairwise orthogonal eigenvectors ∥vi∥ = 1,
i = 1, . . . , n. By the extremal characterization of eigenvalues, we have
λmin(A) = min{xTAx : ∥x∥ = 1} and λmax(A) = max{xTAx : ∥x∥ =
1} for the smallest and largest eigenvalue of A. The matrices A and
A−1 have the same set of eigenvectors, their eigenvalues are pairwise
reciprocal, especially, λmax(A) = λ−1

min(A
−1). For any two matrices

A,B ∈ Rm×n, the sets of the nonzero eigenvalues of the products ABT

and BTA are equal, see e.g. [204, Prop. 13.2].
The spectral norm of a matrix A ∈ Rm×n is the operator norm

induced by the Euclidean norm, that is,

∥A∥2 = sup
x∈Rn,∥x∥=1

∥x∥ = λmax(A
TA)1/2 .

The spectral norm and the Frobenius norm are topologically equivalent,
that is ∥A∥2 ≤ ∥A∥F ≤

√
r ∥A∥2, where r ≤ min{m,n} denotes the rank

of A.

2.5.2 Condition Number

The condition number of a symmetric matrix A ∈ SYMn is defined as
κ(A) := ∥A∥2

A−1

2
= κ(A−1) and for B ∈ PDn we have κ(B) =

λmax(B)λ−1
min(B). The relative condition number is defined as κF(A) :=A−1


2
· ∥A∥F . The condition number κ(A) only depends on the two

extremal eigenvalues, but not on the full eigenvalue spectra. For the
algorithms considered in this thesis, this crude measure is often not
sensitive enough to precisely describe the convergence behavior. As one
alternative we suggest to measure the conditioning my means of the
average eigenvalue instead of only the maximal one, that is the quantity
1
nTr[A]λ

−1
min(A). For technical reasons (see Example 4.12 on page 65)

we define the quantity κT(A) :=

Tr[A]λ−1

min(A) + 2

(n+ 2)

−1
.

Lemma 2.1. For A ∈ PDn, we have

κT(A) ≤
1

n
Tr[A]λ−1

min(A) ≤ κ(A) .

Proof. For a ≥ b > 0 it holds a+c
b+c ≤

a
b for any c ≥ 0. Therefore, the

choice a = Tr[A]λ−1
min(A), b = n and c = 2 implies the first inequality.

The second one is trivial.

2.5. Notation and Definitions 35

2.5.3 Quadratic Norms

For a square matrix A ∈ Rn×n we can define a quadratic form QA(x) =

xTAx. Note that xTAx = xT

A+AT

2


x, since the contribution of the

asymmetric part

A−AT

2


vanishes by symmetry. We may thus assume

without loss of generality A ∈ SYMn. If A ∈ PDn, the quadratic form
QA defines a norm on Rn, and write ∥x∥A = QA(x)

1/2. We denote the
unit sphere induced by this norm by Sn−1

A := {x ∈ Rn : ∥x∥A = 1}, i.e.
for A = In, the n-dimensional identity matrix, the sphere Sn−1

In
= Sn−1

is just the standard unit sphere. The norm ∥·∥A induces a metric on
Rn, and we refer to this metric as the metric induced by A, or simply
the metric A. In statistics this metric is also known as the Mahalanobis
metric. The norm ∥·∥A is topologically equivalent to the Euclidean norm
∥·∥ = ∥·∥In :

λmin(A) ∥x∥2 ≤ ∥x∥2A ≤ λmax(A) ∥x∥2 . (2.8)

This follows directly from the extremal characterization of the eigen-
values, see Section 2.5.1 above. Note that both inequalities are tight,
equality holds for x = vmin and x = vmax, the eigenvectors corre-
sponding the minimal and maximal eigenvalue of A, respectively. A
generalization of this inequality is given in the following lemma.

Lemma 2.2. Let A ∈ SYMn, B ∈ PDn, and x ∈ Rn with x ̸= 0. Then

λmin(B
−1A) ≤

∥x∥2A
∥x∥2B

≤ λmax(B
−1A) ,

and both inequalities are tight.

Proof. The claim follows by reduction to (2.8). A proof can be found
in [204, Prop. 18.3]. As we will use this statement frequently, the proof
can also be found in the appendix on page 115.

2.5.4 Function Classes and Quadratic Bounds

We now introduce some important inequalities that are useful for the
subsequent presentation. A function f : Rn → R is in Ck if the first k
derivatives all exist and are continuous. Mostly, we will consider convex
functions f ∈ C1. Smooth convex functions satisfy

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ , ∀x,y ∈ Rn . (2.9)

36 Chapter 2. Background

In smooth convex optimization one often assumes some additional regu-
larity of the objective function, for instance that the curvature of f ∈ C1

is bounded (cf. [34, 178, 182]). By this we mean that for some constant
L (and some fixed metric A ∈ PDn),

|f(y)− f(x)− ⟨∇f(x),y − x⟩| ≤ L

2
∥x− y∥2A , ∀x,y ∈ Rn . (2.10)

We will also refer to this inequality as the quadratic upper bound . It
means that the deviation of f from any of its linear approximations can
be bounded by a quadratic function. We denote by C1

L(A) the class of
(at least once) differentiable convex functions for which the quadratic
upper bound holds with parameter L (with respect to metric A). For
smooth convex functions, the absolute value in condition (2.10) can be
omitted due to (2.9). In the standard literature (cf. e.g. [34, 178, 182])
the curvature (2.10) is typically defined with respect to A = In. Here,
we allow for a fully quadratic model given by the matrix A ∈ PDn. The
class C1

L(A) comprises two important classes of functions: (i) smooth
convex functions with L-Lipschitz continuous gradients (see e.g. [184,
Lem. 1.2.3]) and by Taylor expansion we find (ii) twice differentiable
convex functions with Hessian matrix ∇2f(x) ≼ L ·A for all x ∈ Rn.

A differentiable function is strongly convex with positive parameter
m if the quadratic lower bound

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≥ m

2
∥y − x∥2A , x,y ∈ Rn , (2.11)

holds. We write f ∈ C1
m,L(A) with respect to metric A ∈ PDn if

f ∈ C1
L(A) satisfies (2.11) with parameterm. The ratio L

m , the condition
number of f , measures the deviation of f from a quadratic function. If
L = m, then f is quadratic. An important class of strongly convex
functions are twice differentiable convex functions with Hessian matrix
∇2f(x) ≽ m ·A for all x ∈ Rn.

Let x∗ be the unique minimizer of a strongly convex function f with
parameter m. Then equation (2.11) implies this useful relation:

m

2
∥x− x∗∥2A ≤ f(x)− f(x

∗) ≤ 1

2m
∥∇f(x)∥2A−1 , ∀x ∈ Rn . (2.12)

The former inequality uses ∇f(x∗) = 0, and the latter one follows

2.5. Notation and Definitions 37

from (2.11) via

f(x∗) ≥ f(x) + ⟨∇f(x),x∗ − x⟩+ m

2
∥x∗ − x∥2A

≥ f(x) + min
y∈Rn


⟨∇f(x),y − x⟩+ m

2
∥y − x∥2A


= f(x)− 1

2m
∥∇f(x)∥2A−1

by standard calculus.

2.5.5 Probability Distributions

The multivariate normal distribution arises from independent and iden-
tically distributed (i.i.d.) standard normals. The vector u ∈ Rn is
multivariate normally distributed with mean µ ∈ Rn and covariance
Σ = CCT ∈ PDn, i.e., v ∼ N (µ,Σ) if u = µ + Cv for v ∈ Rn with
vi ∼ N (0, 1) for i = 1, . . . , n.

For any compact subset C ⊂ Rn, we can define the uniform distri-
bution over C. We will slightly abuse the notation and write u ∼ C for
a uniformly distributed vector from C. For a discrete set D, we write
u ∼w D for weighted distributions on D, that is, u = d ∈ D with prob-
ability proportional to w(d), for a positive function w : D → [0,∞). For
general sets, weighted distributions can be defined by means of density
functions.

Definition 2.3 (Spherical Distribution). The vector u ∈ Sn−1 is uni-
formly distributed on the unit sphere Sn−1, i.e. u ∼ Sn−1 if u = v

∥v∥
for v ∼ N (0, In).

We now define an important class of Elliptical distributions, i.e.
probability distributions on the unit sphere Sn−1

A for different metrics
A ∈ PDn. In general, these distributions are different from the uniform
distribution on Sn−1

A .

Definition 2.4 (Elliptical Distribution). The vector u ∈ Sn−1
A is ellip-

tically distributed on the unit sphere Sn−1
A in metric A ∈ PDn if u = Cv

for v ∼ Sn−1 and CCT = A−1. We write u ∼ Sn−1
A .

Remark 2.5. Let u ∼ N (0, A−1) for A ∈ PDn. The random vector
v = u

∥u∥A
is elliptically distributed on Sn−1

A .

38 Chapter 2. Background

Proof. Let A1/2 denote the symmetric positive definite root of A. Then

u = A−1/2w for w ∼ N (0, In). Therefore A1/2u
∥u∥A

= A1/2v is spheri-

cally distributed, and by Definition 2.4 the vector A−1/2(A1/2v) = v is
elliptically distributed on Sn−1

A .

2.6 Benchmark Functions

Table 2.3 below lists all functions that will be used in this thesis to
benchmark the presented algorithms. We also list condition number
and trace of the Hessians of the quadratic functions.

description κ(f) Tr[f]

ftwo = 1
2

⌈n
2 ⌉

i=1 x
2
i + L

n
i=⌈n

2 ⌉+1 x
2
i


L n(L+1)

2

fflat = 1
2


x21 +

L
2

n−1
i=2 x

2
i + Lxn


L n(L+1)

2

fexp = 1
2

n
i=1 L

i−1
n−1x2i


L ≈ n(L−1)

lnL

flin = 1
2

n
i=1


1 + (i− 1) (L−1)

(n−1)


x2i


L n(L+1)

2

frosen =
n−1

i=1


100 ·


x2i − xi+1

2
+ (xi − 1)

2


- -

Table 2.3: List of Benchmark functions for curvature parameter L ≥ 1. All
functions are quadratic, except the non-convex frosen.

It’s nonconvergent!

Prof. Farnsworth
Futurama Episode 105: Benderama

M. Groening and D. X. Cohen

Chapter 3

Convergence

In this chapter we study convergence and especially convergence rates
of search algorithms on smooth convex functions. For this, we study the
sequence (xk)k≥0 of search points that is generated by an algorithm. By
looking only at the sequence (xk)k≥0 of search points, we don’t have to
specify which exact algorithm generated this sequence. Hence, most of
the results hold for arbitrary search schemes (that satisfy the quality
conditions that we formulate below). We discuss specific algorithmic
schemes in Chapter 4.

Ideally, the sequence (xk)k≥0 just corresponds to all points at which
algorithms evaluate the function f(xk). But this does not need to be the
case. For instance, xk could also denote the best search point that has
been discovered so far, or some summary statistics to describe the state
of population based algorithms. We see that in general, the index k does
not need to coincide with the complexity as defined in Section 2.3, that
is, the number of function evaluations, but it rather denotes the current
iteration of the algorithm. Any iteration could comprise many function
evaluations, for instance to solve algorithmic subtasks, like gradient
estimation [184] or performing a line search. We would like to interpret
the difference between two successive iterates as a step of the algorithm,
although this does not need literally to be the case.

Definition 3.1 (Local Search Scheme (LSS)). Let (σk)k≥0 be a sequence
of scalars σk ∈ R and let (uk)k≥0 be a sequence of vectors uk ∈ Rn.
A Local Search Scheme starting at x0 ∈ Rn with step sizes (σk)k≥0

and search directions (uk)k≥0 is a sequence (xk)k≥0 of vectors xk ∈ Rn

39

40 Chapter 3. Convergence of Local Search

satisfying

xk+1 = xk + σkuk . (3.1)

Note that for a sequence (xk)k≥0, the step sizes and search directions
are not uniquely defined.

We introduce a simple and lightweight framework to analyze Lo-
cal Search Schemes. Our framework decomposes the search procedure
into two parts: first (i) the quality of the search directions and (ii) the
quality of the step size. As discussed in Section 2.3.2, we measure the
quality of the search directions in terms of the squared angle between
the search direction and the gradient vector at the current search point.
We generalize condition (2.4) to arbitrary metrics that are defined by
a positive definite matrix A, see Section 2.5.3. The quality of the step
sizes is measured with a specific sufficient decrease condition that re-
lates the one step progress to the squared norm of the gradient at the
current search point.

In Sections 3.1 and 3.2 we introduce the sufficient decrease condition
and show convergence of the Local Search Scheme. Our presentation is
extending the one of Karmanov [126, 127, 264]. We revisit Karmanov’s
result in this chapter and we enhance his results in a number of ways.
The first convergence result for the Local Search Scheme—Theorem 3.3
below—depends only on the sequence of search points (xk)k≥0, but is
entirely independent of the algorithm that generated this sequence. This
result is of very general nature, and can be viewed as an a posteriori
analysis of the sequence (xk)k≥0. Despite some mild assumptions, we
do not yet specify how the search directions are generated, and how the
step sizes are computed. This will be the subject of Chapter 4.

One might be more interested in the predicted convergence behav-
ior of a sequence (xk)k≥0 that will be generated by a specific algorithm.
Therefore, we study convergence in expectation for randomized schemes
in Section 3.3. We will assume that the search directions are chosen in-
dependently at random from some (fixed) probability distribution, and
that the step sizes are chosen to satisfy the sufficient decrease condition.
This could for instance be achieved with a line search procedure.

Let us make a concrete example to illustrate these convergence re-
sults. One important instance of a Random Pursuit algorithm is the
scheme that selects the search directions independently from the unit
sphere uk ∼ Sn−1 and determines the step size by an (exact) line
search. Theorem 3.6 shows that this scheme needs O


L
mE[β2]−1 ln 1

ϵ


iterations to find an ϵ-approximate solution on a strongly convex func-

3.1. Local Search with Sufficient Decrease 41

tion f ∈ C1
m,L(In). The parameter β2 describes the quality of the search

directions in terms of the squared angle condition (2.4) and depends on
the sampling distribution. In Chapter 4 we will show E[β2]−1 = n,
for the uniform distribution on Sn−1. Hence, the running time scales
linearly in the dimension n, and only logarithmically in 1

ϵ . This depen-
dence on the accuracy ϵ is also called linear convergence. The running
time increases on functions that are not strongly convex. For instance
for f ∈ C1

L(In), the running time is O

nL
ϵ


instead, as we will show in

Theorem 3.7.

Strong convexity is not only a global property, but a local property
as well: a function needs to have positive curvature everywhere to be
strongly convex. Therefore, if a function is linear in the neighborhood
of one point in the domain we cannot expect linear convergence in gen-
eral. However, in Theorem 3.12 we will show that Random Pursuit
algorithms with a line search procedure can pass these linear plateaus
quickly, implying linear convergence on a slightly broader class than just
the strongly convex functions.

The theorems do not only describe the convergence for algorithms
with exact line search oracles, but also for inexact line search procedures.
We distinguish relative and absolute errors. Whilst the first ones only
slow down the convergence (but do not hamper it), the latter are more
serious: on strongly convex functions they prevent convergence below
some accuracy level ϵ′ > 0, and on general convex functions they can
also lead to divergence. However, this cannot happen if the line search
is implemented in such way that it never accepts worse search points,
i.e. points with a higher function value than the current one. But the
search might stall (at a certain accuracy level).

The discussion of randomized schemes is complemented by a few
concentration inequalities. We discuss such bounds in Section 3.6.

3.1 Local Search with Sufficient Decrease

We now formally define a first sufficient decrease condition.

Definition 3.2 (Sufficient Decrease). Let (γk)k≥0 be a sequence of non-
negative numbers (gains) with γk ∈ R, let (ϵk)k≥0 be a sequence of
nonnegative numbers (errors). The Local Search Scheme (xk)k≥0 with
search directions (uk)k≥0 ∈ Rn and step sizes (σk)k≥0 satisfies the suffi-
cient decrease condition on the function f ∈ C1

L(A) for a given positive

42 Chapter 3. Convergence of Local Search

definite matrix A (metric) and the tuple ((γk)k≥0, (ϵk)k≥0) if

f(xk+1) ≤ f(xk)− γk
β2
k

2L
∥∇f(xk)∥2A−1 + ϵk , (D1)

for every k ≥ 0. Here βk = βA(∇f(xk),uk) measures the quality of the
search directions uk by the generalized angle condition:

βk = βA(∇f(xk),uk) :=
⟨∇f(xk),uk⟩

∥∇f(xk)∥A−1 ∥uk∥A
. (A1)

The sufficient decrease condition (D1) quantifies the quality of each
step. The βk parameters are uniquely defined by the search directions
and the current position xk. The quality of the step sizes is expressed
by the gains γk and the errors ϵk. We see from condition (D1) that
the decrease in function value is largest if the gains γk are as large as
possible and the errors ϵk as small as possible. Consider the function
f(x) = 1

2 ∥x∥
2
. This quadratic function is in C1

1 (In). The squared
angle measure (A1), that is, β2

k, equals 1 if iterate xk+1 lies on the line
defined by the gradient direction ∇(f(xk)) = −xk and the search point

xk. Observe 1
2 ∥∇f(xk)∥2In = f(xk), thus this example shows that in

general we cannot expect (D1) to hold for gains γk > 1. Further we
note that, given a pair (xk,xk+1) of iterates and function f , the tuple
(γk, ϵk) is not uniquely defined. We see in Theorem 3.3 below that large
errors ϵk are typically worse than low gains γk. Thus if the sequence of
function values f(xk) is monotonically decreasing, it is best to express
the sufficient decrease (D1) only by the gains, and set ϵk = 0. However,
it might not always be possible to provide such strong bounds.

3.2 Smooth Convex Functions

Now we study the evolution of the decrease over a finite number of steps.

Theorem 3.3. Let (xk)k≥0 denote a Local Search Scheme (3.1) with
search directions (uk)k≥0 and step sizes (σk)k≥0 that satisfy the suffi-
cient decrease condition (D1) with parameters ((γk)k≥0, (ϵk)k≥0) on a
smooth function f ∈ C1

L(A) for a positive definite matrix A. For k > 0
denote fk := f(xk) − f∗, where f∗ := minx∈Rn f(x), and let SN :=N−1

k=0 γkβ
2
k for N > 0. Furthermore let R := supx,y∈Rn


∥x− y∥A |

max{f(x), f(y)} ≤ f(x0)

the diameter of the f(x0) level set.

3.2. Smooth Convex Functions 43

(i) If f ∈ C1
m,L(A) strongly convex, then

fN ≤ f0 ·
N−1
i=0


1− γkβ

2
km

L


+ CN ≤ f0 · exp


−m
L
SN


+ CN ,

where CN := ϵN−1 +
N

i=2

N−1
j=N+1−i


1− mγjβ

2
j

L


ϵN−i.

(ii) If f ∈ C1
L(A) convex, R < ∞, SN > 0 and the errors ϵk = 0 for

k = 0, . . . , N − 1, then

fN ≤
2LR2

SN
.

(iii) If f ∈ C1
L(A) convex, R < ∞, the gains lower bounded, γkβ

2
k ≥

δ > 0, and errors upper bounded, ϵk ≤ ϵ, for k = 0, . . . , N − 1,
then

fN ≤
Q

N
+ (N − 1)ϵ ,

where Q = max

2LR2/δ, f0


.

Part (ii) of Theorem 3.3 was already shown by Karmanov [126] for
the case A = In. A nice presentation can be found in [264]. The proof of
parts (ii) and (iii) can be found in the appendix on page 117. We now
proceed to prove part (i). The proof shows nicely how the quadratic
lower bound (2.11) can be used.

Proof of part (i). From the quadratic lower bound (2.12) it follows

∥∇f(xk)∥2A−1 ≥ 2mfk ,

together with sufficient decrease (D1) this yields

fk − fk+1 + ϵk ≥
γkβ

2
km

2L
∥∇f(xk)∥2A−1 ≥

γkβ
2
km

L
fk , (3.2)

for k = 0, . . . , N − 1. Let τk := γkmβ
2
k/L. We deduce

fk+1 ≤ (1− τk)fk + ϵk ,

for k = 0, . . . , N − 1 and thus

fN ≤
N−1
i=0

(1− τk)f0 + CN .

44 Chapter 3. Convergence of Local Search

By rearranging we deduce the first inequality in part (i) of Theorem 3.3.
The second one follows from (1− x) ≤ e−x for all x ∈ R.

Remark 3.4. If in part (i) of Theorem 3.3 the gains are lower bounded,
γkβ

2
k ≥ δ > 0, and error upper bounded, ϵk ≤ ϵ, for k = 0, . . . , N − 1,

then CN ≤ L
mδ ϵ.

Proof. We estimate

CN ≤ ϵ
N
i=1


1− mδ

L

(N−i)

≤ ϵ L
mδ

.

Remark 3.5. The bound in part (iii) of Theorem 3.3 becomes meaning-
less as N → ∞ if ϵ > 0. Nevertheless, for Nopt =


Q/ϵ the estimate

becomes

fNopt
≤ 2

ϵQ .

3.3 Convergence in Expectation

In the previous Section 3.2 we discussed the convergence of the Lo-
cal Search Scheme (3.1) where the sequence of iterates (xk)k≥0 was
fixed. Often, the algorithmic schemes generate random sequences, that
is, xk+1 is a random variable that can depend on the previous iterates
(xi)

k
i=0. Of course, for any fixed sequence of copies, or realizations, of

these random variables we can just apply Theorem 3.3. However, we
are not only interested in the value fN for one specific realization of the
random variables, but like to compute its expected value—if possible.

We will think of the random sequence (xk)k≥0 as generated by se-
quences of random search directions (uk)k≥0 and random gains and
errors. By this we mean, that each uk is an independent copy of a
random variable ūk in Rn with some fixed distribution πk (which could
depend on (xi)

k
i=0). In the simplest case, all uk just follow the same

distribution, for instance the uniform distribution on the unit sphere.
In the following we also make the (strong) assumption, that these ran-
dom variables are such that each realization of (uk, γk, ϵk) satisfies the
sufficient decrease condition (D1). We comment on this assumption at
the very end of this section, and in Section 3.4 below we show that all
assumptions are satisfied if the steps are for instance generated by a line
search.

3.3. Convergence in Expectation 45

To estimate E[fN], we would ideally just take the expectations on
both sides of the inequalities of Theorem 3.3. The theorem provides
an upper bound on E[fN] if we can compute a bound on E[e−SN] and
E[1/SN] for part (i) and (ii), respectively. However, we can compute
these expectations only in rare cases, and it is in general much eas-
ier to deal only with E[SN] instead. One approach to deal with this
situation is to establish concentration bounds on the random variable
SN . If SN is concentrated around its mean E[SN], then for a smooth
transformation T : R → R we can expect E[T (SN)] ≈ T (E[SN]). We
follow this approach in Section 3.6 and show that we can indeed expect
good enough concentration results for typical applications, so we can
restrict our attention to (lower) bounds on E[SN]. However, note that
we could not use this approach for the situation in part (iii) of Theo-
rem 3.3. There we need a uniform lower bound γkβ

2
k ≥ δ. We would

need unrealistic assumptions on the concentration of γkβ
2
k to provide

such a lower bound for every γkβ
2
k for k = 0, . . . , N − 1. We show that

is suffices to have a lower bound on the expectations E[γkβ2
k] ≥ δ.

In the remainder of this section, we extend the statements of part (i)
and part (iii) of Theorem 3.3 to the randomized setting.

Theorem 3.6. Let (xk)k≥0 denote a Local Search Scheme (3.1) with
independent random search directions (uk)k≥0 and step sizes (σk)k≥0,
that satisfies the sufficient decrease condition (D1) with random param-
eters ((γk)k≥0, (ϵk)k≥0) on f ∈ C1

m,L(A) for a positive definite matrix

A. Assume ϵk is independent of γkβ
2
k and let βk, fN , CN and SN be

defined as in Theorem 3.3. Then

E[fN] ≤ f0 ·
N−1
i=0


1− E[γkβ2

k]m

L


+ E[CN] ≤ f0 · exp


−m
L
E[SN]


+DN ,

where DN := E[ϵN−1] +
N

i=2

N−1
j=N+1−i


1− mE[γjβ

2
j]

L


E[ϵN−i].

Proof. The theorem follows from the first inequality in part (i) of Theo-
rem 3.3. We condition on (xk)

N−1
k=0 and take the conditional expectation

on both sides. This yields:

E

fN | (xk)

N−1
k=0


≤ f0 · E


N−1
i=0


1− γkβ

2
km

L


+ CN

 (xk)
N−1
k=0



= f0 · Φ ·


N−2
i=0


1− γkβ

2
km

L


+DN−1


+ E[ϵN−1] ,

46 Chapter 3. Convergence of Local Search

with Φ := E

1 − γN−1β

2
N−1m/L


. By taking the conditional expecta-

tions on (xk)
N−2
k=0 , (xk)

N−3
k=0 , . . . , (x0), the tower property of conditional

expectations yields E

· · ·E


E

fN | (xk)

N−1
k=0


| (xk)

N−2
k=0


· · · | x0


=

E[fN], and the first inequality follows. The second follows as in the
proof of Theorem 3.3 from (1− x) ≤ e−x for all x ∈ R.

Theorem 3.7. Let (xk)k≥0 denote a Local Search Scheme (3.1) with
independent random search directions (uk)k≥0 and step sizes (σk)k≥0,
that satisfies the sufficient decrease condition (D1) with random param-
eters ((γk)k≥0, (ϵk)k≥0) on f ∈ C1

L(A) for a positive definite matrix
A. Assume ϵk is independent of γkβ

2
k and let βk, fN and R be de-

fined as in Theorem 3.3. If R < ∞, the expected gains lower bounded,
E[γkβ2

k] ≥ δ > 0, and expected errors upper bounded, E[ϵk] ≤ ϵ, for
k = 0, . . . , N − 1, then

E[fN] ≤ Q

N
+ (N − 1)ϵ , (3.3)

where again Q = max

2LR2/δ, f0


.

Proof. First, we derive E

fN | (xk)

N−1
k=0


, conditioning on (xk)

N−1
k=0 . Be-

cause xN−1 is fixed, we can express E

fN | (xk)

N−1
k=0


in terms of fN−1.

The derivation of the one step progress is identical to the derivation of
equation (B.1) on page 118. We have

E

fN | (xk)

N−1
k=0


≤ E


fN−1 −

γN−1β
2
N−1

2LR2
f2N−1 + ϵN−1

 (xk)
N−1
k=0


≤ fN−1 − 2τf2N−1 + ϵ ,

where τ = δ/(2LR2). We reformulate this bound with the same tech-
nique as in the proof of Theorem 3.3 on page 118 to read

E

fN | (xk)

N−1
k=0


≤ (1− 2hN−1)fN−1 +

h2N−1

τ
+ ϵ ,

for all hN−1 ∈ Rn. Now, formally, we recursively apply the conditional
expectations, conditioning on (xk)

N−2
k=0 , (xk)

N−3
k=0 , . . . , (x0), and perform

the same reformulations in every step. We end up with a bound on
E[fN] that depends on the free parameters h0, . . . hN−1. By setting
hk = 1/(k + 1) for k = 0, . . . , N − 1, we obtain a recurrence that is
exactly of the form as treated in Lemma A.9 on page 116.

3.4. Line Search with Sufficient Decrease 47

In this section we assumed that each realization of the random vari-
ables (uk, γk, ϵk) satisfied the sufficient decrease condition (D1). How-
ever, for the situation in Theorem 3.6 (strongly convex functions), we
could rely on a relaxed condition instead. It is easily checked (see e.g.
equation (3.2)) that a bound on the expected one step progress is suffi-
cient. In the setting of Definition 3.2 this means

E

f(xk+1) | (xi)

k
i=0


≤ f(xk)− α2

k

1

2L
∥∇f(xk)∥2A−1 + E[ϵk] , (E1)

for parameters (α2
k)k≥0. Certainly, the stronger conditions of Theo-

rem 3.6 do imply (E1) for α2
k = E[γkβ2

k]. In the proof of Theorem 3.7
we used the sufficient decrease condition (D1) slightly differently, and
the proof cannot easily be adapted for (E1). However, we will now pro-
ceed by showing that the strong assumptions on (uk, γk, ϵk) might not
be that unrealistic after all. They can for instance be satisfied if an
algorithmic scheme first generates a search direction uk at random, but
then carefully—for instance with a line search—selects a step size such
that (D1) is satisfied for fixed parameters γ and ϵ.

3.4 Line Search with Sufficient Decrease

In this section, we show that sufficient decrease (D1) can be obtained
by solving a one-dimensional optimization problem, i.e. a line search.

Definition 3.8 (Exact line search oracle). For x ∈ Rn, a convex func-
tion f ∈ C1, and a direction u ∈ Rn, a function LSf : Rn × Rn → R

with

f

x+ LSf (x,u)u


= min

h
f(x+ hu) (3.4)

is called an exact line search oracle.

Note that the value of LSf (x,u) does not necessarily follow just
from the definition. The condition (3.4) might be satisfied for an in-
terval [ω1, ω2] of values in R, out of which LSf (x,u) picks an element.
However, on strongly convex function this interval reduces to a point
and the value of LSf (x,u) is uniquely defined by f , x and u. The exact
line search oracle (3.4) is a rather idealistic concept, as we cannot except
to have access to such an oracle for most applications. We now define
(the more practical) inexact line search oracle.

48 Chapter 3. Convergence of Local Search

Definition 3.9 (Inexact line search oracle). For x ∈ Rn, a convex
function f ∈ C1, direction u ∈ Rn, and parameters γ ≥ 0, ϵ ≥ 0,
let f̃ := minh f(x + hu). A function LSf : Rn × Rn → R is called an
(γ, ϵ)-line search oracle if x+ := x + LSf (x,u)u satisfies the following
condition with parameters (γ, ϵ):

f(x+) = f

x+ LSf (x,u)u


≤ (1− γ)f(x) + γf̃ + ϵ . (D2)

It is not hard to see that (D2) implies (D1) for functions with a
quadratic upper bound (2.10).

Lemma 3.10 (D2)⇒ (D1). Let x ∈ Rn, function f ∈ C1
L(A) for metric

A ∈ PDn, search direction u ∈ Rn, step size σ ∈ R, and x+ = x + σu
satisfying the sufficient decrease condition (D2) for parameters (γ, ϵ).
Then x+ satisfies (D1) for parameters (γ, ϵ).

Proof. We use the quadratic upper bound (2.10) to derive an upper
bound on f̃ .

f̃ = min
h∈R

f(x+ hu) ≤ f(x) + min
h∈R


h ⟨∇f(x),u⟩+ h2

L

2
∥u∥2A


≤ f(x)− ⟨∇f(x),u⟩

2

2L ∥u∥2A
= f(x)− β2

A(∇f(x),u)
2L

∥∇f(x)∥2A−1 ,

by the choice h = − ⟨∇f(x),u⟩
2L∥u∥2

A

. The lemma now immediately follows

from the definition (D2).

In Definition 3.9 we define an inexact line search oracle for a fixed
search direction u. If u is sampled from a probability distribution, then
condition (D2) might hold for different parameters (γ, ϵ) for each real-
ization of u. For this reason, we consider in this case also the parameters
(γ, ϵ) as random variables and compute their expected values. Similar
to our discussion at the end of the previous Section 3.3 we could have
formulated condition (D2) slightly differently for random search direc-
tions u. Instead of enforcing (D2) for every single copy of the random
variable u, we could consider the condition

E

f(x+ LSf (x,u)u) | x


≤ (1− γ)f(x) + γE[f̃] + E[ϵ] , (E2)

instead, where the expectation is over the choice of u and γ is now a
fixed parameter. That is, equation (D2) needs to hold for every copy of

3.5. Improvements for Line Search Oracle 49

γ, but only on average for ϵ. By reasoning similar to Lemma 3.10, we
see that (E2) implies (E1) for α2 = γE


β2
A


. Consequently, this relaxed

condition is enough to prove convergence on strongly convex functions—
as before with condition (E1). However, in the next Lemma 3.11 below,
we assume the stronger condition (D2).

3.5 Improvements for Line Search Oracle

We have shown that the line search oracle as introduced in Section 3.4
is a means to achieve the sufficient decrease condition (D1). In The-
orem 3.6 we proved convergence on strongly convex functions. In this
section we show that this result can be extended to a more general class
of functions, if we assume the stronger decrease condition (D2) instead
of only (D1). For this, we provide first a different bound on the one
step progress, i.e. the quantity

fk − E

fk+1 | (xi)

k
i=0


.

3.5.1 One Step Progress

Lemma 3.11 (One step progress). Let (xk)k≥0 denote a Local Search
Scheme (3.1) with independent random search directions (uk)k≥0 and
step sizes (σk)k≥0, that satisfies the sufficient decrease condition (D2)
with random parameters ((γk)k≥0, (ϵk)k≥0) on convex f ∈ C1

L(A) for a
positive definite matrix A. Let fN be defined as in Theorem 3.3. Then

E

f(xk+1) | (xi)

k
k=0


≤ f(xk) + hk ⟨∇f(xk),E [γk ⟨Tk(xk),uk⟩uk]⟩

+
h2kL

2
E

γk ∥⟨Tk(xk),uk⟩uk∥2A


+ E[ϵk] ,

for every Tk : R
n → Rn, hk ∈ R and every k ≥ 0.

Proof. We proceed as in the proof of Lemma 3.10 and use the quadratic
upper bound (2.10) to derive an upper bound on the one step progress.
For fixed xk, ϵk, γk and uk we get

f(xk+1) ≤ (1− γk)f(xk) + γkf̃ + ϵk

= (1− γk)f(xk) + γk ·min
t
f(x+ tuk) + ϵk

≤ f(xk) + γk ·min
t


t ⟨∇f(xk),uk⟩+ t2

L

2
∥uk∥2A


+ ϵk ,

50 Chapter 3. Convergence of Local Search

We set t = hk ⟨Tk(xk),uk⟩ and take the expectation (conditioned on
(xi)

k
i=0) on both sides.

3.5.2 Improved Results

It is not necessary that the function f is strongly convex everywhere for
linear convergence to hold. Theorem 3.12 below shows that convergence
(at about a quarter of the rate of the one in Theorem 3.6) can be
obtained assuming only a weaker condition. Let us recall that strong
convexity with parameter m implies that

f(x)− f(x∗) ≥ m

2
∥x− x∗∥2A ,∀x ∈ Rn , (3.5)

where x∗ = argminx∈Rn f(x). Instead of strong convexity (2.11), the
weaker condition (3.5) is enough for linear convergence. For example a
function that is linear in the neighborhood of one single point y ∈ Rn

is not strongly convex. However, condition (3.5) could still hold if y ̸=
x∗. The theorem below is an immediate consequence of Lemma 3.11.
Generalizations to other distributions (like the ones we will discuss in
Chapter 4) can analogously be obtained.

Theorem 3.12. Let (xk)k≥0 denote a Local Search Scheme (3.1) with
independent random search directions (uk)k≥0 and step sizes (σk)k≥0,
that satisfies the sufficient decrease condition (D2) with random param-
eters ((γk)k≥0, (ϵk)k≥0) on f ∈ C1

L(A) for a positive definite matrix
A. Let fN be defined as in Theorem 3.3. Let γk and ϵk be inde-
pendent and let γk and uk be independent. Assume f has a unique
minimizer x∗ ∈ Rn satisfying (3.5) with m > 0. Let Tk : R

n → R

with E[⟨Tk(xk),uk⟩uk] = (xk − x∗). Suppose E[∥⟨Tk(xk),uk⟩uk∥2A] ≤
θ ∥xk − x∗∥2A for all k ≥ 0. Then

E [fN] ≤ f0 ·
N−1
k=0


1− E[γk]m

4Lθ


+DN , (3.6)

and DN := E[ϵN−1] +
N

i=2

N−1
j=N+1−i


1− mE[γj]

4Lθ


E[ϵN−i].

In Example 3.13 below, we present functions (Tk)k≥0 that satisfy
the assumptions of Theorem 3.12.

3.5. Improvements for Line Search Oracle 51

Proof. We use Lemma 3.11 together with the assumptions on Tk. We
get

E

f(xk+1) | (xi)

k
k=0


≤ f(xk) + hkE[γk] ⟨∇f(xk),xk − x∗⟩

+
h2kE[γk]Lθ

2
∥xk − x∗∥2 + E[ϵk] ,

for any parameters hk ∈ R. Using convexity (2.9) we can bound the
term ⟨∇f(xk),xk − x∗⟩ from below by f(xk)−f(x∗) = fk. Subtracting
f(x∗) on both sides of the above inequality, we arrive at

E

fk+1 | (xi)

k
i=0


≤ (1 + hkE[γk]) fk +

h2kE[γk]Lθ
2

∥xk − x∗∥2A + E[ϵk] ,

≤

1 + hkE[γk] +

h2kE[γk]Lθ
m


fk + E[ϵk] .

for hk ∈ R. The second inequality is due to assumption (3.5). Setting

hk = − m
2Lθ the term in the left bracket becomes


1 − E[γk]m

4Lθ


and the

proof continues as the proof of Theorem 3.6.

First of all, we note that this technique is not restricted to the func-
tion class (3.5). The results of Theorem 3.6 and Theorem 3.7 can be
obtained by the same technique, if we assume the stronger sufficient
decrease (D2) instead of only (D1). The idea to use transformations Tk
with E[⟨Tk(xk),uk⟩uk] = (xk−x∗) was used in [134]. Lemma 3.11 was
the key to our results in [239].

To ensure convergence, the second moment E[∥⟨Tk(xk),uk⟩uk∥2A]
has to be finite. As its magnitude has a large impact on the convergence
rate, one has to provide tight upper bounds. Let us just present one
concrete example.

Example 3.13. Consider the setting of Theorem 3.12 and assume that
the search directions (uk)k≥0 are independent copies u ∼ Sn−1

B−1 for B ∈
PDn, assume uk and γk independent. Then Tk(x) := nB−1(x − x∗)
satisfies

E[⟨Tk(xk),uk⟩uk] = nE[

B−1(xk − x∗),uk


uk] = xk − x∗ ,

and

E

∥⟨Tk(xk),uk⟩uk∥2A


≤ nκT(AB) ∥xk − x∗∥2A ,

where κT(AB) := 1
n+2


Tr[AB]λ−1

min(AB) + 2

.

52 Chapter 3. Convergence of Local Search

Proof. The required expected values are presented in Lemma A.7 on
page 114 in the appendix. We have E[⟨y,uk⟩uk] =

1
nBy for y ∈ Rn,

this shows the first claim for the choice y = B−1(x − x∗). And the

second moment E[∥n ⟨y,uk⟩uk∥2A] =
n

n+2


Tr[AB] ∥y∥2B−1 + 2 ∥y∥2A


.

It remains to note

n

n+ 2


Tr[AB] ∥xk − x∗∥2B−1+ 2 ∥xk − x∗∥2A


≤ nκT(AB) ∥xk − x∗∥2A ,

where we used Lemma 2.2 from page 35 to bound ∥xk − x∗∥2B−1 ≤
λ−1
min(AB) ∥xk − x∗∥2A.

3.6 Two Concentration Bounds

In Section 3.3 above we derived two upper bounds on the expected error
E[fN] for randomized schemes. We already mentioned that we could
also use Theorem 3.3 directly to bound E[fN]. However, for this we
need to calculate the expected values E[e−SN] and E[1/SN] according
to part (i) and (ii), respectively. We now argue why it is typically enough
to consider only lower bounds on the considerably simpler expression
E[SN].

Let s > 0 and suppose that the inequality 1
N SN ≥ s holds for one

specific realization of the random variables γkβ
2
k. For the same realiza-

tion it holds SN ≥ Ns and therefore e−SN ≤ e−Ns and 1/SN ≤ 1/(Ns).
If the inequality 1

N SN ≥ s holds with high probability, then Theorem 3.3
provides high probability upper bounds on fN . If the random variables
γkβ

2
k are independent, then by the Central Limit Theorem the mean

1
N SN is indeed concentrated around its expected value for large N .
Thus for s slightly smaller value than 1

NE[SN] and N large enough,
the inequality 1

N SN ≥ s holds with high probability. Independence of
the γkβ

2
k does for instance hold for Random Pursuit algorithms if the

search directions (uk)k≥0 are generated independently at random and
the search steps are then computed as to satisfy (D1) for some fixed
gain γ > 0, even independent of k, say.

Fact 3.14 (Central Limit Theorem). Let (Xk)k≥0 be a sequence of
independent random variables with finite expectations and variances:

µ ≤ E[Xk] =: µk ≤ µ̄ <∞ , V[Xk] =: σ2
k ≤ σ2 <∞ , ∀ k ≥ 0. (3.7)

3.6. Two Concentration Bounds 53

The random variables Zm := 1
zm

m−1
k=0 (Xk−µk), with z

2
m :=

m−1
k=0 σ

2
k,

converge in distribution to a standard normal random variable N (0, 1)
as (m→∞).

Proof. The random variables (3.7) satisfy Lindenberg’s condition [144]
and therefore the Central Limit Theorem (see e.g. [9, §7]) holds.

The bounded1 random variables γkβ
2
k ∈ [0, 1] clearly satisfy the con-

ditions for the Central Limit Theorem 3.14. Unfortunately, the Central
Limit Theorem does not make a statement about the rate of conver-
gence, i.e. what “N large enough” really means. In the following, we
provide two simple concentration bounds that answer this question more
precisely.

3.6.1 Linear Convergence

Consider the situation in part (i) of Theorem 3.3 and suppose E[γkβ2
k] ≥

µ > 0 for k ≥ 0 and CN = 0. By independence,

E[fN] ≤ f0
N−1
i=0


1− mE[γkβ2

k]

L


≤ f0


1− mµ

L

N
. (3.8)

The expected value of fN decreases exponentially. This is also called
linear convergence. This decay is fast enough that Markov’s inequality
gives a useful concentration bound.

Lemma 3.15 (Markov). Let (Xk)k≥0 be a sequence of nonnegative ran-
dom variables such that E[Xk] ≤ C(1− c)k, for 0 < c ≤ 1, and C ≥ 0,
and let a ≥ 1. Then for all k ≥ 0,

Xk ≤ aE[Xk] = aC(1− c)k ,

with probability at least 1− 1
a .

Proof. By the Markov inequality2, the probability that Xk exceeds its
expectation by more than a factor of a is at most 1/a, and this yields
the claim.

Put differently, for ϵ > 0 we need K = 1
c ln

C
ϵ iterations for E[XK] ≤

ϵ. At the expense of additional 1
c ln a iterations, XK′ ≤ ϵ with proba-

bility 1− 1
a , for K

′ = 1
c ln

aC
ϵ .

1V[X] ≤ (b−a)2

4
for random variable X ∈ [a, b], for −∞ < a ≤ b < ∞, cf. [39].

2Pr[X ≥ a] ≤ E[X]a−1 for a > 0 and nonnegative random variable X.

54 Chapter 3. Convergence of Local Search

3.6.2 Small Deviation

To apply Markov’s inequality we only need to know the expectation of
a random variable. If we have a bound on the variance, we can also
apply Chebyshev’s Inequality3.

Lemma 3.16 (Chebyshev). Let (Xk)k≥0 be a sequence of independent

random variables satisfying (3.7). And denote SN :=
N−1

k=0 Xk. Then
for ϵ > 0,

Pr

1
N SN ≤ µ− ϵ


≤ σ2

Nϵ2
. (3.9)

Proof. The random variable 1
N SN , satisfies µ ≤ 1

NE[SN] < ∞ and

V[1N SN] ≤ σ2

N . Therefore, a direct application of Chebyshev’s Inequality
yields

Pr

1
N SN ≤ µ− ϵ


≤ Pr


1
N |SN − E[SN]| ≥ ϵ


≤ σ2

Nϵ2
.

The ϵ in in (3.9) has to be chosen smaller than µ, say ϵ = bµ for
0 < b ≤ 1. In order that 1

N SN ≥ (1−b)µ with nontrivial probability, the

number of iterations N has to be at least N = Ω(σ
2

µ2). This condition

simplifies to N = Ω(1µ) by the following observation.

Fact 3.17. Let X be a random variable X ∈ [0, 1]. Then V[X] ≤ E[X].

Proof. For all x ∈ [0, 1], x2 ≤ x, thus V[X] = E[X2]−E[X]2 ≤ E[X].

For typical applications4 we can indeed expect N = Ω(1µ) and the

(high) probability bound of Lemma 3.16 holds.

Remark 3.18. For typical applications, N = Ω(1µ).

Proof. We observe in Theorem 3.3 that the fastest convergence is ob-
tained in part (i). Although the theorem does not provide a lower bound
on the number of iterations N , we conclude with regard to (3.8) that the
number N of iterations should be at least N = Ω(1µ) in order guarantee
a decrease of the initial error f0 by a constant factor.

3Pr[|X − E[X]| ≥ a] ≤ V[X]a−2 for a > 0 and random variable X with E[X] < ∞
and V[X] < ∞.

4In [236, 239] N = Ω(n), and even N = Ω(n2) in [233, 235].

Chapter 4

Random Pursuit

In this chapter we are concerned with the question how an algorith-
mic scheme can generate steps that satisfy the sufficient decrease con-
dition (D1). We study Random Pursuit algorithms where the search
directions (uk)k≥0 are independent copies of a random variable u ∼ π,
for specific, but fixed probability distributions. We assume that the step
sizes σk in scheme (2.2) are generated such as to satisfy condition (D1).
We have already mentioned that the step sizes could (for instance) be
generated by a line search, and the scheme looks in this case as follows:

xk+1 = xk + LSf (xk,uk) · uk . (4.1)

The use of a line search oracle has two prominent advantages: (i) it
renders the scheme (4.1) invariant under monotonic transformations of
the objective functions. By this me mean that the steps taken by (4.1)
are the same on any two functions whose level sets agree. Like for the
Evolution Strategies discussed in Section 2.4. And (ii) it does not require
an additional input, e.g. user defined parameters. The gradient-based
schemes, see e.g. [184] typically require an upper bound on the curvature
L as an input (however, this parameter can also be estimated).

We have seen in Lemma 3.10 that the exact line search oracle sat-
isfies (D1) with parameter γ = 1 (and ϵ = 0). The inexact line search
oracle (D2) was defined in such a way that that the parameters γ in (D1)
and (D2) both agree. However, it might not be clear how a practical
line search oracle could be implemented such as to indeed satisfy this
condition. We clarify this in Section 4.1 below.

The second ingredient in scheme (4.1) is the probability distribu-

55

56 Chapter 4. Random Pursuit

description u ∼ π E

β2
A(∇f(x),u)


≥ (· · ·)−1 Ex.

Gradient u = ∇f(x) (λmin(A)+λmax(A))2

4λmin(A)λmax(A) 4.6

Newton u = A−1∇f(x) 1 4.7

unit sphere u ∼ Sn−1
B−1

nκ(AB) 4.9

n(Tr[AB]λ−1
min(AB)+2)

n+2 =: nκT(AB)
4.12

κE ≤ κT ≤ κ (Rem. 4.13) n(Tr[AB]σ(∇f(x))+2)
n+2 =: nκE(A,B,∇f(x))

rank-one U ∼ Sn2−1
1

n(n+2)
2 4.16

discrete u ∼ {ei}ni=1 nκ(A) 4.14

weighted u ∼w T
C−1


2
· ∥C∥F

2
=: κ2F(C) 4.15

subsample u∼{ui∼Sn−1}Θ(n)
i=1 (1− ϵ)nκT (In) 4.18

Table 4.1: Upper bounds on

E

β2
A

−1
(i.e., lower bounds for E


β2
A


) for

different probability distributions π. The right column denotes the number
of the example where the according result is derived and proper notation
introduced. The results can be found on page 62–69.

tion π, according to which the search directions are sampled. The most
important example that we are going to study are vectors sampled uni-
formly from a unit sphere Sn−1

B , where B ∈ PDn is an arbitrary metric.
This should be read as follows: the metric A ∈ PDn, that appears for
instance in Theorem 3.6, is a purely theoretical variable that we can
tune to fit the objective function: it has to hold f ∈ C1

m,L(A) in metric
A for certain parameters m,L that, ideally, are as close as possible. For
instance for f(x) = 1

2 ∥x∥
2
A quadratic, we would simple take A itself

as the metric, and then f ∈ C1
1,1(A). However, for a black-box opti-

mization problem (OPT), we don’t know the right metric, even if f is
quadratic, say. Thus, we have to decide on a metric B ∈ PDn to work
in, often we simply take B = In. We have to quantify the impact on
the convergence rate if a suboptimal B is picked.

In Section 4.2 we present a large selection of (well-chosen) exam-
ples of probability distributions. Besides the uniform distributions on
spheres, we also discuss discrete distributions on either fixed, or ran-
domly generated, sets of (unit) vectors. Lastly, we consider also a spe-
cific distribution in SYMn, the space of symmetric n× n matrices. All

4.1. Line Search 57

these three examples will be important for the applications that we
consider in Chapter 5.

With regard to Theorem 3.6 we have to study the convergence factor
1−

E

γβ2

A


m

L


(4.2)

in order to estimate the expected convergence on f ∈ C1
m,L(A). The

quantities m and L are just fixed parameters. If step sizes are generated
by a line search, like in (4.1), then it is reasonable to assume that the
line search oracle works independently of the current search direction
uk, and that the sufficient decrease can be estimated by two param-
eters γ and ϵ, uniformly over all steps k ≥ 0. Hence, all that is left
to do is to study the expectation E


β2
A


in (4.2). The angle measure

βk = βA(∇f(xk),uk) in (A1) was defined as a function of the gradient
∇f(xk) of the objective function at xk, the search direction uk and a
positive definite matrix A. In Section 4.2 we study (the expectation of)
β2
A(∇f(x),u) for arbitrary x ∈ Rn and search direction u ∼ π.

4.1 Line Search

From a theoretical point of view, the inexact line search oracle (D2)
is quite satisfactory, as it handles relative (γ) and absolute (ϵ) errors.
However, from a practical point of view, it is not clear how one can
efficiently check if condition (D2) holds, as it involves the unknown
quantity f̃ . We now define an inexact line search that measures the
quality of the step in terms of the step size

LSf  instead of the im-
provement in function value (D2). Such a condition might be easier to
verify, as we will elaborate below. The following definition generalizes
the situation discussed in [239].

Definition 4.1 (Relative/absolute accuracy). Let x ∈ Rn, f ∈ C1

convex, direction u ∈ Rn, and parameter µ ≥ 0. Denote

ω1 := min


argmin

h
f(x+ hu)


, ω2 := max


argmin

h
f(x+ hu)


.

That is, the interval [ω1, ω2] describes the set of line search minima.

(i) A function LSf : Rn×Rn → R is a line search oracle with absolute

58 Chapter 4. Random Pursuit

error µ with respect to normalization B−1 ∈ PDn, if for u ∈ Sn−1
B−1 ,

ω1 − µ ≤ LSf (x,u) ≤ ω2 + µ . (L1)

(ii) A function LSf : Rn×Rn → R is a line search oracle with relative
error µ, if:

ω1 ≤ LSf (x,u) ≤ ω2 ,

µ · ω1 ≤ LSf (x,u) ≤ ω2 + δf ,

µ · ω2 ≥ LSf (x,u) ≥ ω1 − δf ,

if ω1ω2 ≤ 0 ,

if ω1 > 0 ,

if ω2 < 0 ,

(L2)

where δf =

2µ(f(x)− f̃)/L/ ∥u∥A for f ∈ C1

L(A), and δf = 0

if f /∈ C1
L(A), i.e. if the curvature of f is not bounded.

Of course, the quantity δf in (L2) is unknown in general, which
renders this definition less practical than advertised. This problem de-
pendence can be avoided by requiring (L2) to hold for δf = 0. The more
general condition just shows that (in theory) less accuracy is needed if
f ∈ C1

L(A).

Lemma 4.2 (L1,L2) ⇒ (D2). Let x ∈ Rn, f ∈ C1
L(A) for metric

A ∈ PDn, search direction u ∈ Rn, and LSf : Rn × Rn → R a line
search oracle with absolute or relative error.

(i) If LSfsatisfies (L1) for µ ≥ 0, then x+ := x+LSf (x,u)u) satisfies
the sufficient decrease condition (D2) with γ = 1, ϵ = µL/2.

(ii) If LSfsatisfies (L2) for µ ≥ 0, then x+ := x+LSf (x,u)u) satisfies
the sufficient decrease condition (D2) with γ = 1− µ, ϵ = 0.

Proof. If ω1 ≤ x+ ≤ ω2 then (D2) holds for γ = 1 and ϵ = 0 by
definition (L1, L2) of the line search.

We first show (ii). Assume ω1 ≥ 0 (otherwise replace u by −u). If

µω1 ≤ LSf ≤ ω1 then (D2) follows for γ = (1 − µ) by the definition of

convexity (2.9). For ω2 ≤ LSf ≤ ω2 + δf , we use the quadratic upper
bound (2.10) and deduce:

f(x+) ≤ f̃ +
L

2

LSf (x,u)u− ω2u
2
A
≤ f̃ +

Lδ2f
2
∥u∥2A , (4.3)

4.1. Line Search 59

and by definition of δf the right hand side equals (D2) with γ = (1−µ)
and ϵ = 0.

Now we proceed to part (i). Assume ω2 ≤ LSf ≤ ω2 + µ. Using the
quadratic upper bound (2.10) we can derive an upper bound on f(x+):
just replace δf by µ in (4.3). With Lemma 2.2 we can continue

f(x+) ≤ f̃ +
Lµ2

2
∥u∥2A ≤ f̃ +

Lµ2λmax(AB)

2
∥u∥2B−1 ,

and we see that (D2) hold for γ = 1 and ϵ = Lµ2λmax(AB)/2.

4.1.1 Bisection

The one dimensional optimization problem (D2) can for instance be
solved by Bisection Search. If an accuracy µ in (L1) is fixed, then
the approximate localization of LS can be done with O(lnR + lnµ−1)
function evaluations. Here R is an upper bound on the largest possible
value of LS, for instance R as defined in Theorem 3.3 [115, 130].

4.1.2 Gradient Oracles

The estimation of directional derivatives can sometimes be easier than
the estimation of the whole gradient. If the step sizes are chosen pro-
portional to the directional derivative, then (D1) holds.

Example 4.3. Let f ∈ C1
L(A) for metric A ∈ PDn. Let x ∈ Rn, search

direction u ∈ Sn−1
A , and 0 ≤ t ≤ 2

L . Then x+ := x − t ⟨∇f(x),u⟩u
satisfies (D1) with parameters γ = tL (2− tL) and ϵ = 0. Note that
mint tL(2− tL) = 1, and the minimum is attained for t∗ = 1

L .

Proof. This is a simple consequence of the quadratic upper bound (2.10).
We check

f(x+) ≤ f(x)− t ⟨∇f(x),u⟩2 + t2
L

2
⟨∇f(x),u⟩2

= f(x)− tL (2− tL) β
2
A(∇f(x),u)

2L
∥∇f(x)∥2A−1 .

If directional derivatives cannot be computed, one can use estimation
by finite differences. However, one has to bound the approximation
error. Such analysis has for instance been carried out in [184]. In the
present work we focused on gradient-free schemes, therefore we don’t
present more details here.

60 Chapter 4. Random Pursuit

4.1.3 Special Case: Quadratic Functions

On quadratic functions f(x) = 1
2 ∥x∥

2
A for A ∈ PDn both the steps gen-

erated by the exact line search oracle LSf and the directional derivatives
do coincide.

Remark 4.4. Let f(x) = 1
2 ∥x∥

2
A quadratic for A ∈ PDn and let x ∈ Rn

and u ∈ Rn. Then LSf (x,u) = − ⟨∇f(x),u⟩
∥u∥2

A

.

Proof.

LSf (x,u) = argmin
h

1

2
(x+ hu)

T
A (x+ hu)

= argmin
h


huTAx+

1

2
h2uTAu


.

The right hand side is minimized for − ⟨∇f(x),u⟩
∥u∥2

A

.

On quadratic functions, the exact line search oracle can be easily
computed by interpolation (up to numerical precision).

Example 4.5 (Interpolation). Let f(x) = 1
2 ∥x∥

2
A quadratic for A ∈

PDn and let x ∈ Rn and u ∈ Rn. For arbitrary shift s ∈ R, denote
fs = f(x + su), f+ := f(x + (s + ϵ)u), and f− := f(x + (s − ϵ)u) for
parameter ϵ > 0. Then

LSf (x,u) = − b
a
, (4.4)

for curvature a = f+−2fs+f−
ϵ2 and declivity b = f+−f−

2ϵ .

This is a simple consequence of the fact that f is a quadratic function
and can be derived with elementary computations. We present the
proof in the appendix on page 118 for completeness. The statement
can also be generalized by interpolation at three distinct points x+ su,
x+ (s+ ϵ1)u), x+ (s− ϵ2)u), ϵ1, ϵ2 > 0, ϵ1 ̸= ϵ2, on the line defined by
x+tu. Likewise, for any convex polynomial p of degree 2k, interpolation
at 2k + 1 different points yields the exact value of LSp.

4.1.4 One-Fifth Success Rule

To conclude this short discussion of line search oracles, we would like
to present a comment on the 1/5-th success rule that was introduced in

4.1. Line Search 61

Section 2.4.1. This scheme can be viewed as a very simplistic (inexact)
line search oracle: it samples just one point on the line defined by xk

and the direction uk and with constant probability it finds a point with
better function value than xk. Albeit this is not enough to guarantee
fast convergence (see Section 2.3.1), it has been shown (see e.g. [25, 222])
that this scheme is efficient on certain quadratic functions.

The proofs in [23, 24, 111, 209, 220] typically work in two steps: they
(i) derive what the optimal step size should be to satisfy (2.3), and then
(ii) try to show that an actual implementation of (2.3) produces steps
that are actually close to the optimal value.

We now put one small comment that should clarify what we could
expect from a rigorous proof to show—at least for quadratic objective
functions. Assume f(x) = 1

2 ∥x∥
2
A for A ∈ PDn, and choose a random

search direction u ∼ N (0, In), as for instance in CMA-ES. We compute
the one step progress of (1+1)-ES. For simplicity, we consider only steps
that go in the right direction, i.e. ⟨∇f(x),u⟩ ≥ 0. Note that not all these
steps are necessarily successful (leading to a better function value) and
would therefore be rejected by the 1/5-th success rule as defined in (2.6).
For a fixed step size σ we have by Taylor expansion for x+ := x+ σu:

E

f(x+) | ⟨∇f(x),u⟩ ≥ 0


= f(x)− σE


|⟨∇f(x),u⟩|


+
σ2

2
E

∥u∥2A


.

The value of the latter expression is presented in Fact A.2 in the ap-
pendix. But we don’t have a simple expression for the first expectation
on the right hand side. By concentration of measure (cf. e.g. [157]) for

normal random variables, the value of the square ⟨∇f(x),u⟩2 is strongly
concentrated around its expectation E[⟨∇f(x),u⟩2] = ∥∇f(x)∥2 for di-
mension n large enough. Thus we can argue that E[|⟨∇f(x),u⟩|] ≈
∥∇f(x)∥, which in turn implies that the progress can be estimated as

f(x)− E

f(x+) | ⟨∇f(x),u⟩ ≥ 0


' σ ∥∇f(x)∥ − σ2

2
Tr[A]

'
1

2Tr[A]
∥∇f(x)∥2 .

The second inequality follows by plugging-in the “optimal” step size

σ(x) ≈ ∥∇f(x)∥
Tr[A] that maximizes the term in the middle. For a quadratic

function we have ∇f(x) = Ax, and together with Lemma 2.2 from

page 35 we deduce ∥∇f(x)∥2 ≥ λmin(A) ∥x∥2A = 2λmin(A)f(x). In

62 Chapter 4. Random Pursuit

summary, the one step progress for the optimal step size is

f(x)− E

f(x+) | ⟨∇f(x),u⟩ ≥ 0


≈

1− λmin(A)

Tr[A]


  
≈(1−(nκT(A))−1)

f(x) ,

Thus, not surprisingly, for optimal step size σ(x)—despite the fact that
the step size is independent of the direction u, e.g. fixed—we get ap-
proximately the same bound on the one step progress as we will derive
for Random Pursuit algorithms with exact line search (see Table 4.1,
or Example 4.12 below). Of course, the “'” in the above derivation
has to be read with care. Thus, we do not claim that the scheme (2.3)
works as good as an exact line search, but we cannot be surprised if the
expected one step progress (E1) is almost as big (up to a small constant
factor) as for schemes with exact line search, i.e. as we would expect for
an inexact line search oracle for accuracy γ < 1.

4.2 Search Directions

As mentioned in the introduction, we will now present lower bounds for
E

β2
k


for certain exemplary sampling distributions. The angle measure

βk in (A1) was defined as a function of the gradient ∇f(xk) of the
objective function at xk, the search direction uk and a positive definite
matrix A. In the following we study β2

A(y,u) for arbitrary y ∈ Rn and
search direction u ∈ Rn. Setting y = f(xk) and u = uk yields β2

k.

4.2.1 Deterministic Search Directions

Among the popular deterministic schemes, there are essentially two
classes: (i) schemes that try to estimate properties of the objective
function and compute approximations to the gradient or Newton direc-
tions, and (ii) schemes that simply try all (or maybe less) directions
from a predefined set and then select the best one. We do not discuss
schemes of the second kind now, as their efficiency can easily be ob-
tained by looking at their randomized counterparts (picking a direction
uniformly at random from the set).

Example 4.6 (Gradient Direction). Let A ∈ PDn, y ∈ Rn, βA the
angle measure as defined in (A1) and let λmin/max(A) denote the small-

est and largest eigenvalue of A and vmin/max with
vmin/max

 = 1 the

4.2. Search Directions 63

corresponding eigenvectors. Then

4λmin(A)λmax(A)

(λmin(A) + λmax(A))2
≤ β2

A (y,y) ≤ 1 .

The lower bound is obtained if y is proportional to either (vmin+vmax)
or (vmin − vmax), the upper bound is obtained if y is an eigenvector of
A.

Proof. The upper bound is obtained from the Cauchy-Schwarz Inequal-
ity1. Let A1/2 denote the symmetric, positive definite square root of

A. Then

A1/2y, A−1/2y

2 ≤ A1/2y, A1/2y
 
A−1/2y, A−1/2y


. This

shows the upper bound. If y is an eigenvalue of A with eigenvalue λ,
then βA(y,y) = λλ−1 = 1, and the upper bound is tight. The lower
bound is known as Kantorovich’s Inequality2 [204, §20.3], a nice proof
can be found in [39] and is omitted here.

For the choice y = ∇f(xk), this example shows that the gradient
direction is in general not optimal (with respect to the angle condi-
tion). A better direction is the Newton-Raphson direction, defined as
A−1∇f(xk).

Example 4.7 (Newton-Raphson Direction). The direction A−1y is op-
timal: βA(y, A

−1y) = 1.

4.2.2 Towards Random Search Directions

In the following we study the expression β2
A(y,u) for arbitrary y ∈ Rn

and random search direction u ∈ Rn. The angle measure βA is in-
dependent of the scaling of u, therefore it suffices to discuss random
directions from a compact, centrally symmetric set, like the sphere
Sn−1
B−1 := {x ∈ Rn : ∥x∥B−1 = 1} for B ∈ PDn.

Lemma 4.8. Let A,B ∈ PDn and π a probability distribution over
Sn−1
B−1with covariance Eu∼π[uu

T] ≽ Σ for Σ ∈ PDn. Here ≽ denotes the
Löwner ordering on the cone of positive semi-definite matrices, and we
write X ≽ Y if X − Y is positive semi-definite. Then

min
y∈Rn

E

β2
A(y,u)


≥ λmin(AΣ)

λmax(AB)
.

1|⟨x,y⟩|2 ≤ ⟨x,x⟩ ⟨y,y⟩ for x,y ∈ Rn and scalar product ⟨·, ·⟩.
2The version here is a special case of Bühler’s Inequality [39]: 1 ≤ E[X]E[1/X] ≤

(a+ b)2/(4ab), for X random variable on [a, b], 0 < a ≤ b < ∞.

64 Chapter 4. Random Pursuit

Proof. With Lemma 2.2 we estimate ∥u∥2A ≤ λmax(AB) ∥u∥2B−1 =
λmax(AB) for u ∈ Sn−1

B−1 . Therefore by linearity of expectation

λmax(AB)E [βA(y,u)] ≥ E


⟨y,u⟩2

∥y∥2A−1


=

yTE[uuT]y

∥y∥2A−1

≥
∥y∥2Σ
∥y∥2A−1

.

With Lemma 2.2 we have ∥y∥2Σ ≥ λmin(AΣ) ∥y∥2A−1 and the statement
follows.

4.2.3 Spherical and Elliptical Distributions

The most important example of a continuous distribution is the uniform
distribution on the unit ball Sn−1. We consider here a specific class of
anisotropic distributions, namely elliptic distributions, see Section 2.5.5.

Example 4.9 (Simple estimate). Let A,B ∈ PDn and let u ∼ Sn−1
B−1 .

Then

min
y∈Rn

E [βA(y,u)] ≥
1

nκ(AB)
,

where κ(AB) denotes the condition number of AB.

Proof. By Lemma A.7 we have E[uuT] = 1
nB, and the statement follows

with Lemma 4.8.

Remark 4.10 (Beta distribution). Zielinksy [264] demonstrated that
for B = A−1, that is, u ∼ Sn−1

A , the random variable β2
A(y,u) is

Beta

1
2 ,

n−1
2


distributed (independent of y ∈ Rn). Especially, it fol-

lows the expression for the variance: V[β2(y,u)] = 2(n−1)
n2(n+2) .

We see that Example 4.9 provides the best bound for B = A−1.
For B = In the estimate depends on the condition number κ(A), and
for B = A even worse on κ(A2). The following remark presents a
well-known technique that prevents the explosion of the error term and
provides a bound in term of only κ(A). The matrix C represents the
(bad or good) estimate of A−1.

Remark 4.11 (Importance sampling). Let A,C ∈ PDn, ϵ > 0 and
let π denote a distribution on Sn−1 with covariance Σ satisfying nΣ =
ϵIn + (1− ϵ)C. Then

min
y∈Rn

E [βA(y,u)] ≥
ϵ

nκ(A)
.

4.2. Search Directions 65

Proof. Observe λmin(AΣ) = ϵλmin(A) + (1 − ϵ)λmin(AC) ≥ ϵλmin(A)
and the claim follows from Lemma 4.8.

However, note that this approach prohibits perfect learning, i.e. the
convergence rate cannot become independent of κ(A), even if C = A−1

(unless ϵ→ 0). If B = ϵIn + (1− ϵ)A in Example 4.9, then κ(AB−1) =
κ(BA−1) ≥ ϵκ(A).

Example 4.12 (Improved estimates). Let A,B ∈ PDn and let u ∼
Sn−1
B−1 . Then

E

β2
A(y,u)


≥ n+ 2

n (Tr[AB]σ(y) + 2)
=:

1

nκE(A,B,y)
(4.5)

≥ n+ 2

n

Tr[AB]λ−1

min(AB) + 2
 =:

1

nκT(AB)
, (4.6)

where σ(y) := ∥y∥2(ABA)−1 · ∥y∥−2
A−1 ≤ λ−1

min(AB).

This example improves upon the previous bound E

β2
A


≥ 1

nκ(AB)

from Example 4.9: The quantity κT(AB) depends not only on the two
extreme eigenvalues of the matrix AB, but on the trace Tr[AB]. For n
large enough, we have nκT(AB) ≈ λ−1

min(AB) · Tr[AB], which could be
much smaller than nκ(AB), if a many eigenvalues of AB are small.

Remark 4.13. For A,B ∈ PDn and y ∈ Rn arbitrary,

κE(A,B,y) ≤ κT(AB) ≤ 1

n
Tr[AB]λ−1

min(AB) ≤ κ(AB) .

Proof. The first inequality follows directly from Example 4.12. For
AB ∈ PDn, the latter two follow from Lemma 2.1 on page 34. We
observe that the three quantities κT(AB), Tr[AB]λ−1

min(AB) and κ(AB)
only depend on the eigenvalues of AB. Therefore the claim follows from
the fact that the two matrices AB and B1/2AB1/2 ∈ PDn both have
the same eigenvalues, see e.g. [204, Prop. 13.2].

Proof of Example 4.12. To compute E

β2
A(y,u)


we face the challenge

to compute the expectation of a ratio of two quadratic forms, E

uTY u
uTAu


,

for Y = yyT . This task has been treated in the literature (see e.g. [156]
or the discussion in Section A.1.3) but the formula depends on integrals
which have to be approximated numerically. We are only interested in

66 Chapter 4. Random Pursuit

a lower bound, therefore we can apply the following trick. For fixed
y ∈ Rn and u ∈ Rn we observe

⟨y,u⟩2

uTAu
= max

t


2t ⟨y,u⟩ − t2uTAu


≥ max

h


2h

(AB)−1y,u


⟨y,u⟩ − h2


(AB)−1y,u

2
uTAu


,

where the equality follows by standard calculus, and the inequality by
suboptimally setting t = h


(AB)−1y,u


. The maximum is a convex

function. Let denote EA = E
 ⟨y,u⟩2
uTAu


. With Jensen’s inequality3 and

the expectations from Lemma A.7 on page 114 in the appendix, we
estimate

EA ≥ max
h


2hE


(AB)−1y,u


⟨y,u⟩


− h2E

(AB)−1y,u

u
2
A


= max

h


2h
∥y∥2A−1

n
− h2

Tr[AB] ∥y∥2(ABA)−1 + 2 ∥y∥2A−1

n(n+ 2)



≥
(n+ 2) ∥y∥4A−1

n

Tr[AB] ∥y∥2(ABA)−1 + 2 ∥y∥2A−1

 =
∥y∥2A−1

nκE(A,B,y)
,

where the last inequality follows by the choice h =
∥y∥2

A−1

κE(A,B,y) . This

implies inequality (4.5), as claimed. With Lemma 2.2 from page 35

we estimate ∥y∥2(ABA)−1 ≤ ∥y∥2A−1 λmax((BA)
−1) = ∥y∥2A−1 λ

−1
min(AB),

and the last inequality (4.6) follows as well.

4.2.4 Discrete Distributions

The entries of a random unit vector are nonzero with probability one.
Thus any computation that involves this vector, say computing a scalar
product, requires at least Ω(n) time. From a computational point of
view, sparse vectors (with only constantly many nonzero entries) are
preferable if (i) the sparsity can be efficiently exploited, and (ii) the
convergence rate is not much worse than for the best possible search
directions. We show, that the expected squared angle measure for uni-
form random standard unit vectors is not worse than for uniform random
unit vectors. This idea is exploited for instance for Random Coordinate
Descent [185] or also for a similar application in [140].

3E[φ(X)] ≥ φ(E[X]), for convex φ and random variable X.

4.2. Search Directions 67

Example 4.14. Let A ∈ PDn and let u ∼ {ei : i = 1, . . . , n}, the set of
standard unit vectors, ⟨ei,x⟩ = xi, for all x ∈ Rn. Then

min
y∈Rn

E

β2
A(y,u)


≥ 1

n
.

Proof. We calculate the expectation E[uuT] explicitly:

E

uuT


=

1

n

n
i=1

eie
T
i =

1

n
In ,

and the statement follows with Lemma 4.8.

Now we consider an example of a non-uniform discrete distribution.
Suppose A = B = In and let T ⊂ Sn−1 denote a (discrete) set of m unit
vectors in Rn. Instead of sampling the vectors yi ∈ T for i = 1, . . . ,m
uniformly, sample each vector yi ∈ T with weight wi ≥ 0, denoted as
u ∼w T . We will use this example in Section 5.3 below.

Example 4.15 (Weighted Discrete; adapted from [240]). Let A = B =
In and C ∈ Rm×n with non-zero row vectors cTi ∈ Rn, for i = 1, . . . ,m
and m ≥ n. Let T := { ci

∥ci∥ : i = 1, . . . ,m} ⊂ Sn−1 denote the normal-

ized set of row vectors and sample u ∼w T with weights according to
the norm wi = ∥xi∥22. If C has full rank n, the left inverse C−1 with
C−1C = In exists and

min
y∈Rn

E

β2
In(y,u)


≥
C−1


2
∥C∥F

−2
=: κ−2

F (C) .

The proof of this statement goes in two parts: we want to apply
Lemma 4.8 but for this we need a lower bound on the smallest eigenvalue
of the covariance Σ, with Σ = Eu∼wT [uu

T]. We provide the required
details in the appendix on page 119.

4.2.5 Rank-One Matrices

We would like to present another application in the space SYMn, of
symmetric n × n matrices. This example will be of importance later
in Section 5.2. Let Sn2−1 = {X ∈ SYMn : ∥X∥F = 1} denote the
unit norm ball in SYMn. Ideally, we would like to sample search di-
rections uniformly from Sn2−1. However, we have seen in the previous
Section 4.2.4 that sampling from a subset of the norm ball can be suf-
ficient for the optimization task, and such distributions can often more

68 Chapter 4. Random Pursuit

easily be generated. Indeed, we can define a distribution over symmet-
ric rank-one matrices by setting U = uuT for u ∼ Sn−1, denoted as

U ∼ Sn2−1
1 . For simplicity, we assume that A = B = In2 .

Example 4.16 (Rank-one matrices). Let β(Y, U) := ⟨Y,U⟩
∥Y ∥F ∥U∥F

denote

the angle measure in SYMn and let U ∼ Sn2−1
1 . Then

E

β2(Y,U)


=

2 + Tr[Y]2 ∥Y ∥−2
F

n(n+ 2)
≥ 2

n(n+ 2)
,

for all Y ∈ SYMn.

Proof. The result follows directly from Lemma A.7.

4.2.6 Sampling from Random Sets

In Example 4.15 we discussed random sampling of search directions
from a fixed set of vectors. However, we did not address the question of
how to generate a set with good search directions. It turns out that a
linear number of random vectors from Sn−1 is a good choice with high
probability. This result is not due to us, but follows from a more general
Theorem by Adamczak et al. [3].

The problem that we consider (in the form as stated in [249]) is the
following: how well can one approximate one dimensional marginals of
a distribution in Rn by sampling? Consider a random variable X and
sampleN independent copies (Xi)

N
i=0 ofX. The hope is, that the empir-

ical marginal p-th moments of these samples give a good approximation
of the actual marginal p-th moment,

sup
x∈Sn−1

 1N
N
i=1

|⟨Xi,x⟩|p − E

|⟨X,x⟩|p

 ≤ ϵ . (4.7)

One is interested in the sample complexity N for which (4.7) holds
with high probability. For p = 2, this problem is equivalent to ap-
proximating the covariance matrix of X by a sample covariance matrix.
This question was investigated by Kannan et al. [125] motivated by the
problem of computing volumes of convex bodies in high dimensions.
If X is standard normal, then E[XXT] = In and N = Ω(n) sam-
ples are enough [49]. In general, for distributions with E[XXT] = In,
N = Ω(n lnn) is needed, as can be seen by considering a random
vector X uniformly distributed on a set of n orthogonal vectors of

4.2. Search Directions 69

length
√
n [214]. For distributions over convex bodies Bourgain [31]

was the first to show N = O(n ln3 n), this was later improved to N =
O(n lnn) [3, 10, 70, 86, 161, 195, 213, 249]. For p ̸= 2 the problem was
also studied in [3, 32, 71, 86, 160]

In our case, we sample vectors uniformly from the unit sphere. The
result of Rudelson [213, 214], shows that N = O(n lnn) are enough to
approximate the covariance. The logarithmic term was recently removed
by Adamczak et al. [3]. Concretely, their result implies the following:

Fact 4.17 (Adamczak et al. [3]). Let u1, . . . ,uN be i.i.d. copies of
u ∼ Sn−1. For every 0 < ϵ < 1 and t > 1, there exists C(ϵ, t) > 0,
polynomially depending on ϵ and t, such that if N ≥ C(ϵ, t)n, then with
probability at least 1− e−t

√
n, 1

N

N
i=1

uiu
T
i − E


uuT


2

≤ ϵ
E uuT


2
. (4.8)

To provide a lower bound on the squared angle measure, we es-
sentially only needed to provide a lower bound on the covariance, see
Example 4.9 and 4.14. Following the spirit of this approach, we see that
instead of sampling from the unit sphere Sn−1, it is enough to sample

uniformly from a fixed set {ui}Θ(n)
i=1 , consisting of a linear number of

independent copies of a random variable u ∼ Sn−1.

Example 4.18 (Subsample Sphere). Let A ∈ PDn and let T = {vi : i =
1, . . . , N} denote a set of N i.i.d. copies of a random unit vector v ∼
Sn−1. For N ≥ C(ϵ, t)n, with ϵ, t and C(ϵ, t) as in Fact 4.17, then with
probability at least 1− e−t

√
n,

min
y∈Rn

Eu∼T


β2
A(y,u)


≥ 1− ϵ
nκ(A)

.

For the important case of Sn2−1
1 distributed rank-one matrices, we

cannot just rely on Fact 4.17, but we have to refer to the genuine result
from Adamczak et al. [3, Thm. 4.2]. A sketch of how this theorem has
to be applied can be found in the appendix on page 120.

Example 4.19 (Subsample Rank-One Matrices). Let T = {Vi : i =
1, . . . , N} denote a set of N i.i.d. copies of a random rank-one matrices

V ∼ Sn2−1
1 . For N ≥ C(ϵ, t)n2, with ϵ, t and C(ϵ, t) according to [3,

Thm. 4.2], then with probability at least 1− e−t
√
n,

min
Y ∈SYMn

EU∼T


β2(Y, U)


≥ 2(1− ϵ)
n(n+ 2)

.

70 Chapter 4. Random Pursuit

4.3 Discussion

We have seen many examples. To conclude this chapter, we discuss
some of these results. We focus on our results obtained for uniformly
chosen vectors from a unit sphere. The other sampling distributions
will prove their use later in Chapter 5.

In Section 4.3.1 below, we compare the bounds which depend on κE,
κT and κ (see Table 4.1). In Section 4.3.2 we discuss the special case of
the Random Pursuit algorithm (4.1) with exact line search applied to
quadratic functions.

4.3.1 Summary of Selected Results

We compare the bounds on the convergence rate from Examples 4.9
and 4.12. For this, we consider three different quadratic functions. We
do not only compare the theoretical bounds on the convergence rate,
but we also check if these bounds can indeed describe the practically
observed behavior of Random Pursuit.

We consider the following setting: we compare the derived bounds
for a Random Pursuit algorithm (4.1) with exact line search that sam-
ples the search directions uniformly at random from the standard unit
sphere Sn−1 = Sn−1

In
. The exact line search oracle satisfies (D2) with

parameters γ = 1 and ϵ = 0. Every quadratic function f is in C1
1,1(A),

for some metric A = ∇2f , the Hessian matrix. Therefore, the conver-
gence factor encountered in Theorem 3.6 and repeated in (4.2) at the
beginning of this chapter, reduces in our setting to

1− E

β2
A(∇f(x),u)


,

and only depends on the value E

β2
A(∇f(x),u)


that we have calculated

in Section 4.2.

Simple vs. Improved Bounds

Consider the three quadratic functions ftwo, fflat and fexp, listed in
Table 2.3. They have, i.e. their Hessian matrices, all the same condition
number. Therefore, the upper bound on the convergence factor derived
in Example 4.9 is identical for all functions:

1− 1

nκ


=


1− 1

nL


. (4.9)

4.3. Discussion 71

The improved bound from Example 4.12 depends on the trace of the
eigenvalue spectrum of the Hessian matrices. We see in Table 2.3 that
the two functions ftwo and fflat have the same trace, and the factor
derived in Example 4.12 reads for these two functions as

1− 1

nκT


=


1− (n+ 2)

n(n(L+ 1)/2 + 2)


≈

1− 2

nκ


, (4.10)

that is, an improvement by a factor of roughly 2 compared to (4.9). The
trace of the Hessian of fexp is smaller and we have even a better bound.
For L = 1e6 and dimension n = 20, say, the trace is roughly 4 times
smaller than the trace of ftwo, and consequently the convergence factor
can be estimated as


1− 1

nκT(fexp)


≈

1− 8

nκ


.

The two functions ftwo and fflat can only be distinguished by means
of the third quantity κE, which was also derived in Example 4.12. We
will discuss κE in the next subsection. For now, we only observe that
κE

ftwo, In,x0


= κE


fflat, In,x0


for x0 = e1. Hence, we use this point

as a starting point for the numerical illustration.
Figure 4.1 depicts the theoretically derived bounds


1− 1

nκ


(which

is the same for all functions), and

1 − 1

nκT


, which is the same for

ftwo and fflat and slightly better for fexp. We see, that the empirically
observed behavior of Random Pursuit on these functions is (i) always
better than predicted by the upper bounds, but (ii) the performance on
ftwo and fflat is roughly identical (slightly better on ftwo) as we would
predict from the factor (4.10).

The Exact Convergence Factor

In Example 4.12 we also derived a even better bound on the convergence
rate, the expression (4.5) depending on κE. It depends not only on
the trace of Hessian matrices, but also on the position x ∈ Rn, an
thus takes the full eigenvalue spectrum into account. In Figure 4.1
we started the numerical experiments at x0 = e1. For this position,
κE(f, In,x0) = κT(f), for all three functions. Thus κE does not admit
any (theoretical) improvement on the convergence rate. Intuitively this
matches our intuition: the level sets of all three functions are stretched
out along the x1-axis, and very “skinny”. Hence, once the algorithm
gets trapped close to the x1-axis, the only improvements can be made
for search directions almost parallel to the x1-axis. The algorithm thus
“crawls” very slowly along this valley and also the exact line search
cannot help to escape this situation.

72 Chapter 4. Random Pursuit

To demonstrate qualitatively the convergence factor

1 − 1

nκE


, we

purposefully start the algorithmic schemes outside this valley. We set
x0 = en. For the functions ftwo and fflat we estimate


1− 1

nκE(f, In,x0)


=

1− (n+ 2)

n


n(L+1)
2L + 2


 ≈ 1− 2

n


, (4.11)

independent of L. As above, the factor for fexp is even slightly better,
approximately (1− 8/n). These bounds therefore predict rapid conver-
gence if the scheme is started at x0 = en. However, as soon as the
scheme gets trapped in the valley, we again expect slower convergence,
with the rate predicted by


1− 1

nκT


.

Figure 4.2 shows the fast convergence at the beginning. However,
after no more than 350 iterations the schemes get trapped and converge
slower. The convergence rate is best for fexp and approximately the
same for ftwo and fflat, as predicted. The plot at the top shows an in-
teresting phenomena: although the convergence rate after 350 iterations
is the best on fexp, the absolute function value is the largest among the
three functions.

We see that κE describes especially the behavior of Random Pursuit
at at the beginning, i.e. at “non-typical” search points. After a tune-in
phase, the scheme converges with a rate that is very close to the one
predicted by the quantity κT. We observed this tune-in phase already
in [239] and [235], but we did not present an explanation.

4.3.2 Viewed from a Different Angle

Let us recite our proof technique. In the presented framework, we can
completely decouple the discussion of the step sizes from the search
directions. However, one might wonder if one could do significantly
better by analyzing both components at the same time. But this seems
to be more difficult. In this section, we will derive the one step progress
(similar to (E1) on page 47) for a Random Pursuit algorithm (4.1) with
exact line search on quadratic functions f . We assume f ∈ C1

1,1(A)

for A ∈ PDn, that is, f(x) = 1
2 ∥x∥

2
A and that we sample the search

directions u ∼ Sn−1.

Lemma 4.20 (Exact one step progress). Let f(x) := 1
2 ∥x∥

2
A quadratic

with A ∈ PDn. Let x ∈ Rn and u ∼ Sn−1, and x+ := x + LSf (x,u)u

4.3. Discussion 73

0 200 400 600 800 1000 1200
-0.315

-0.31

-0.305

-0.3

iterations

fu
n

c
ti
o

n
 v

a
lu

e
 (

lo
g

)

simple bound

f
flat

 (bound)

f
flat

f
two

 (bound)

f
two

f
exp

 (bound)

f
exp

Figure 4.1: Evolution of function value log f vs. iterations of Random
Pursuit with exact line search (γ = 1) and search directions uk ∼ Sn−1;
x0 = e1 in n = 20 dimensions. Mean of 51 independent runs (bold), and
corresponding upper bounds


1 − 1

nκT


(dashed) from Example 4.12. The

solid black line shows the simple upper bound

1 − 1

nκ


from Example 4.9.

for exact line search oracle LSf . Then

E [f(x+) | x] = f(x)− 1

2
∥∇f(x)∥2QA

, (4.12)

with QA = E


uuT

∥u∥2
A


a fixed matrix.

The proof of this lemma is presented on page 120 in the appendix.
However, note that we cannot compute the matrix QA of Lemma 4.20
analytically, even if A is known.

Example 4.21. Let A = ℓIn for ℓ ≥ 0. Then Q(A) = 1
nℓIn.

Proof. This claim follows directly from Corollary A.7.

We now derive two properties of QA, the proof of the first one can
again be found in the Appendix B.6 on page 120.

Lemma 4.22 (λmin(AQA)). For QA as in the setting of Lemma 4.20,
λ−1
min(AQA) ≤ nκT(A).

Lemma 4.23 (Insufficient4). For QA as in the setting of Lemma 4.20,

E
LSf (x,u)u2

Q−1
A


≤ λ−1

min(AQA) ∥∇f(x)∥2QA
≤ nκT(A) ∥∇f(x)∥2QA

.

4This denotation will become evident by the discussion in Chapter 6, see espe-
cially page 96.

74 Chapter 4. Random Pursuit

0 50 100 150 200 250 300 350 400 450
-2

0

2

4

iterations

fu
n
c
ti
o
n
 v

a
lu

e

f
flat

f
two

f
exp

0 50 100 150 200 250 300 350 400 450
0.996

0.998

1

iterations

im
p

ro
v
e

d
 b

o
u

n
d

f
flat

f
two

f
exp

Figure 4.2: Top: Evolution of function value log f vs. iterations of Random
Pursuit with exact line search (γ = 1) and search directions uk ∼ Sn−1;
x0 = en in n = 20 dimensions. Mean of 51 independent runs. Bottom: Mean
of the exact bounds


1 − 1

nκE


from Example 4.12.

Proof of Lemma 4.23. We write out LSf explicitly:

LSf (x,u)u2
Q−1

A

=
∥u∥2Q−1

A

∥u∥2A
· ⟨∇f(x),u⟩

2

∥u∥2A
≤ nκT(A)

⟨∇f(x),u⟩2

∥u∥2A
.

The inequality follows by estimation of the first factor. By Lemma 2.2
we have ∥u∥2Q−1

A
≤ λmax(A

−1Q−1
A) ∥u∥2A = λ−1

min(AQA) ∥u∥2A. The mini-

mal eigenvalue of AQA was estimated in Lemma 4.22. The claim follows
by taking the expectation on both sides and the definition of QA.

Lemma 4.23 bounds the second moment of LSf in terms of the
QA-norm of the gradient ∇f(x). The pessimistic bound ∥u∥2Q−1

A
≤

λ−1
min(AQA) ∥u∥2A holds for any u ∈ Rn, however, the bound is attained

only for u parallel to the eigenvector corresponding to the smallest eigen-
value of AQA. Here we consider random u, thus we could hope for a
much better estimate. Preliminary experiments (for instance on the
functions presented in Table 2.3) suggest that an upper bound of the

form cn ∥∇f(x)∥2QA
, where c is an absolute constant, could hold for

many functions f , i.e. metrics A ∈ PDn.

Du beurre!
Donnez-moi du beurre!

Toujours du beurre!

Fernand Point
a founder of modern French cuisine

Chapter 5

Applications

In this chapter we study three applications of Random Pursuit algo-
rithms. By this we do not mean that we apply one of the algorithms
from the previous chapter just to three arbitrary optimization problems.
We rather present three problems and show that the typical algorithms
that are used to solve these problems are actually Random Pursuit al-
gorithms in disguise. These previously unrelated applications are here
presented in a unifying way.

For all three applications, we restrict ourselves to optimization of
quadratic objective functions. Two of the applications naturally arise
in this setting, whereas for the third one, the restriction to quadratic
functions was imposed by us, mainly to simplify the presentation—as
we will argue below.

We remind the reader that the implementation of an (exact) line
search procedure is not an issue on quadratic functions. In Example 4.5
we have demonstrated that an exact line search oracle can be obtained
by interpolation of the function values at three distinct points along the
search direction. Thus we assume throughout the whole section that the
sufficient decrease condition (D2), and therefore also (D1), hold with
parameters γ = 1 and ϵ = 0. Of course, the use of an exact line search
is not required for the analysis in this section. In case of an inexact line
search oracle (like for instance adaptive step size control (2.7)), the gain
and error parameters need to be carried along. We now list the three
applications that we discuss in this chapter.

75

76 Chapter 5. Applications of Random Pursuit

System of Linear Equations. We consider the problem of solving
a linear system Ax = b, where A ∈ Rm×n has full rank n, m ≥ n,
b ∈ Rm and unknown x ∈ Rn. This problem can be solved by Gaussian
Elimination. However, especially for the over-determined case m ≫ n,
iterative schemes are often not only computationally more efficient, they
are also very easy to implement (see e.g. [173]). We demonstrate that the
randomized Kaczmarz method [122, 240] is a Random Pursuit algorithm
with exact line search and search directions sampled proportional to
given weights from a discrete set of directions (cf. Example 4.15). This
algorithm can in practice also be applied if the linear system is corrupted
by noise, i.e. no solution exists. In this case, it still converges to the
solution of the uncorrupted system within an error margin (see [173]
and references therein).

Metric Learning. Consider the optimization problem (OPT), for
convex objective function g : Rn → R. Suppose g ∈ C2 is strongly
convex with minimizer x∗ ∈ Rn. By Taylor expansion we can write

g(x) = g(x∗) +
1

2
∥x− x∗∥2∇2g(x∗) +O


∥x− x∗∥3In


for x→ x∗ .

We see that g behaves in the neighborhood of x∗ like a quadratic func-
tion f(x) = 1

2 ∥x∥
2
A for metric A = ∇2g(x∗). For simplicity, we will

restrict ourselves in the following to optimization of quadratic objective
functions. For the convergence results in Chapters 3 we measured the
deviation of the objective function from a quadratic function by the
parameters m and L, thus here m = L.

In Section 4.3 we discussed the convergence factor

ϱA(B) := 1− 1

nκ(AB−1)
. (5.1)

that describes the convergence rate of a Random Pursuit algorithm
with exact line search on the quadratic function 1

2 ∥x∥
2
A if the search

directions are sampled from Sn−1
B for B ∈ PDn. If B = In, then ϱA

depends on the condition number of the (unknown) metric A. Suppose
that we have a sequence (Bk)k≥0 of estimates of A, that satisfy Bk → A
for k →∞. But then also ϱA(Bk)→


1− 1

n


, and for K large enough,

the convergence factor ϱA(BK) ≈

1 − 1

n


. This observation is the

key to variable metric schemes: those schemes comprise algorithmic
routines that generate the estimate Bk (or their inverses B−1

k , as it
is the case for the CMA-ES presented in Section 2.4). In the scope

5.1. Random Pursuit in a Hilbert Space 77

of this thesis, we could not find any new theoretical results regarding
the update mechanism that is implemented in CMA-ES. A welcome
alternative has recently been introduced by Leventhal and Lewis [141],
termed Randomized Hessian Estimation scheme (RHE).

Leventhal and Lewis [141] already presented a convergence analysis
for (RHE). Our investigation was twofold: we studied different imple-
mentations of (RHE) and empirically compared (RHE) with CMA-ES
or Gaussian Adaptation [235]. We also studied the evolution of the
convergence factor, which turns out to be dependent on the chosen
implementation of the scheme. In Section 5.2 we revisit (RHE) and
present conclusions of our empirical investigations. Especially, we show
that (RHE) can be implemented in such a way that its complexity is
independent of the initial approximation error, i.e. ∥B0 −A∥F .

Matrix Valued Random Pursuit. Interestingly, it turns out that
(RHE) is a special instance of a Random Pursuit algorithm. The search
space is SYMn, the space of n×n symmetric matrices, and the objective
function is the squared distance of the current estimation Bk to the
ground truth A. We analyze this process in a pure theoretical setting
in Section 5.1 below, and essentially show that the analysis provided by
Leventhal and Lewis [141] is tight, up to a factor of 2.

5.1 Random Pursuit in a Hilbert Space

We consider the sequence of iterates that a Random Pursuit algorithm
generates on the very simple sphere function f(x) = 1

2 ∥x∥
2
. For iterate

xk ∈ Rn, search direction uk ∈ Rn and a step generated by an exact
line search, we have

xk+1 = xk + LSf (xk,uk)uk = xk −
⟨xk,uk⟩
∥uk∥2

uk . (5.2)

This representation follows from the Remark 4.4. We observe that in
order to generate the sequence (xk)k≥0, we essentially only need to
evaluate the scalar product ⟨xk,uk⟩. Hence, we see that by means
of (5.2) we cannot only define a sequence (xk)k≥0 in Rn, but in any
space that is equipped with a scalar product. Thus we can analyze (5.2)
in general Hilbert spaces H.

Another interpretation of the sequence (5.2) is the following. Let
Hk := {x ∈ H : ⟨x,uk⟩ = 0}, denote the central hyperplane orthogonal

78 Chapter 5. Applications of Random Pursuit

to uk. It can easily be verified that xk+1 ∈ Hk, that is, the iterate xk+1

is the projection of xk on Hk.
In the following, we discuss two examples: in the first one we consider

simply Rn, as we did so far. We can compute the expected convergence
of the sequence (xk)k≥0 exactly. As this sequence corresponds to the
steps of a Random Pursuit algorithm on the sphere function, the result
provides a lower bound on the convergence rate that can be achieved
for Random Pursuit algorithms. The second example is in SYMn, the
space of symmetric n× n matrices.

5.1.1 Random Pursuit on the Reals

We study the squared norm ∥x∥2 of the iterates xk ∈ Rn. By straight-
forward calculation, we see that

∥xk+1∥2 = ⟨xk+1,xk+1⟩ = ∥xk∥2 −
⟨xk,uk⟩2

∥uk∥2

=

1− βIn(xk,uk)


∥xk∥2 .

If the directions uk are independent copies of u ∼ Sn−1, then by
Lemma A.7 we have E


∥xk+1∥2 | xk


=

1− 1

n


∥xk∥2. For this process,

we know the exact (expected) convergence of ∥xk∥2, and this is also
optimal. Let us put this as a remark.

Remark 5.1 (Optimal rate). Let f(x) = 1
2

x2
 and (xk)k≥0, xk ∈ Rn

any Local Search Scheme (3.1) with isotropic search directions (uk)k≥0,

uk ∼ Sn−1. Then E

∥xk∥2


≥

1− 1

n


∥x0∥2, for any choice of the step

sizes. That is, Random Pursuit (5.2) with exact line search and search
directions uniformly from Sn−1 converges with the optimal rate.

Proof. Due to symmetry of f , it is not hard to argue that the “best”
steps are indeed equal to an exact line search. Nonetheless, this lower
bound was proven by Jägersküpper [114] in the scope of hit-and-run
algorithms.

5.1.2 Random Pursuit on Symmetric Matrices

Now we consider SYMn. For Xk, Uk ∈ SYMn, equation (5.2) reads as

Xk+1 = Xk −
⟨Xk, Uk⟩
∥Uk∥2F

Uk , (5.3)

5.1. Random Pursuit in a Hilbert Space 79

where ⟨Xk, Uk⟩ = Tr[XT
k Uk] denotes the standard scalar product in

SYMn.

Remark 5.2 (Properties). Let Xk, Uk ∈ SYMn and Xk+1 defined
by (5.3). Let P ∈ Rn×n orthogonal, i.e. PPT = In. Then

(i) ⟨Xk+1, Uk⟩ = 0

(ii) ∥Xk+1∥F ≤ ∥Xk∥F ,

(iii) PXk+1P
T = PXkP

T −

PXkP

T , PUkP
T

PUkP

T ,

i.e. the rotated matrices PXkP
T and PXk+1P

T satisfy (5.3) as well.

Proof. Properties (i) and (ii) follow directly from our observations in
the beginning of Section 5.1 and have also been shown by [141]. We
prove (iii) on page 121 in the appendix.

Note that SYMn can be embedded into R
n(n+1)

2 . Therefore our ob-
servation in the previous section implies the following: Suppose that
the search directions are independent copies of U ∼ Sn2−1, the uni-
form distribution on the unit sphere, then E[∥Xk+1∥2F | Xk] =


1 −

2
n(n+1)


∥Xk∥2F . The distribution S

n2−1
1 , that we encountered in Exam-

ple 4.16 on page 68, can much easier be generated than the uniform
distribution, and we now study the convergence if the search directions

are copies of U ∼ Sn2−1
1 . This is a direct application of Theorem 3.6.

Corollary 5.3 (Matrix-valued RP). Let (Xk)k≥0, Xk ∈ SYMn be a

sequence satisfying (5.3), with search directions (Uk)k≥0, Uk ∈ Sn2−1
1 ,

then

(i) ∥Xk∥2F ≤ ∥X0∥2F · exp


−

k−1
i=0

⟨Xi, Ui⟩2

∥Xi∥2F


.

If Uk are independen copies of U ∼ Sn−1
1 . Then

(ii) E

∥Xk+1∥2F | (Xi)

k
i=0


= ∥Xk∥2F −

2 ∥Xk∥2F +Tr[Xk]
2

n(n+ 2)
,

(iii) E

∥Xk∥2F


≤

1− 2

n(n+ 2)

k

∥X0∥2F .

80 Chapter 5. Applications of Random Pursuit

Proof. Property (i) is the statement of Theorem 3.3. The one-step
progress in (ii) has been calculated in Example 4.16, and (iii) follows
therefore from Theorem 3.6. Part (iii) was first shown by [141].

The one step progress given in part (ii) of the above statement can
be bounded as follows:

2

n(n+ 2)
∥Xk∥2F ≤

2 ∥Xk∥2F +Tr[Xk]
2

n(n+ 2)
≤ 1

n
∥Xk∥2F , (5.4)

where the first inequality is trivial and the second follows by Cauchy-
Schwarz: Tr[Xk]

2 ≤ n ∥Xk∥2F . Both the upper and lower bound are
tight in general but they differ by a factor of approximately n. Thus, one
might wonder if the bound of Leventhal and Levis [141], i.e. (iii) of the
above statement, describes the expected behavior tightly, or if a much
better bound could be derived. This is very similar to the discussion of
the convergence factors in Section 4.3.1 above. We answer this question
in the next theorem, that was part of the technical report [238]. It shows,

that after a short tune-in phase, the expected norm E

∥Xk∥2F


converges

indeed with the rate

1 − 2

n(n+2)


. In the tune-in phase convergence

might be faster, but the accumulated effect is very limited: the initial
error might be decreased at most by a factor of 2, that is E


∥Xk∥2F


≥

1
2 ∥X0∥2F


1− 2

n(n+2)

k
. We explain this below.

Theorem 5.4 (Exact Matrix valued RP). Let (Xk)k≥0 as in Cor. 5.3
above and parameters ξ1(k) :=


λk1 + λk2


, ξ2(k) :=


λk1 − λk2


with

λ1 =
2n2 + 2n− 5− ω

2n(n+ 2)
, λ2 =

2n2 + 2n− 5 + ω

2n(n+ 2)
,

and ω =
√
4n2 + 4n− 7. Then

E

∥Xk∥2F


= ξ1(k)

∥X0∥2F
2

− ξ2(k)


(2n+ 1) ∥X0∥2F

2ω
− Tr[X0]

2

ω


,

E

Tr[Xk]

2

= ξ1(k)

Tr[X0]
2

2
− ξ2(k)


2 ∥X0∥2F

ω
− (2n+ 1)Tr[X0]

2

2ω


.

Before sketching the proof of this theorem, let us discuss its state-
ment. Lemma B.4 from the appendix shows that for n ≥ 2, λ1 =
1 − Θ


1
n


and λ2 = 1 − Θ


1
n2


≤ 1 − 2

n(n+2) . Therefore, ξ1(k) ≈

5.2. Learning the Hessian 81

−ξ2(k) ≈ λk2 for (k →∞). From Cor. 5.3 we know that E[∥Xk∥2F] ≤

1−

2
n(n+2)

k ∥X0∥2F . The exact expression (i) reaches this bound (approxi-

mately) if Tr[X0] = 0. However, if |Tr[X0]| is large, Tr[X0]
2 = n ∥X0∥2F ,

say, then term in the right bracket almost vanishes and E[∥Xk∥2F] ≈
1
2λ

k
2 ∥X0∥2F . That is, the upper bound from Leventhal and Lewis [141],

i.e. part (iii) of Cor. 5.3, is tight: the convergence factor cannot be sig-
nificantly improved, λ2 ≈


1 − 2

n(n+2)


, especially for n large. Thus

essentially, 1
2 ∥X0∥2F


1− 2

n(n+2)

k
. E


∥Xk∥2F


. ∥X0∥2F


1− 2

n(n+2)

k
.

Proof of Theorem 5.4. By Corollary 5.3 (ii) we have an exact expression

for E

∥Xk+1∥2F | (Xi)

k
i=0


. From equation (5.3) we deduce Tr[Xk+1] =

Tr[Xk]− ⟨Xk, Uk⟩. (Note that for Uk := uku
T
k with ∥uk∥ = 1, we have

Tr[Uk] = Tr[uku
T
k] = 1.) Therefore with Lemma A.7 we obtain

E

Tr[Xk+1]

2 | (Xi)
k
i=0


= Tr[Xk]

2

− E

2 ⟨Xk, Uk⟩Tr[Xk]− ⟨Xk, Uk⟩2 | Xk


=


1− 2n+ 3

n(n+ 2)


Tr[Xk]

2 +
2

n(n+ 2)
∥Xk∥2F .

We obtain a linear recurrence, depending only on ∥Xk∥2F and Tr[Xk]
2.

What we now have to do, formally, is to condition on (Xi)
k−1
i=0 and calcu-

late the expectations again. By the tower property of conditional expec-
tations, E[E[∥Xk+1∥2F | (Xi)

k
i=0] | (Xi)

k−1
i=0] = E[∥Xk+1∥2F | (Xi)

k−1
i=0].

Repeating this procedure for (Xi)
k−2
i=0 up to (X0), we finally obtain

E[∥Xk+1∥2F | X0] = E[∥Xk+1∥2F]. We observe that all intermediate

expressions only depend linearly on ∥X0∥2F and Tr[X0]
2, that is we can

write

E[∥Xk∥2F ,E[Tr[Xk]

2]
T

= C(n)k

∥X0∥2F ,Tr[X0]

2
T

for a 2 × 2
matrix C(n). By linear algebra, we can now decouple the linear recur-
rence. This is carried out in detail in Lemma B.3 in the appendix.

5.2 Learning the Hessian

We study the problem of estimating the Hessian matrix of a quadratic
function f(x) = 1

2 ∥x∥
2
A with A ∈ PDn, given only oracle access to f .

In principle, we could do this with the following scheme.

82 Chapter 5. Applications of Random Pursuit

Example 5.5. Let ei for i = 1, . . . , n, denote the standard unit vector
in Rn and let f(x) := 1

2 ∥x∥
2
A. For y,u ∈ R we have

f(y + u)− 2f(y) + f(y − u) = uTAu , (5.5)

Therefore, by evaluating f at y and x± ei for i = 1, . . . , n, we can find
the diagonal entries Aii for i = 1, . . . , n. By querying the additional
points x ± (ei + ej), we find also the off diagonal entries Aij for 1 ≤
i, j ≤ n by observing (ei + ej)

TA(ei + ej) = Aii + 2Aij + Ajj. Thus
with a total of n(n+ 1) + 1 function evaluations, we find all the entries
of A ∈ PDn.

This scheme can be applied if the objective function is quadratic,
for general convex functions one could approximate the curvature by
considering the directions ϵ ·ei, for small ϵ > 0 instead. All the function
evaluations have to be spend in a close neighborhood of x, as the scheme
crucially depends on the values on the diagonal. We are looking for a
scheme that allows combination of the Hessian estimation process with
the search. That is, we would like to gradually improve the Hessian
estimation in parallel to the search. This allows to gradually incorpo-
rate changes in the curvature, which can be dramatic for non-convex
functions. Such a scheme would also be much closer to the Covariance
Estimation scheme that is implemented in CMA-ES.

Leventhal and Lewis [141] proposed the Randomized Hessian Es-
timation (RHE) scheme that attracted our attention because it turns
out to be identical to the Random Pursuit algorithm (5.3). The (RHE)
generates a sequence (Bk)k≥0 of matrices, Bk ∈ SYMn, that converge:
Bk → A for k →∞. The scheme takes the form

Bk+1 = Bk + ⟨A−Bk, Uk⟩Uk , (RHE)

for a sequence (Uk)k≥0 of random rank-one matrices Uk ∼ Sn−1
1 . This

update requires the value the scalar product ⟨A,Uk⟩, where A is the
(unknown) metric and cannot be accessed directly. However, as in Ex-
ample 5.5, the scalar product can be evaluated at the expense of two
additional function evaluations because of the simple structure of the
directions Uk. Let ϵ > 0, then for Uk = uku

T
k and x ∈ Rn,

⟨A,Uk⟩ = uT
kAuk =

f(x+ ϵuk)− 2f(x) + f(x− ϵuk)

ϵ2
, (5.6)

By rewriting the process RHE in terms of the error matrices Ek :=
Bk − A, for all k ≥ 0, we find Ek+1 = Ek − ⟨Ek, Uk⟩Uk, and thus ex-
actly process (5.3)—a Random Pursuit algorithm with exact line search

5.2. Learning the Hessian 83

and search directions sampled from Sn2−1
1 . As a consequence, our con-

vergence results, especially Corollary 5.3 and Theorem 5.4 do hold for
the process (RHE). We here only state the implications on the conver-
gence factor ϱA.

Lemma 5.6 (Convergence factor). Let A ∈ PDn and (Bk)k≥0 a se-
quence of matrices Bk ∈ SYMn satisfying (RHE) for search directions

(Uk)k≥0, independent copies Uk ∼ Sn2−1
1 . For parameter b > 1, define

the threshold K =

n(n + 2)


ln ∥B0 −A∥F + ln

A−1

2
+ 1

2 ln b

+ 1

.

Then with probability at least

1 − 1

b


, λmin(AB

−1
K) > 0 and for every

j ≥ 0, with probability at least

1− 1

b


:

ϱA(BK+j) ≤ 1− 1− ηj

(1 + ηj)n
,

where η =

1− 2

n(n+2)


.

The proof can be found on page 123 of the appendix.

Remark 5.7. Note that for B0 = 0, the threshold K only depends on
∥A∥F

A−1

2
, the relative condition number of A; denoted as κF(A) in

Example 4.15.

5.2.1 On the Complexity of Hessian Learning

In the section above, we have seen that (RHE) can be used to estimate
the Hessian matrix of a quadratic function using only function values.
We now discuss the complexity of this approach

Let f(x) = 1
2 ∥x∥

2
A with A ∈ PDn quadratic as in the previous

section. Let (xk)k>0 with ∥x0∥ = 1 denote the iterates of a Random
Pursuit algorithm with search directions (uk)k≥0 and steps generated
by an exact line search oracle. For parameter ϵ > 0, we denote by N(ϵ)
the complexity as defined in Section 2.2, that is the smallest integer such
that E[f(xN(ϵ))] ≤ ϵ. If the steps are independent copies of u ∼ Sn−1,

then by Theorem 3.6 and Example 4.9, we have N(ϵ) = O

nκ(A) ln 1

ϵ


.

On the other hand, we could first estimate an approximation B
of the Hessian by (RHE), and then sample the search directions u ∼
Sn−1
B . By Lemma 5.6 and Remark 5.7, we have for this approach
N(ϵ) = O


n2 lnκF(A) + n ln 1

ϵ


. In contrast, the running time of

a simple Random Pursuit algorithm that does not update the sam-
pling distribution, i.e. uk ∼ Sn−1 for every iteration k, is N(ϵ) =

84 Chapter 5. Applications of Random Pursuit

O

nκT(A) ln

1
ϵ


. By comparing those expressions, we conclude that

Hessian estimation with the scheme (RHE) makes only sense in low di-
mension


n lnκF(A) ≤ κ(A) ln 1

ϵ


. In Section 5.2.2 below, we will show

show how the dependency of (RHE) on the initial error, i.e. the rela-
tive condition number κF(A), can be avoided. This modified procedure
attains N(ϵ) = O


n2+n ln 1

ϵ


—independent of A. Hence, it is affine in-

variant. However, also this modified scheme is only superior to a simple
Random Pursuit if the dimension is not too large, i.e. n ≤ κT(A) ln 1

ϵ .

We would like to emphasize that Hessian estimation is not per se
a bad approach in high dimensions, but the quadratic dependency on
the dimension of the running time of (RHE) does rule out this specific
scheme for this task. Hessian estimation can be a crucial ingredient to
expedite the convergence of any algorithm. However, schemes for high-
dimensional applications applications must find a good approximation
B in linear time. This implies that such an approximation must have a
linear representation, for instance of the form B = R+ S, where R is a
low rank matrix and S a sparse matrix with only O(n) elements. It is
not clear, whether the presented (RHE) can be modified such as to in-
corporate constraints of this form. Especially, as the modified procedure
should converge in linear time to a suitable approximation.

5.2.2 Affine Invariant Hessian Estimation

Let us look at (RHE) from a slightly different angle. The entries of
A are Θ(n2) unknown variables that must be determined. Each linear
measurement as in (5.6) defines one linear equation that is satisfied by
the entries of A. Therefore, Θ(n2) measurements suffice (see Exam-
ple 5.5 above), to determine the entries of A completely. Solving this
system of linear equations can be done offline, that is, it does not re-
quire additional function evaluations, resulting at complexity (in terms
of function evaluations) of only Θ(n2), independent of A. The linear
system could in principle be solved by an arbitrary algorithm (see e.g.
Section 5.3 below). However, one of the most elegant choices is to just
use (RHE) in an offline fashion.

Example 5.8 (Offline (RHE)). Let ϵ > 0 and let T = (vi)
N
k=1 denote a

set of N ≥ C(ϵ)n2 independent copies of random directions v ∼ Sn−1.
If C(ϵ) is chosen as C(ϵ, t) from Example 4.19 (for arbitrary parameter
t > 1), then with probability at least 1 − e−t

√
n the sequence (Bk)k≥0

5.2. Learning the Hessian 85

generated by (RHE) with search directions u ∼ T converges and satisfies

E

∥Bk −A∥2F


≤

1− 2(1− ϵ)

n(n+ 2)

k

∥B0 −A∥2F .

Proof. This is an immediate application of Theorem 3.6 and Exam-
ple 4.19.

The important observation here is that the expensive linear mea-
surements


A,viv

T
i


need only be done once, and then (RHE) can be

run offline until the error ∥Bk −A∥2F is as small as desired. However,
note that by just using a fixed set of directions, the scheme looses its
ability to adapt to changes in the curvature (if applied to non-quadratic
functions). In Section 6.2 we present a concise implementation that uses
the idea of Example 5.8, but repeatedly updates the set T of directions.

5.2.3 A Note on General Convex Functions

So far, we have only discussed (RHE) for quadratic functions. In this
section, we make some remarks on the general case.

If the objective function is not quadratic, then the crucial equal-
ity (5.6) does not hold in general, only in the limit (ϵ → 0). Leventhal
and Lewis [141] therefore suggest to use a small value for ϵ in this
case, but no precise error bounds were given. If the measurements (5.6)
of the Hessian ∇2f(x) at some x ∈ Rn are not consistent (due to
errors), then the corrupted linear system has no solution. However,
by the error bounds in Theorem 3.6, we know that in this case the
estimations (Bk)k≥0 generated by (RHE) still approach ∇2f(x), i.e.
limk→∞

Bk −∇2f(x)
 ≤ δ(ϵ) for some (unspecified) error term δ(ϵ)

that accounts for the inaccuracy in the measurements (see also [141,
Thm. 2.3]). This is one of the advantages, why one would want to use
scheme (RHE) at all.

5.2.4 Example and Implementations

We conclude our discussion of the (RHE) scheme by pointing out a few
interesting empirical observations. In [235] we tested an implementa-
tion of the (RHE) scheme on several objective functions with different
spectra. The eigenvalues of the functions have been parameterized to
interpolate between the two extreme cases of the spectrum given by the

86 Chapter 5. Applications of Random Pursuit

functions ftwo and fflat from Table 2.3 on page 38. The Hessian matrices
in both functions have the same maximal (L) and minimal (1) eigen-
values. The function ftwo has two different scales that are distributed
evenly among the dimensions. The second function fflat has also two
scales, but only one dimension belongs to the small eigenvalue, and n−1
to much larger ones (if L≫ 1).

We compared the performance of several different zeroth-order algo-
rithms that internally compute an approximation of the Hessian (or its
inverse) in [235]. The schemes included a variant of CMA-ES, Gaussian
Adaption, and (RHE). One of our observations was that optimization
on ftwo seemed to be slightly more difficult than on fflat. This effect was
most pronounced in CMA-ES and Gaussian Adaptation. In a related
investigation in [237], we found that certain implementations of (RHE)
can be more efficient on fflat than on ftwo. From a theoretical point of
view, the scheme (RHE) should converge with the same rate on both
functions (see e.g. Theorem 5.4). We have to conclude that the observed
positive effect on fflat depends on the implementation of (RHE). We
will now shortly discuss this. To support the discussion, we have de-
picted the approximation error ∥Bk −A∥2F , for B0 = L · In, together
with the convergence factor ϱA(Bk) in Figure 5.1 for the two functions
fflat and ftwo, with parameter L = 1e10 in n = 20 dimensions.

Unconstrained

A straightforward implementation of (RHE) looks as follows: in each

iteration k, sample a search direction Uk ∼ Sn2−1
1 and estimate the

curvature according to (5.6). This requires two (additional) function
evaluations in each iteration. By the definition of (RHE), all iterates
Bk ∈ SYMn, however, some of the Bk’s might be not be positive defi-
nite. Lemma 5.6 shows, that Bk ∈ PDn for k large enough and the con-
vergence factor ϱA(Bk) approaches the optimal value


1 − 1

n


. This is

depicted in Figure 5.1 (where we set ϱA(Bk) = 1 as long as Bk /∈ PDn).

At the beginning of Section 5.2 we argued that we would like to
interlace the search (optimization) process, and the Hessian learning
process. In order to sample search directions u ∼ Sn−1

Bk
for an estimate

Bk, it is required that Bk ∈ PDn. This can be assured by different tech-
niques: (i) project Bk back to PDn if it falls outside, (ii) simply reject
Bk if it falls outside of PDn, i.e. do not use it for sampling, and (iii)
wait until the unconstrained scheme converges. The last idea sounds
very costly. However, by storing Θ(n2) curvature estimations, we can

5.2. Learning the Hessian 87

10 15 20 25 30

-20

 0

20

40
e

rr
o

r

Unconstained

Rejection

Projection

15 20 25 30 35 40

-20

 0

20

40

e
rr

o
r

10 15 20 25 30

1-1/n

1

#ITS / n
2

fa
c
to

r

15 20 25 30 35 40

1-1/n

1

#ITS / n
2

fa
c
to

r

Figure 5.1: Evolution of log ∥Bk −A∥2F vs. iterations (#ITS) (top) and
ϱA(Bk) vs. #ITS (bottom) on fflat (left) and ftwo (rigth) with L = 1e10 in
n = 20 dimensions for the three schemes. Mean of 51 runs, max and min
attained by ϱA(Bk) are indicated by thin lines (smoothed in the left plot).

apply the offline scheme from Example 5.8 on this whole batch and with
high probability the set T is diverse enough such that (RHE) converges
to a matrix in PDn that we can use for sampling. A concrete imple-
mentation of this is presented later in Section 6.2, denoted as Lev-Unc.
We now discuss the other two approaches.

Rejection Sampling

The idea of Rejection Sampling is to simply check if a proposed Bk+1 is
positive definite definite and only accept the iterate if Bk+1 ∈ PDn. If
the iterate is not accepted, then a new update direction U ′

k is sampled
and the step is repeated. To check if Bk+1 ∈ PDn, we can use Wedder-
burn’s formula [250, pg. 69]: A ∈ PDn, u ∈ Sn−1, the matrix A+ tuuT

is positive definite if and only if t−1 < uTA−1u. Therefore Bk+1 ∈ PDn

only if Bk ∈ PDn and

(uT
kEkuk)(u

T
kB

−1
k uk) < 1 , (5.7)

for Ek := Bk −A.
This technique is not only expensive (we might need to wait a long

time until we are successfully) but we do also not make any progress
while waiting. It appears, that the constraint (5.7) has less impact on
fflat than on ftwo (see Fig 5.1). But for both functions the acceptance
rate drops dramatically for increasing L, rendering this scheme useless.

88 Chapter 5. Applications of Random Pursuit

Projection Step

By using a projection, we can project any infeasible Bk /∈ PDn imme-
diately back to the convex set PDn. If Bk ∈ PDn, then, by the fact
that the update (RHE) only performs a rank-one perturbation of Bk,
Weyl’s Theorem implies that at most one eigenvalue of Bk+1 could be
non-positive (see e.g. [107, Theorem 4.3.4]). In Lemma A.8 we show
that this defect can be corrected by performing an additional update in
the direction of the eigenvector z1 ∈ Sn−1 corresponding to the smallest
eigenvalue of Bk+1, i.e. setting Uk+1 := z1z

T
1 .

In summary, the concrete iteration of the scheme looks at follows:

if Bk ∈ PDn, sample Uk ∼ Sn2−1
1 and estimate the curvature according

to (5.6). If Bk /∈ PDn, compute the eigenvector z1 corresponding to
the smallest eigenvalue of Bk, and perform the update along direction
z1z

T
1 . The computation of the eigenvector could for instance be done

with Lanczos’ method [47, 137, 139]. A concrete implementation of this
is presented later in Section 6.2, denoted as Lev-Proj.

We cannot prove any strictly positive performance guarantee if the

update is applied to direction z1z
T
1 instead of a random Uk ∼ Sn2−1

1 ,
but we know from property (ii) of Remark 5.2 that the Frobenius norm
of the error does not increase. In Figure 5.1 we see that apparently the
projection steps have no negative impact on the convergence of (RHE)
on fflat, but on ftwo the projection steps are not very effective. We also
see that the projections have a positive effect on the convergence factor
ϱ2(Bk) on fflat: the factor can be very close to


1 − 1

n


for some very

small values of k, much better than predicted by Lemma B.4. On ftwo

the effect is opposite. The projection steps do not have any (positive)
impact on the convergence factor ϱ1(Bk) and the scheme with projection
is inferior to the simple unconstrained scheme. On this function it is
not advisable to enforce Bk ∈ PDn, in contrast to fflat.

5.3 Kaczmarz’ Method

We study a consistent (overdetermined) system of linear equations

Ax = b for x ∈ Rn , (LIN)

for A ∈ Rm×n with full rank n, m ≥ n and b ∈ Rm. This system can be
solved with Gaussian Elimination in O(mn2) time, see e.g. [56, 173, 240].
We will now review Kaczmarz’ algoritm [122]—an iterative scheme that
can have substantially better running time, i.e. independent of m.

5.3. Kaczmarz’ Method 89

Suppose x∗ ∈ Rn is a solution to (LIN). We observe that x∗ has
to satisfy ⟨ai,x∗⟩ = bi for i = 1, . . . ,m, where ai ∈ Rn denote the
rows of A. In other words, x∗ is contained in the intersection of the
hyperplanes Hi := {x : ⟨ai,x⟩ = bi} for i = 1, . . . ,m. Kaczmarz’
algorithm generates a sequence (xk)k≥0 of approximations that converge
to x∗. In each iteration of the scheme, the current iterate xk is projected
onto one of the hyperplanes Hi for i = 1, . . . ,m. If hyperplane Hi is
picked in iteration k, say, then the projection can be written as

xk+1 = xk +
bi − ⟨ai,xk⟩
∥ai∥22

ai . (5.8)

From this equation we already see the analogy to (5.2). We will show
below, that Kaczmarz’ algorithm is actually identical to a local search
scheme with exact line search (inexact line search is termed over- or
under-relaxation in this setting [215]).

Kaczmarz’ algorithm [122], is also known as Algebraic Reconstruc-
tion Technique (ART) in computer tomography [83, 101, 108, 171] or
Projection onto Convex Sets (POCS) in signal processing [58, 223].
Many schemes to select the hyperplanes exist. If the hyperplanes are
just selected in their order, from 1 up to m, then clearly, the running
time cannot be independent of m. It was observed in many applica-
tions, see e.g. [56, 165, 174, 240, 242, 251, 265] and references therein,
that selecting the hyperplanes at random can significantly speed up the
convergence. However, the analysis of such schemes was often not very
enlightening, either because it was difficult to compare the rates with
other iterative schemes or they contained quantities that were hard to
compute [51, 65]. Strohmer and Vershynin [240] analyzed the scheme
when the hyperplanes are selected with probability proportional to the
squared norm of their normal vectors. Such sampling was previously also
proposed in a different context in [64] and yields running time indepen-
dent of m. Lately, different lines of research produced improvements,
or accelerations of this simple algorithm [56, 140, 174]. The scheme can
especially also be applied in a noisy setting, see e.g. [172].

Theorem 5.9 (Strohmer and Vershynin [240]). Let (ik)k≥0 be a se-
quence of indices, ik ∈ [m], where index ik = j with probability propor-

tional to ∥aj∥22, and let (xk)k≥0 be a sequence of iterates satisfying (5.8).
Then

E

∥xk − x∗∥22


≤

1− κ−2

F (A)

∥x0 − x∗∥22 ,

90 Chapter 5. Applications of Random Pursuit

where κF(A) =
A−1


2
· ∥A∥F is the relative condition number of A.

Now we will give a proof of this statement. As an alternative to
the direct proof in [240], we use the framework developed in Chapters 3
and 4. This amounts to a slightly different presentation, but the essence
is still the same. In order to apply the framework, we have to formulate
problem (LIN) as a quadratic optimization problem which can be solved
by a Random Pursuit algorithm. The representation as a quadratic
problem is immediate and appears throughout the literature [140, 173,
240] and we follow [140]. Instead of minimizing ∥x− x∗∥ directly over
Rn, we can write x = ATy for y ∈ Rm since A has full rank, and
consider the equivalent problem of minimizing

ATy − x∗
. Let us

define

f(y) :=
1

2

ATy
2
2
−

x∗, ATy


=

1

2

ATy
2
2
− ⟨b,y⟩ .

Let y+ = y + LSf (y, ei)ei denote one step obtained by an exact line
search in direction of a standard unit vector ei. Since f is quadratic,
we have an analytic expression for LSf (y, ei), given in Remark 4.4, and

y+ = y +


b−AATy, ei


eiAATei

ei = y +
bi −


AATy, ei


∥ai∥2

ei .

To see the equivalence to (5.8), recall that we had performed the trans-
formation x = ATy. The corresponding step in x is thus

x+ = ATy +
bi −


ATy, ATei


∥ai∥2

ATei = x+
bi − ⟨x,ai⟩
∥ai∥2

ai ,

exactly what we claimed.

Proof of Fact 5.9. We have outlined above that (5.8) is equivalent to
a local search scheme with exact line search on the quadratic function
f(x) := 1

2 ∥x− x∗∥22. In order to to apply Theorem 3.6 (with γ = 1),
all that is left is a lower bound on E[β2]. By Example 4.15 we have

E[β2] ≥
A−1


2
∥A∥F

−2
= κ−2

F (A).

random, random, and “smart”

Al Legro and Lar Go
SCIgen – An Automatic CS Paper Generator

J. Stribling, M. Krohn and D. Aguayo

Chapter 6

Accelerated Search

In this section we review and discuss an acceleration technique that
can boost the convergence rate of simple local search schemes. This
technique was first developed in 1983 by Nesterov [179] in the context
of first-order convex optimization. In order to surpass the convergence
rate of Gradient Descent, the Accelerated (or Fast) Gradient method
iteratively develops a model of the objective function. In the mono-
graph [182] this mechanism was explained through means of so-called
estimate sequences. The accelerated method was successfully used to
improve the computational complexity of fundamental problems in com-
puter science [16, 17, 28, 42, 183] and in large scale optimization [185].
In [184] it was shown that the acceleration technique cannot only be
applied to search schemes with deterministic search directions, but also
to certain randomized schemes. This scheme relies on the estimation of
directional derivatives by finite-difference approximations. The acceler-
ated (randomized) Coordinate Descent [185] was improved recently by
Lee and Sidfort [140], as they present computationally more efficient
updates. The latter paper attracted our interest, because the authors
present the proof quite elegantly, using probabilistic estimate sequences,
a generalization of their deterministic counterparts.

The accelerated random schemes [140, 184, 185] internally rely on
gradient information, e.g. (approximations) of directional derivatives.
In this chapter we investigate the question, if—and to what extent—
the information of the line search oracle LS from Section 3.4 could be
used instead. That is, for our theoretical investigation we assume that
the line search oracle is given as a black-box. This research is motivated

91

92 Chapter 6. Accelerated Random Search

by convincing empirical experiments that show convergence of such ac-
celerated methods on a (small) set of benchmark functions. In [239] we
empirically tested the accelerated scheme with an exact line search on
four convex and one (simple) non-convex function. Recently, in [233] we
implemented an instance of the accelerated scheme equipped with the
adaptive step size scheme (2.7) that is also used in (1+1)-ES and ob-
served convergence on three quadratic and Rosenbrock’s function [212].

This chapter is based on so far unpublished theoretical results and
presents ongoing work and preliminary results. To put these results
in some perspective, we proceed as follows: in Section 6.1 below, we
present and discuss our results. The technical details will be provided
later in Sections 6.3 and 6.4. Section 6.3 introduces the concept of
estimate sequences—an essential tool for the convergence proof provided
in Section 6.4. In Section 6.2 in-between, we present a small numerical
comparison of the algorithmic schemes that we have discussed in this
thesis: these are Random Pursuit and its accelerated version, and the
Hessian Estimation schemes from Section 5.2.

6.1 Summary of the Results

From an abstract point of view, Nesterov’s Accelerated Random Gra-
dient method [184] is an iterative scheme that advances simultaneously
two sequences (xk)k≥0 and (yk)k≥0 of search points. Each iteration con-
sists of two conceptually different steps: (i) a simple search step that,
like in the Random Pursuit framework, finds a better search point xk+1

starting from some iterate yk ∈ Rn (see lines 4–5 in Figure 6.1), and
(ii) an advanced model building step, that computes a new yk+1 based
on the acquired knowledge of the objective function (see lines 6–7 in
Figure 6.1). In the Accelerated Random Gradient method both steps
are performed with the help of a gradient oracle.

For example, on a quadratic function f ∈ C1
1,1(A), A ∈ PDn, the Ac-

celerated Random Gradient method needs O

κ1/2(A)n ln 1

ϵ


iterations

to find an ϵ-approximate solution (2.1). This is a significant improve-
ment over the running time of a simple Random Pursuit algorithm. For
instance, Random Pursuit with search directions sampled u ∼ Sn−1

and search steps satisfying the sufficient decrease condition (D1) from
page 42 with parameters γ = 1 and ϵ = 0, requires O


κT(A)n ln

1
ϵ


iter-

ations to achieve the same goal, see Example 4.12. This is unfortunate,
as in general κT(A) can be of the same order of magnitude as κ(A).

6.1. Summary of the Results 93

Here, we present two new contributions: first, we show that the
search step (i) in the Accelerated Random Gradient method can be
replaced by a line search—or any other search step that satisfies the
sufficient decrease condition (D1). The running time of this altered

scheme is O

κ
1/2
T (A)n ln 1

ϵ


for f ∈ C1

1,1(A) and A ∈ PDn. We detail
this result in Corollary 6.4 below. For the case κT(A) < κ(A), this is
even an improvement over the results in [184]. Second, we show that if
an exact line search is used in the model building step (ii), the result-

ing scheme needs O

κ
1/2
T (A)ω1/2(A)n ln 1

ϵ


iterations on quadratic func-

tions f(x) = 1
2 ∥x∥

2
A. The parameter ω(A) is defined in Corollary 6.5

below. Intuitively, ω(A) is a (relative) upper bound on the length of the
expected step with respect to the expected progress. The main issue
with this result is that the quantity ω(A) cannot easily be computed
or bounded, that is we do not have a satisfactory upper bound that
holds uniformly for all quadratic functions. However, we can at least
prove ω(A) ≤ κT(A), implying that the accelerated scheme converges
at least as fast as the simple Random Pursuit schemes. The parameter
ω(A) has to be given as a parameter to the accelerated scheme (see e.g.
Figure 6.1) and should be chosen as small as possible as it has a direct
impact on the convergence rate.

Our main result is given in Theorem 6.11 on page 103 below. This
theorem provides the promised bound on the convergence rate and a
concise definition of the algorithmic scheme. There is some freedom
how to choose the initial parameters. Specific choices might even have
an impact on the numerical stability of the scheme, similar to the dis-
cussion in [140]. For the algorithms presented in Figure 6.1, we chose
the initial parameters deliberately in such a way that we get a very
simple scheme. We refer to this specific instance therefore as Simple
Accelerated Random Pursuit (SARP).

In order to state our results formally, we now proceed by providing
the definition of a gradient oracle.

6.1.1 Gradient Oracles

Definition 6.1 (Gradient Oracle). An (unbiased) gradient oracle for
a function f ∈ C1 and sampling distribution π is a function gf : Rn ×
Rn → Rn with

Eu∼π


gf (x,u)


= ∇f(x) , (6.1)

for all x ∈ Rn. We will abbreviate gf (x,u) = gfu(x).

94 Chapter 6. Accelerated Random Search

Example 6.2 (Directional Derivative). Let f ∈ C1 and u ∼ Sn−1.
Then gfu(x) = n ⟨∇f(x),u⟩u is a gradient oracle and the second mo-

ment satisfies E
gfu(x)2 = n ∥∇f(x)∥2.

Proof. We have gfu(x) = n(uuT)∇f(x). The first claim follows by lin-
earity of expectation and E[uuT] = 1

nIn by Lemma A.4 in the appendix

on page 113. Analogously for
gfu(x)2 = n2∇f(x)TuuT∇f(x).

Example 6.3 (Transformed Exact Line Search). Let f(x) = 1
2 ∥x∥

2
A

for A ∈ PDn, u ∼ Sn−1 and QA = E


uuT

∥u∥2
A


(as in Section 4.3.2).

Then gfu(x) = −Q−1
A LSf (x,u)u is a gradient oracle.

Proof. We have E

LSf (x,u)u


= −QA∇f(x) by definition of the matrix

QA, see (B.4).

This last example might seem to have limited practical use: in gen-
eral we do not know QA. Hence, we cannot implement gf , we can only
access LSf . For now, we can use it at least use as at theoretical concept,
but later in Section 6.4 we show, that in fact we do not need to know
QA to implement the accelerated search schemes.

6.1.2 Convergence of SARP

As mentioned above, the convergence proof of SARP will be provided
in Theorem 6.11 below on page 103. Similar to Theorem 3.3 or 3.6 we
show linear convergence

E[f(xN)] ≤ ψkf0 ,

where 0 < ψ < 1 denotes the convergence factor and fN and f0 are
defined as in Theorem 3.3. We now summarize our bounds on ψ.

Corollary 6.4 (SARP with Gradient Oracle). Let f ∈ C1
m,L(A) for

metric A ∈ PDn and search directions (uk)k≥0 independent copies of
u ∼ Sn−1. For normalization purposes assume without loss of generality
λmax(A) = 1. If (i) the search steps xk+1 = yk + σkuk satisfy the
sufficient decrease condition (D1) with parameters γ ≤ 1, ϵ = 0 and
(ii) the model building steps are generated with gradient oracle gfu(x) =
n ⟨∇f(x),u⟩, then

ψ ≤

1− 1

n


mγ

κT(A)L


.

6.1. Summary of the Results 95

SARP(f,x0, N,m,L)
(with gradient oracle)

LSf : (γ, ϵ)-line search oracle

gf : gradient oracle

α← 1
n


γ

LκT(A) for f ∈ C1
m,L(A)

1 y0 ← x0; v0 ← x0;
2 for k = 1 to N do
3 uk ∼ Sn−1

4 σk ← LSf (yk−1,uk)
5 xk ← yk−1 + σkuk

6 yk ← (αvk−1 + xk)/(1 + α)

7 vk ← (1−α)vk−1+αyk− α
mgfuk

(yk−1)

8 return xN

SARP(f,x0, N, ω)
(only with exact line search)

LSf : exact line search oracle

ω(A) as small as possible with (6.2)

α← 1
n


1

ω(A) for f ∈ C1
1,1(A)

1 y0 ← x0; v0 ← x0;
2 for k = 1 to N do
3 uk ∼ Sn−1

4 σk ← LSf (yk−1,uk)
5 xk ← yk−1 + σkuk

6 yk ← (αvk−1 + xk)/(1 + α)

7 vk ← (1− α)vk−1 + αyk + αn
κT(A)σkuk

8 return xN

Figure 6.1: Simple Accelerated Random Pursuit (SARP). Fast convergence
of the scheme on the left hand side is shown in Cor. 6.4 for f ∈ C1

m,L(A),
convergence for the scheme on the right hand side is shown in Cor. 6.5 for
quadratic functions f ∈ C1

1,1(A), the rate depending on ω(A) defined in (6.2).

The proof can be found in Section 6.4 on page 105 below. The-
orem 6.11 treats also line search oracles with absolute errors ϵ > 0.
Considering κT(A) ≤ κ(A), we see that the convergence factor can be

bounded by

1 − 1

n


mγ

κ(A)L


, instead of only


1 − 1

n ·
mγ

κ(A)L


as for the

simple Random Pursuit schemes. As a second remark, we would like
to mention that if the search steps (i) in the above Corollary 6.4, i.e.
lines 4–5 in Figure 6.1, are also generated by the gradient oracle, that
is xk+1 = yk + gfu(yk)uk, then the scheme becomes identical to the
Accelerated Random Gradient method [184].

Now we investigate what happens when we cannot access directional
derivatives but only have a line search oracle.

Corollary 6.5 (SARP with Exact Line Search). Let f(x) = 1
2 ∥x∥

2
A for

A ∈ PDn, search directions (uk)k≥0 independent copies of u ∼ Sn−1

and QA defined as in Section 4.3.2. If (i) the search steps xk+1 = yk +
LSf (yk,uk)uk for an exact line search oracle, and (ii) the model building
steps are generated with gradient oracle gfu(x) = −Q−1

A LSf (x,u), then

ψ ≤


1− 1

n


1

ω(A)κT(A)



96 Chapter 6. Accelerated Random Search

for parameter ω(A) (as small as possible) such that

E
LSf (x,u)u2

Q−1
A


≤ ω(A) · n · ∥∇f(x)∥2QA

. (6.2)

We further have ω(A) ≤ κT(A), hence ψ ≤

1− 1

nκT(A)


.

We see, that in case ω(A) = 1, the convergence rate can reach the

seeked

1 − n−1κ

−1/2
T (A)


. However, in Lemma 4.23 we derived only

the upper bound ω(A) ≤ κT(A). This explains why Lemma 4.23 was
termed “insufficient”: the bound ω(A) ≤ κT(A) just allows to prove
that SARP with exact line search oracle converges at least as fast as
the simple Random Pursuit with exact line search, i.e. with rate


1 −

n−1κ−1
T (A)


; but does not allow for acceleration. We provide the proof

of this corollary in Section 6.4.1 on page 106 below.

This version of SARP is depicted in the right panel of Figure 6.1.
Besides small additive errors ϵ > 0 which are considered in addition
in Theorem 6.11, the restriction to an exact line search oracle can be
relaxed in two ways: (i) as in the setting of Corollary. 6.4, the search step
on lines 4–5 could be replaced with any step that satisfies the sufficient
decrease condition (D1) with parameter γ > 0. The the initialization of
α must be changed accordingly (as in the left panel of Figure 6.1), and

the convergence factor drops in this case to ψ ≤

1 − 1

n


γ

ω(A)κT(A)


.

However, line 7 still requires an exact line search oracle. Once evaluated,
this information could therefore also be used for the update in lines 4–5
and hence this variant might be less useful.

The exact line search oracle in line 7 could also be replaced. The ma-
trix QA from Section 4.3.2 was defined such as to describe the expected
step E[LSf (y,u)u] = −QA∇f(y) of Random Pursuit on a quadratic
function f . The here presented technique allows to use inexact line
search oracles on line 7 if (ii) E[LSf (y,u)u] = −Q′

A∇f(y) holds for
any Q′

A independent of y ∈ Rn. This holds for instance for the oracles
γLSf (y,u), γ > 0, or δLSf (y,u) where δ > 0 is a random variable in-
dependent from x. However, to determine the exact convergence rate,
bounds analogous to Lemmas 4.22 and 4.23 must be derived for this
matrix Q′

A instead. This could also be a way to prove convergence of
the accelerated scheme with the adaptive step size control (2.7) (that
we implemented in Section 6.2 and in [233])—if such a linear transfor-
mation Q′

A exists. This could be the case for quadratic functions.

6.2. Numerical Demonstration 97

6.2 Numerical Demonstration

In this section we numerically compare three Random Pursuit algo-
rithms that we encountered in this thesis. These algorithms use different
strategies to accelerate the search: (i) none, i.e. we simply implement a
plain Random Pursuit algorithm, (ii) variable metric, e.g. the Hessian
estimation scheme (RHE) combined with Random Pursuit and (iii) the
acceleration technique that we discuss in this chapter.

We implement all algorithmic schemes with the adaptive step size
control described in (2.7) (for initial value σ0 = 1 and c = 0.27). This
should emphasize the fact that the schemes do not rely on exact line
search oracles. Whilst we have discussed this for the simple schemes
already, this is not so clear (from a theoretical point of view) for SARP.
Below, we list very briefly the implementation details.

Benchmark Functions

We now detail the test functions used for the numerical comparison. We
tested all schemes on three quadratic functions and on one non-convex
function, all listed in Table 2.3 on page 38.

The quadratic functions are fexp, flin and ftwo, for curvature pa-
rameter L = 1e6. The eigenvalues of flin are equally spaced between 1
and L, the eigenvalues of fexp exponentially, and the eigenvalues of ftwo

take only two different values. The minimum is attained at x∗ = 0n,
we start the search at x0 = 1n.

The function frosen is known as Rosenbrock function [212] and non-
convex. Yet, it behaves locally almost like a quadratic function. It serves
as a test model with smoothly changing Hessian in order to study the
valley-following abilities of the different variable-metric schemes. The
minimum is attained at x∗ = 1n, we start the search at x0 = 0n.

Algorithmic Schemes

RP. We sample the search directions uniformly from u ∼ Sn−1.
Lev-Proj. This scheme combines the simple Random Pursuit algo-
rithm with the Hessian learning scheme (RHE) from Leventhal and
Lewis [141]. We implement the projection step as described in detail
in Section 5.2.4. We initialize (RHE) with B0 = In. In every itera-
tion k, the objective function is evaluated at exactly three points: two
function values are used for the curvature estimation according to (5.6),
and an updated Hessian matrix Bk is computed. We use ϵ = 1e-6

98 Chapter 6. Accelerated Random Search

fexp flin

1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8

1e-8

1e-4

1e0

1e4

1e8

fu
n
c
ti
o
n
 v

a
lu

e

 1e2 1e3 1e4 1e5 1e6 1e7 1e8

1e-8

1e-4

1e0

1e4

n
 =

 2
0

RP

SARP

1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8

1e-8

1e-4

1e0

1e4

1e8

#function evaluations / n

fu
n
c
ti
o
n
 v

a
lu

e

 1e2 1e3 1e4 1e5 1e6 1e7 1e8

1e-8

1e-4

1e0

1e4

#function evaluations / n

n
 =

 1
0
0

Lev-Unc

Lev-Proj

Figure 6.2: Evolution of log f vs. function evaluations (#FVALS) on fexp
(left) and flin (right) with L = 1e6 in n = 20 dimensions (top) and n = 100
(bottom). For 51 runs we recorded #FVALS needed to reach function value
of 1e-9. The trajectory realizing the median values is depicted, mean and one
standard deviation are indicated by markers.

in (5.6) on frosen. If Bk is positive semidefinite, a search direction
uk ∼ Sn−1

B−1
k

is sampled, otherwise uk ∼ Sn−1

B−1
k−1

, as one of the consec-

utive pair (Bk−1, Bk) has to be positive definite. The third function
evaluation is then used to evaluate the search step along this direction.
Lev-Unc. This scheme combines the ideas presented in Example 5.8
with the unconstrained scheme from Section 5.2.4. The scheme stores n2

randomly sampled directions, together with their respective curvature
estimates, and processes them in batches. Every batch consists of n2

iterations; in each iteration three function evaluations take place: two
function values are used for the curvature estimate (5.6), and one for
the search. Search directions are sampled from u ∼ Sn−1

B−1
b

, where Bb

remains fixed throughout the whole batch. At the end of each batch b,
the stored information is used to run (RHE) in an off-line way: (RHE)
subsamples the set of stored directions until the scheme converges to
a new estimate Bb+1. The subsampling does not require additional
function evaluations. In the first batch, the search process is omitted.
SARP. This is the new scheme that we introduce in this chapter. It
maintains two sequences (xk)k≥0, (yk)k≥0 of iterates and an auxiliary
sequence (vk)k≥0, as detailed in Figure 6.1 (the scheme in the right
panel). As we use adaptive step size control, we have to modify the
lines 3–5 from the scheme depicted in Figure 6.1. We use the following
approach: The index k counts only the successful steps, that is, in it-
eration k, the adaptive step size (2.7) samples search points near yk−1,
until a better point is found, denoted as xk. Then the sequences get

6.2. Numerical Demonstration 99

ftwo frosen

1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8

1e-8

1e-4

1e0

1e4

1e8
fu

n
c
ti
o
n
 v

a
lu

e

 1e3 1e4 1e5

1e-8

1e-4

1e0

1e4

n
 =

 2
0

RP

SARP

1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8

1e-8

1e-4

1e0

1e4

1e8

#function evaluations / n

fu
n
c
ti
o
n
 v

a
lu

e

 1e3 1e4 1e5

1e-8

1e-4

1e0

1e4

#function evaluations / n

n
 =

 1
0
0

Lev-Unc

Lev-Proj

Figure 6.3: Evolution of log f vs. function evaluations (#FVALS) on ftwo

with L = 1e6 (left) and frosen (right) in n = 20 dimensions (top) and n = 100
(bottom). For 51 runs we recorded #FVALS needed to reach function value
of 1e-9. The trajectory realizing the median values is depicted, mean and one
standard deviation are indicated by markers.

updated as follows: yk is computed from formula (6.10); vk is computed
from formula (6.6), i.e. as shown in lines 6–7 in the right panel of Fig-
ure 6.1. These formulas depend on parameters. We initialize v0 = x0,
y0 = x0 and use ζ0 = m = 1, yielding ζk = 1 for all k, see (6.5). The
parameter ω is, quite arbitrarily from a theoretical point of view, set to
ω = 1. For the non-convex frosen we use the choice κT = 500.

Discussion of the Results

The experimental result are depicted in Figures 6.2 and 6.3. The sim-
ple Random Pursuit RP needs the most function evaluations on all
functions, as expected. The performance, i.e. the number of function
evaluations to reach the target accuracy, of the two Hessian estima-
tion schemes Lev-Proj and Lev-Unc is approximately the same on all
functions. However, the first scheme requires expensive eigenvalue com-
putations every few iterations (especially on felli), whilst the iterations
of the latter are computationally less expensive.

The accelerated scheme SARP works on all functions consistently
better than RP and on frosen it is even faster than the Hessian learning
variants. While those schemes need at least n2 many function eval-
uations, RP and SARP scale only linearly in the dimension. Thus,
the Hessian learning schemes can only be applied in relatively small
dimensions, whist the latter might also be applicable for high dimen-
sional problems. This fact—and the promising empirical performance—
motivated our research in this area.

100 Chapter 6. Accelerated Random Search

6.3 Estimate Sequence Method

Here we now focus on the essential technical ingredients to prove our
claims made in Section 6.1. For this, we extend the method of estimate
sequences developed in [184] to the probabilistic setting. First, we in-
troduce this concept formally, and present some fundamental results,
mostly adopted from the presentation due to Baes [14].

Definition 6.6 (Estimate Sequence). A (probabilistic) estimate se-
quence for a convex function f : Rn → R is a sequence of convex func-
tions (φk)k≥0, each φk : R

n → R, and a sequence of positive numbers
(ηk)k≥0 satisfying limk→∞ ηk = 0 and

E[φk(x)] ≤ (1− ηk)f(x) + ηkE[φ0(x)] , (6.3)

for all x ∈ Rn, k ≥ 1.

6.3.1 Facts

The two lemmas below are just direct adaptations from [14]—added
for completeness. The first one gives a bound on the convergence rate.
From the definition (6.3) we see that an estimate sequence is essentially
a sequence of functions whose limit—if it exists—is a lower bound on
f . A sequence (xk)k≥0 of points with function values f(xk) ≤ φk(xk) is
therefore “trapped” between the estimate sequence (φk)k≥0 and f , and
(f(xk))k≥0 has to converge to f∗ := minx∈Rn f(x). We also see that
the convergence rate is fully determined by the sequence (ηk)k≥0.

Lemma 6.7. Let (ck)k≥0 be a sequence of positive numbers, f : Rn → R

convex and ((φk)k≥0, (ηk)k≥0) an estimate sequence (6.3) for f . Sup-
pose that the sequence (xk)k≥0 for xk ∈ Rn, satisfies E[f(xk)] − ck ≤
minx E[φk(x)]. Then

E[f(xk)]− f∗ ≤ ηk(E[φ0(x∗)]− f∗) + ck ,

for every k ≥ 1.

Proof. It suffices to write

E[f(xk)] ≤ min
x

E[φk(x)] + ϵk ≤ min
x
f(x) + ηk(E[φ0(x)]− f(x)) + ck

≤ f∗ + ηk(E[φ0(x∗)]− f∗) + ck .

6.3. Estimate Sequence Method 101

A way to construct an estimate sequence, is to recursively build the
convex combination of the previous element φk in the sequence, and
an (arbitrary) function fk : R

n → R that is a lower bound on f in
expectation (in the probabilistic setting).

Lemma 6.8. Let f : Rn → R convex and and let φ0 : R
n → R be a

convex function such that minx φ0(x) ≥ minx f(x). Let (αk)k≥0 with
0 < αk < 1 be a sequence whose sum diverges. Suppose also that we
have a sequence (fk)k≥0, fk : R

n → R, of random functions (i.e., each
fk is sampled from a probability distribution πk) that underestimate f
in expectation:

E[fk(x)] ≤ f(x)

for all x ∈ Rn and k ≥ 0. We define recursively η0 := 1, ηk+1 :=
ηk(1− αk), and

φk+1(x) := (1− αk)φk(x) + αkfk(x) = ηk+1φ0(x) +

k
l=0

ηk+1αl

ηl+1
fl(x) ,

for all k ≥ 0. Then ((φk)k≥0, (ηk)k≥0) is an estimate sequence.

Proof. This is an adaptation of Proposition 2.2 in [14]. Since

ln ηk+1 =

k
j=0

ln(1− αj) ≤ −
k

j=0

αj

for each k ≥ 0, the sequence (ηk)k≥0 converges to zero, as the sum of
the αj ’s diverges. Now let us proceed by induction. Clearly,

E [φ1(x)] = E [(1− α0)φ0(x) + α0f0(x)]

= η1E [φ0(x)] + (1− η1)E [f0(x)]

≤ η1E [φ0(x)] + (1− η1)f(x) .

Now for k > 1:

E [φk+1(x)] = E [(1− αk)φk(x) + αkfk(x)]

≤ (1− αk)(1− ηk)f(x) + (1− αk)ηkE [φ0(x)] + αkf(x)

= (1− ηk+1)f(x) + ηk+1E [φ0(x)] .

102 Chapter 6. Accelerated Random Search

6.3.2 Probabilistic Construction

As an immediate consequence of Lemma 6.8 we see that we can construct
an estimate sequence as soon as we have access to lower bounds on f .
Suppose f ∈ C1 and let gf , denote an unbiased gradient oracle (6.1)
with E[gfu(x)] = ∇f(x) for all x ∈ Rn. Then it is not hard to see, that
for sequences (yk)k≥0 with yk ∈ Rn and directions (uk)k≥0, uk ∼ Sn−1,


f(yk) +


gfuk

(yk),x− yk


k≥0

, (6.4)

is a sequence of underestimates in variable x ∈ Rn that satisfy the
conditions of Lemma 6.8. In expectation, these linear functions are
just the lower bounds (2.9) that exist for every convex function. In the
corollary below, we use quadratic lower bounds instead of the linear
ones above.

Corollary 6.9 (Gradient Oracle). Let f ∈ C1
m,L(B) strongly convex

in metric B ∈ PDn. Let φ0 : R
n → R be a convex function such that

minx∈Rn φ0(x) ≥ minx∈Rn f(x). Let (αk)k≥0 ∈ (0, 1) be a sequence
whose sum diverges. Let (yk)k≥0, with yk ∈ Rn be an arbitrary sequence
of candidates and let directions (uk)k≥0 be independent copies of u ∼
Sn−1. Let gf be an unbiased gradient oracle (6.1) for f . We define
recursively η0 := 1, ηk+1 := ηk(1− αk), and

φk+1(x) := (1− αk)φk(x) + αk


f(yk) +


gfuk

(yk),x− yk


+
m

2
∥x− yk∥2B


,

for all k ≥ 0. Then ((φk)k≥0, (ηk)k≥0) is an estimate sequence for f .

The next lemma is mainly due to Lee and Sidford [140]. We only
extended the statement slightly, to accommodate for gradient oracles as
defined in (6.1), that is with respect to search directions u ∼ Sn−1.

Lemma 6.10 (Quadratic Estimate Sequence). Let the first function be

quadratic, φ0 = Φ∗
0 + ζ0

2 ∥x− v0∥2B for Φ∗
0 ∈ R and ζ0 > 0. Then the

estimate sequence defined in Cor. 6.9 consists of quadratic functions of

6.4. Acceleration with Gradient Oracles 103

the form φk(x) = Φ∗
k + ζk

2 ∥x− vk∥2B, where

ζk+1 = (1− αk)ζk + αkm, (6.5)

vk+1 =
1

ζk+1


(1− αk)ζkvk + αkmyk − αkB

−1gfuk
(yk)


, (6.6)

Φ∗
k+1 = (1− αk)Φ

∗
k + αkf(yk)−

α2
k

2ζk+1

gfuk
(yk)

2
B−1 (6.7)

+
αk(1− αk)ζk

ζk+1

m
2
∥vk − yk∥2B +


gfuk

(yk),vk − yk


.

Proof. The proof is almost identical to the proof in [140] and thus omit-
ted here. For the sake of completeness, the details can be found in the
appendix on page 123.

6.4 Acceleration with Gradient Oracles

We now show how to use the estimate sequences to design accelerated
local search schemes. We assume access to an unbiased gradient oracle
for the model building step and (expected) sufficient decrease (E1) from
page 47 for the search step.

Theorem 6.11 (Simple Accelerated Random Search (SARP)). Let
f ∈ C1

m,L(B) strongly convex in metric B ∈ PDn and search directions

(uk)k≥0 independent copies of u ∼ Sn−1. Let gf be an unbiased gradient
oracle (6.1) for f . Let (xk)k≥0, xk ∈ Rn and (yk)k≥0, yk ∈ Rn, two
sequences of iterates (specified below), each pair (yk,xk+1) for k ≥ 0
satisfying the sufficient decrease condition

f(yk)− E [f(xk+1) | yk] ≥
α2

2
E
gfuk

(yk)
2
B−1


− ϵk , (6.8)

for a constant α > 0 and sequence of positive errors (ϵk)k≥0. We ini-
tialize:

y0 = x0 , Φ∗
0 = f(x0) , φ0(x) = Φ∗

0 +
ζ0
2
∥x− x0∥2B , (6.9)

for any ζ0 ≥ m. Applying Lemma 6.10 with these parameters, choosing
α2
k = ζk+1α

2, each xk+1 satisfying (6.8) with respect to yk, and yk such
that:

αkζk
ζk+1

(vk − yk) + xk − yk = 0 (6.10)

104 Chapter 6. Accelerated Random Search

yields an estimate sequence with

E[f(xN)− f∗] ≤ ψN ·

f(x0)− f∗ +

m

2
∥x∗ − x0∥2


+ CN ,

where convergence factor ψk ≤ min

(1− α

√
m)k, (1 + kα

√
m/2)

−2


and CN := ϵN +
N−1

i=1

N
j=N−i+1(1− αj)ϵN−i.

Proof. By construction (and Lemma 6.10) we know that the sequence
((φk)k≥0, (ηk)k≥0) for ηk = (1 − αk)ηk−1 is an estimate sequence. By
Lemma 6.7 it remains to show that the sequence (xk)k≥0 stays (al-
most) always below the minimum of φk, i.e. satisfies E[f(xk)] − Ck ≤
minx∈Rn E[φk(x)]. We prove this claim by induction. The base case
f(x0) ≤ φ0(x) follows by choice of Φ∗

0. With Lemma 6.10 and the
induction hypothesis, we get

E[Φ∗
k+1] ≥ E


(1− αk)f(xk) + αkf(yk)−

α2
k

2ζk+1

gfuk
(yk)

2
B−1

+
αk(1− αk)ζk

ζk+1

m
2
∥vk − yk∥2B +


gfuk

(yk),vk − yk

 
− (1− αk)Ck

By convexity f(xk) ≥ f(yk) + ⟨∇f(yk),xk − yk⟩. Using the property
E[gfuk

(yk)] = ∇f(yk), we obtain:

E[Φ∗
k+1] ≥ E


f(yk)−

α2
k

2ζk+1
∥guk

(yk)∥2B−1


− (1− αk)Ck

+ (1− αk)


∇f(yk),

αkζk
ζk+1

(vk − yk) + xk − yk


We see that yk was chosen in (6.10) to cancel the third term, so that

E[Φ∗
k+1] ≥ f(yk)−

α2
k

2ζk+1
E
gfuk

(yk)
2
B−1


− (1− αk)Ck . (6.11)

We have α2
k = ζk+1α

2 so that the induction step follows by assump-

tion (6.8). Finally, we note α2
k ≥ mα2 for all k, therefore

k−1
i=0 (1−αi) ≤

(1 − α
√
m)k. On the other hand, ψ

−1/2
k+1 ≥ 1 + kα

√
m

2 , see e.g. [182,
Lem 2.2.4] or [184].

As in Remark 3.4 from Section 3.2 the additive error CN in Theo-
rem 6.11 can easily be bounded.

6.4. Acceleration with Gradient Oracles 105

Remark 6.12. Let ϵk ≤ ϵ for k = 0, . . . , N − 1. Then CN ≤ ϵ
α
√
m
.

Proof. We observe α2
k ≥ mα2 for all k, and the claim follows from

CN ≤ ϵ
N−1
i=1

(1− α
√
m)i ≤ ϵ

α
√
m
.

6.4.1 Convergence of Two SARP Instances

Finally, we can prove the convergence of the two SARP instances pre-
sented in Figure 6.1. In order to apply Theorem 6.11 from above, we
essentially have to determine two different kinds of parameters. These
are the parameters m and L for the quadratic lower bound (2.11) and a
parameter α that measures the one step progress. All these parameters
depend on the metric B, which can be chosen as we please.

Proof of Corollary 6.4. We use Theorem 6.11 with B = In and ζk = m
for k ≥ 0. An lower bound for α follows from the sufficient decrease
condition (D2) and Example 4.12. Similar as in (E1) on page 47 we
have

f(yk)− E [f(xk+1) | yk] ≥
γ

2nκT(A)L
∥∇f(yk)∥2A−1 − ϵ ,

and on the other hand E
gfuk

(yk)
2 = n ∥∇f(yk)∥2 by Example 6.2,

and ∥∇f(yk)∥2 ≤ λmax(A) ∥∇f(yk)∥2A−1 = ∥∇f(yk)∥2A−1 by Lem. 2.2
and the assumption λmax(A) = 1. Therefore we can choose α in (6.8)
as least as large as to satisfy α2n2κT(A)L = γ, and the claimed bound
on ψk ≤ (1− α

√
m)k follows.

At last, we provide the proof of Corollary 6.5. The use of the gradient
oracle gfu(x) = −nQ−1

A LSf (x,u) from Example 6.3 is quite delicate.
Apparently, to compute gfu(x) one has to know QA—and we don’t do
that in general. However, there is a neat trick that we can use here: in
the update (6.6) we only need the product B−1gfuk

(yk,uk). Thus by
the free choice of the metric B−1 = QA, the update (6.6) only depends
on the line search oracle B−1gfuk

(yk,uk) = −nLSf (yk,uk) and we can
indeed implement this scheme. This trick can be applied for all line
search oracles LSf for which it holds E[LSf (y,u)u)] = −Q′

A∇f(y) for
Q′

A ∈ PDn independent of y. However, the difficulty is to estimate the
corresponding parametersm and L for the quadratic lower bound (2.11)

106 Chapter 6. Accelerated Random Search

and the parameter α that measures the one step progress (6.8) in the
B−1 norm.

Proof of Corollary 6.5. As announced, we use Theorem 6.11 with B =
Q−1

A . By Lemma 2.2 we see

f(x) =
1

2
∥x∥2A ≥

λmin(AQA)

2
∥x∥2Q−1

A
,

i.e. for the new metric Q−1
A , the function f is strongly convex for param-

eter m = λmin(AQA) ≥ n−1κ−1
T (A). The lower bound on λmin(AQA)

was given in Lemma 4.22 on page 73. As in the proof of Corollary 6.4
above, we now set ζk = m for k ≥ 0, and use the one step progress to
derive a lower bound on α. In Lemma 4.20 we showed that the one step
progress for the line search step LSf (y,u)u is exactly 1

2 ∥∇f(y)∥
2
QA

.
By the assumption (6.2) on the parameter ω(A) t follows that we can
choose α2 at least as large as 1

nω(A) , that is α ≥ 1
n1/2ω1/2(A)

and with

ψk ≤ (1 − α
√
m)k, the first inequality follows. For the second inequal-

ity, we observe that we derived the upper bound ω(A) ≤ κT(A) in
Lemma 4.23.

Chapter 7

Conclusion

In this thesis we analyzed the convergence of simple random search
schemes. For this, we introduced the framework of Random Pursuit
algorithms. These are iterative schemes of the form

xk+1 = xk + σkuk ,

where the sequences (σ)k≥0 and (uk)k≥0 denote the step sizes and search
directions. The step sizes must be chosen such as to satisfy a sufficient
decrease condition. For instance, they can be determined by a line
search.

As one of our main contributions, we provided a concise conver-
gence analysis for Random Pursuit algorithms. Our analysis is twofold:
(i) we provide a posteriori analysis of the convergence of the sequence
(xk)k≥0 once the step sizes and search directions have been determined.
If the search directions are chosen at random, then we also study the
(ii) expected behavior after one, or several iterations. One important
instance of a Random Pursuit algorithm is the scheme that selects the
search directions independently from the unit sphere, uk ∼ Sn−1, and
determines the step size by a line search. If the line search oracle satisfies
the sufficient decrease condition (D2) from page 48 with parameter γ,
then the running time to find an ϵ-approximate solution on a strongly
convex function f ∈ C1

1,1(A) for A ∈ PDn is O

nκT(A)

1
γ ln 1

ϵ


. The

quantity κT(A) can be viewed as a generalization of the condition num-
ber κ(A), as it depends on the average of the eigenvalues of A instead of
only the extremal ones. The dependency of the convergence rate on the
full eigenvalue spectrum is most prominently featured in our bounds on

107

108 Chapter 7. Conclusion

the one step progress, which can be estimated as

E

f(xk+1)− min

x∈Rn
f(x) | (xi)

k
i=0


≤ (1− τk)


f(xk)− min

x∈Rn
f(x)


for

τk =
γ

nκE(A, In,∇f(xk)
≥ γ

nκT(A)
≥ γ

nκ(A)
.

Here, the best bound depends on κE. This quantity can be regarded as
yet another generalization of the condition number which does not only
depend on the spectrum of A, but also on the current position xk. We
conclude that our analysis clearly reveals that the running time (i) de-
pends on the full eigenvalue spectrum of the matrix A and (ii) scales
linearly in the dimension n. This dependency can be interpreted in the
following way: although the zeroth-order methods are missing any gra-
dient information, they can compensate for this handicap by performing
n steps (in random directions), instead of only one step along the gra-
dient direction. Alternatively, the gradient information could also be
estimated by finite differences, again at the expense of O(n) additional
function evaluations. These observations suggest that our results can
easily be generalized to settings where either the optimization is carried
out over a d ≤ n dimensional subspace (instead of a one-dimensional
line search), or to first-order methods that only have access to partial
gradient information, say d out of the n entries. In both cases, the run-
ning time will supposedly only scale with n

d , as opposed to n in case
of the pure Random Pursuit considered in this thesis. Furthermore, we
observe that the running time depends inversely proportional on the ac-
curacy parameter γ of the line search and conclude that (iii) the quality
of the one-dimensional optimization has only a mild effect on the run-
ning time. For instance, an accuracy γ = 0.2 increases the running time
only by a factor of 5. This the reason why apparently very simple line
search oracles—for instance the adaptive step size scheme (2.7)—are
successfully used in many popular randomized search schemes.

In the second part of this thesis we presented a few application of
Random Pursuit algorithms, that is, existing algorithmic schemes which
can be analyzed in our framework. The most prominent example com-
prises Kaczmarz’ method for solving systems of linear equations. The
Random Hessian Estimation scheme of Leventhal and Lewis [141] was
of specific interest for two reasons: (i) it admits a simple zeroth-order
variable metric scheme—much similar to CMA-ES—that is amenable

109

to theoretical investigation, as (ii) we revealed that (RHE) is nothing
else but Random Pursuit on the space of symmetric matrices for a spe-
cific sampling distribution. For this specific instance of Random Pursuit
we derived, again, the exact convergence factor and showed tight up-
per and lower bounds for its convergence. On a quadratic function
f(x) = 1

2 ∥x∥
2
A, the running time of the scheme that uses first (RHE)

to estimate Â ≈ A, and then Random Pursuit with search directions
uk ∼ Sn−1

Â
, the running time is O


n2 lnκF(A)+n ln

1
ϵ


, where κF(A) is

the relative condition number of A. We also present a novel implementa-
tion of this scheme which needs only O


n2+n ln 1

ϵ


function evaluations,

independent of A. That is, the scheme is affine invariant. However,
when comparing the running time of this approach with the running
time of a Random Pursuit without (RHE) and uk ∼ Sn−1, we see that
the variable metric scheme is only superior if n lnκF(A) ≤ κT(A) ln

1
ϵ ,

or n ≤ κT(A) ln 1
ϵ , respectively. This rules out the (straightforward) ap-

plication of (RHE) in very high dimensions n. However, if for instance
a good approximation B ≈ A could be found in linear time, the variable
metric approach should be preferred. The approximation B could for
instance be of the form B = R + S, where R is a low rank matrix and
S a sparse matrix, both representable with only O(n) elements. Future
research must address the question whether its is possible to modify
(RHE) to incorporate such constraints with running time only linear in
n, or whether a completely different approximation technique must be
used.

The last part of this thesis was dedicated to the study of a com-
pletely different acceleration technique. Instead of learning the Hessian
matrix and then applying a simple Random Pursuit algorithm, the Ac-
celerated Gradient methods utilize the properties implied by convexity
more thoroughly. But the resulting schemes are slightly more com-
plicated. We show that one part of Nesterov’s Random Accelerated
Gradient method can easily be replaced by a line search. The running
time on strongly convex functions f ∈ C1

1,1(A) for A ∈ PDn reduces to

O

nκ

1/2
T (A)γ−1/2 ln 1

ϵ


. Considering the full eigenvalue spectrum of A

pays off, as the previously known bounds for the Random Accelerated
Gradient method all depend on κ(A). The running time still scales
linearly in the dimension n, but the dependency on κT(A) is signifi-
cantly reduced compared to the simple Random Pursuit. We have to
conclude, that the accelerated version of Random Pursuit, denoted as
SARP, would be the most suitable scheme from a theoretical point of
view, especially in high dimension. However, it is not truly gradient-

110 Chapter 7. Conclusion

free, as it requires access to a gradient oracle. It is the topic of our
current research, if and how this dependency can be avoided. As a par-
tial result, we derived the convergence rate for a gradient-free version
of SARP on quadratic functions f(x) = 1

2 ∥x∥
2
A. The running time

O

nκ

1/2
T (A)ω1/2(A) ln 1

ϵ


depends on a parameter ω(A), for which no

satisfactory bound could be found yet. However, ω(A) ≤ κT(A), which
implies that this version of SARP converges at least as fast as the simple
Random Pursuit and hence should be preferred.

We have shown that randomized zeroth-order search schemes can
be efficiently applied to convex optimization problems. We have also
mentioned two important research questions that would allow to signifi-
cantly advance our framework: (i) Hessian estimation in linear time and
(ii) gradient-free accelerated random search. The first problem is not
only limited to Random Pursuit algorithms, but also of specific interest
for other branches of zeroth-order optimization. Estimation of the Hes-
sian (or its inverse), is a key ingredient in many schemes, for instance the
Evolution Strategies CMA-ES or Gaussian Adaptation. As the (RHE)
scheme studied in this thesis is quite different from the schemes used in
the latter two algorithms, we do not expect that our presented research
can directly be applied to prove the convergence of those schemes. It
might be worthwhile to investigate whether it is possible to express the
behavior of the Covariance Estimation schemes used in CMA-ES and
Gaussian Adaptation in terms of minimization of a (virtual) potential
function by an instance of a Random Pursuit algorithm, similar as we
did for (RHE). Another, more direct and seemingly more promising way
to use our results for the investigation of those two algorithms is the
following: Both schemes use essentially a variation of the adaptive step
size scheme (2.7) to determine the search steps. If a theoretical analysis
of this line search oracle can reveal a non-trivial estimation of accuracy
parameter γ (as used in the sufficient decrease condition (D1)), then
the search steps of CMA-ES or Gaussian Adaptation for fixed metric,
i.e. covariance, can be analyzed in our framework.

In this thesis we restricted our attention to convex functions. Further
research will also be concerned with the question whether it is possible
to extend some of the results to carefully chosen non-convex problems.
For instance, one could investigate the adaptive step size scheme (2.7)
on asymptotically convex functions (as defined in Section 2.3.4), or on
an appropriately defined subclass of those functions.

Appendix A

Tools and Lemmas

A.1 Selected Random Variables

A.1.1 Normal Random Variables

We here review and derive certain facts about the moments of the stan-
dard normal distribution.

Fact A.1 (Moments of Normal Variables). Let u ∼ N (0,Σ) multivari-
ate normal for covariance Σ ∈ PDn and denote by ι1, . . . , ι2k a set of
(not necessarily distinct) indices, ιi ∈ [n]. Then

E

uι1 · · ·uι2k−1


= 0 , E [uι1 · · ·uι2k] =


Σij ,

where the notation


means summing over all ways of partitioning
uι1 , . . . , uι2k into pairs. Especially, for all indices i, j, k, l,

E[uiuj] = Σij , E[uiujukul] = ΣijΣkl +ΣikΣjl +ΣilΣjk .

Proof. The odd moments vanish by symmetry of the normal distribu-
tion. The formula for the even moments is known as Isserlis’ Theo-
rem [110].

A.1.2 Products of Quadratic Forms

We consider quadratic forms Q(u) = uTAu where u is a normal random
vector and A ∈ Rn×n. Without loss of generality, A ∈ SYMn, see
Section 2.5.3.

111

112 Appendix A. Tools and Lemmas

The moments E[(uTAu)p] of the random variable (uTAu) can be
expressed in terms of its cumulants (see [156, Thm. 3.3.2]) trough what
is called the Faà di Bruno’s formula (see the review [45]). Magnus [153]
provides exact expressions, Holmquist [105] presents a more direct ap-
proach that requires only the enumeration of all permutations of the
set [p], and Ghazal gives recursive formulas [69].

Explicit expressions for the product of two (Nagar [170]), three
(Neudecker [188]) and four (Kumar [138]) quadratic forms in normal
variables were given by several authors (cf. [105]). Kumar [138], Mag-
nus [153] and Holmquist [105] presented algorithmic procedures to gen-
erate the expectations of higher order products.

Fact A.2 (Expectation of Products). Let A,B ∈ SYMn and let u ∼
N (0,Σ), for covariance Σ ∈ PDn. Then

E

uTAu


= Tr[AΣ] ,

E

uTAu · uTBuT


= Tr[AΣ]Tr[BΣ] + 2Tr[AΣBΣ] ,

especially, for B = A, we have E

(uTAu)2


= Tr[AΣ]2 + 2Tr[(AΣ)2].

Proof. Application of Fact A.1 yields

E

uTAu


=

n
i,j=1

E [uiujAij] =

n
i,j=1

ΣijAij = Tr[ATΣ] ,

and


E

uTAu · uuT


ij
=

n
k,l=1

E [uiujukulAkl]

=

n
k,l=1

Akl (ΣijΣkl +ΣikΣjl +ΣilΣjk)

= Tr[AΣ]Σij +

ΣAΣ


ij
+

ΣAΣ


ji
,

using symmetry of ΣAΣ. The claims follows from the observation
uTAu · uTBu = Tr[uTAu · uuTB].

For AΣ = In, the random variable uTAu follows the χ2 distribution
with n degrees of freedom.

A.1. Selected Random Variables 113

Fact A.3 (χ2-Moments). Let u ∼ N (0, A−1) with covariance A−1 ∈
PDn. Then

E[∥u∥2kA] =

k
i=1

(n+ 2i− 2) .

Especially, E[∥u∥2A] = n and E[∥u∥4A] = n(n+ 2).

Proof. Let A1/2 denote the symmetric positive definite root of A. By
definition of the normal distribution, the vector v = A1/2u for u ∼
N (0, A−1) is normal distributed with covariance AA−1 = In. Thus

Eu[∥u∥2kA] = Ev[∥v∥2k], which are the moments of a χ2 distributed
random variable. The two special cases follow via this observations
from Fact A.2, for the general formula see [62].

A.1.3 Ratios of Quadratic Forms

We consider ratios Rp
q(u) := Qp

A/Q
q
B , in quadratic forms QX(u) :=

uTXu, where u is a normal random vector and A ∈ SYMn andB ∈ PDn

(see Section A.1.2).
Bao and Kan [15] show that the moment E[Rp

q] exists if and only if
n
2 + p > q. Low order moments have been adressed by De Gooijer [82],
building on the work of Sawa [216, 217]. Integral expressions where given
in [68, 153, 154, 229] provide exact expressions for all moments. Aspects
of numerical evaluation of these expressions are discussed in [194].

We are especially interested in E[R1
1] and E[R2

2]. For exact expres-
sions see [68, 121]. If QA/QB is independent of QB , then E[Rp

p] =
E[Qp

A]/E[Q
p
B], [100, 196]. This holds for elliptical random variables.

Lemma A.4 (Quadratic forms of elliptical variables). Let Σ ∈ PDn,
A,B ∈ SYMn and let u ∼ Sn−1

Σ−1 elliptically distributed for metric Σ−1.
Then

E

uTAu


= Tr[AΣ]

n ,

E

uTAu · uTBuT


= Tr[AΣ]Tr[BΣ]+2Tr[AΣBΣ]

n(n+2) ,

especially, for B = A, we have E

(uTAu)2


= Tr[AΣ]2+2Tr[(AΣ)2]

n(n+2) .

Proof. Let v ∼ N (0,Σ). The random vector w = v/ ∥v∥Σ−1 has the
same distribution as u by definition, see Remark 2.5. Note that the

114 Appendix A. Tools and Lemmas

ratio R(v
∥v∥Σ−1

) := vTAv·vTBvT

∥v∥4
Σ−1

is independent of ∥v∥4Σ−1 (R does only

depend on the direction of v). In particular,

Eu


uTAu · uTBuT


= Ev


vTAv·vTBvT

∥v∥4
Σ−1


=

Ev[vTAv·vTBvT]
Ev[∥v∥4

Σ−1]
,

see [100, 196]. The values of the numerator and denumerator were given
in Fact A.2 and Fact A.3. The analogous reasoning applies for the first
moment.

Remark A.5 (Covariance of elliptical variables). By the same reason-
ing, one obtains E[uuT] = 1

nΣ for u ∼ Sn−1
Σ−1 and Σ ∈ PDn.

A.1.4 Scaled Normal and Elliptical Vectors

Lemma A.6 (Scaled normal vectors). Let u ∈ N (0,Σ) with Σ ∈ PDn,
let C,D ∈ SYMn and x ∈ Rn. Then

E [⟨x,u⟩u] = Σx ,

E [⟨Dx,u⟩ ⟨x,u⟩] = xT (DΣ)x = ∥x∥2DΣ ,

E

∥⟨Dx,u⟩u∥2C


= Tr[CΣ] ∥x∥2DΣD + 2 ∥x∥2DΣCΣD .

Proof. By Fact A.1 and linearity of expectation we deduce

E [⟨x,u⟩u] = E

uuTx


= E


uuT


x = Σx ,

The second claim follows from ⟨Bx,u⟩ ⟨x,u⟩ = xTB (⟨x,u⟩u). The
last moment follows from Fact A.2 with A = C and B = (Dx)(Dx)T .
Observe Tr[(Dx)(Dx)TΣ] = xT (DTΣD)x and Tr[CΣ(Dx)(Dx)TΣ] =
xT (DTΣCΣD)x.

Analogous to Lemma A.6, we can immediately compute the same
expectations for elliptical random variables.

Lemma A.7. Let u ∼ Sn−1
Σ−1 for metric Σ ∈ PDn and C,D ∈ SYMn

and x ∈ Rn. Then

E [⟨x,u⟩u] = 1
nΣx ,

E [⟨Dx,u⟩ ⟨x,u⟩] = 1
n ∥x∥

2
DΣ ,

E

(uTDu)2


= Tr[DΣ]2+2Tr[(DΣ)2]

n(n+2) ,

E

∥⟨Dx,u⟩u∥2C


=

Tr[CΣ]∥x∥2
DΣD+2∥x∥2

DΣCΣD

n(n+2) .

A.2. Ratio of Quadratic Forms 115

A.2 Ratio of Quadratic Forms

Proof of Lemma 2.2. Let B1/2 ∈ PDn be the positive definite root of
B, and set y = B1/2x. Then we have

∥x∥2A
∥x∥2B

=
∥y∥2B−1/2AB−1/2

∥y∥2
.

Max- and minimizing the above ratio for ∥y∥ = 1, and the bounds
from (2.8), yield

λmin(B
−1/2AB−1/2) ≤ ∥y∥2B−1/2AB−1/2 ≤ λmax(B

−1/2AB−1/2) .

The inequalities follow by the fact that the matrices B−1/2AB−1/2

and AB−1/2B−1/2 = AB−1 have the same eigenvalues, see e.g. [204,
Prop. 13.2]. The inequalities in (2.8) are tight, thus we have equality
for x = vmin and x = vmax, the eigenvectors corresponding the the
minimal and maximal eigenvalue of AB−1, respectively.

A.3 Perturbation

Lemma A.8 (Perturbation). Let A ∈ PDn, x ∈ Rn and z1 ∈ Rn an
eigenvector corresponding to the smallest eigenvalue of (A−xxT). Then

B := A− xxT +
λmin(A− xxT)

 z1zT1 ∈ PDn .

Proof. The matrix (A− xxT) is symmetric. Hence, its spectral decom-
position (A− xxT) =

n
i=1 λiziz

T
i with λ1 ≤ λ2 ≤ . . . λn in increasing

order exists. If λ1 ≥ 0, then there is nothing to show. Otherwise, we
observe that by a variant of Weyl’s theorem (cf. [107, Theorem 4.3.4]),
0 ≤ λi(A) ≤ λi+1(A − xxT) = λi+1 for i = 1, . . . , n − 1. Thus at most
λ1 can be negative. We conclude

yTBy = yT


n

i=1

λiziz
T
i + |λ1| z1zT1


y

≥ yT

λ1z1z

T
1 + |λ1| z1zT1


y ≥ 0 ,

for all y ∈ Rn.

116 Appendix A. Tools and Lemmas

A.4 Slow Convergence with Additive Error

Lemma A.9. Let (fk)k≥1 be a sequence of positive numbers. Suppose

fk+1 ≤ (1− θ/k) fk + Cθ2/k2 +D , for k ≥ 1,

for constants θ > 1, C > 0 and D ≥ 0. Then it follows by induction
that

fk ≤ Q(θ)/k + (k − 1)D ,

where Q(θ) = max

θ2C/(θ − 1), f1


.

A very similar result was stated without proof in [177] and also
Hazan [99] is using the same.

Proof. For k = 1 it holds that fk ≤ Q(θ) by definition of Q(θ). Assume
that the result holds for k ≥ 1. If Q(θ) = θ2C/(θ − 1) then we deduce:

fk+1 ≤
θ2C(k − θ)
(θ − 1)k2

+
Cθ2

k2
+

(k − θ)(k − 1)D

k
+D

=
θ2C(k − 1)

(θ − 1)k2
+
D(k2 − θ(k − 1))

k
≤ θ2C

(θ − 1)(k + 1)
+ kD .

If on the other hand Q(θ) = f1, then

f1 ≥
θ2C

(θ − 1)
⇔ (θ − 1)f1 ≥ θ2C ,

and it follows

fk+1 ≤
(k − θ)f1

k2
+
Cθ2

k2
+

(k − θ)(k − 1)D

k
+D

=
(k − 1)f1

k2
+
θ2C − (θ − 1)f1

k2
+
D(k2 − θ(k − 1))

k

≤ f1
k + 1

+ kD .

Appendix B

Deferred Proofs

B.1 Convergence with Sufficient Decrease

Proof of Theorem 3.3 (ii)-(iii). Let us start with the part (ii), where
ϵk = 0. This case is similar to the one treated in [264]. By convex-
ity (2.9) and the assumptions on the diameter R we have

fk ≤ ⟨∇f(xk),x
∗ − xk⟩ ≤ R ∥∇f(xk)∥A−1 ,

for k = 0, . . . , N − 1. By combining this lower bound on ∥∇f(xk)∥A−1

with the sufficient decrease condition (D1) we deduce

fk − fk+1 ≥
γkβ

2
k

2LR2
f2k ,

for k = 0, . . . , N − 1. Let τk := γkβ
2
k/(2LR

2). We claim that the
sequence (fk)k≥0 satisfies f−1

k+1 − f
−1
k ≥ τk. Indeed,

1

fk+1
− 1

fk
=
fk − fk+1

fkfk+1
≥ τkfk
fk+1

≥ τk ,

where the last inequality follows from the simple observation, that the
fraction fk/fk+1 ≥ 1 if τk ≥ 0. By summing the established inequality
over all k = 0, . . . , N − 1 we deduce

1

fN
− 1

f0
=

N−1
k=0


1

fk+1
− 1

fk


≥ SN .

117

118 Appendix B. Deferred Proofs

The statement follows by rearranging the terms in the derived inequality
and the observation f0 > 0 if SN > 0.

Now we proceed to part (iii). We begin similarly as above. The
assumptions and the sufficient decrease condition (D1) yield

fk − fk+1 + ϵ ≥ τf2k , (B.1)

for k = 0, . . . , N−1 and τ := δ/(2LR2). We rewrite this bound on fk+1

as

fk+1 − ϵ ≤ fk − τf2k = fk + 2min
hk


−hkfk +

h2k
2τ


≤ (1− 2hk)fk +

h2k
τ
,

where the last inequality holds for arbitrary parameter hk. Therefore

fk+1 ≤ (1− 2hk) + h2k
2LR2

δ
+ ϵ .

By setting hk = 1/(k + 1) for k = 0, . . . , N − 1, we obtain a recurrence
that is exactly of the form as treated in Lemma A.9 on page 116.

B.2 Interpolation of Quadratic Functions

Proof of Example 4.5. The function g(t) := f(x+(s+ t)u) is quadratic
and can be written as

g(t) = f(x+ su) + t

sf(u) + xTAu


+ t2f(u) . (B.2)

Observe

a =
g(ϵ)− 2g(0) + g(−ϵ)

ϵ2
=

2ϵ2f(u)

ϵ2
= 2f(u) ,

and

b =
g(ϵ)− g(−ϵ)

2ϵ
=

2ϵ

sf(u) + xTAu


2ϵ

= sf(u) + xTAu .

Therefore (B.2) can equivalently be written as g(t) = fs + bt+ a
2 t

2. By

setting the derivative of g to zero, ∇g(t) = b + at
!
= 0, we see that g

attains its minima for t = − b
a .

B.3. Typical Search Position 119

B.3 Typical Search Position

Theorem 3.6 on page 45 depends on the expectation of the squared angle
measure E[β2

k] for every step k. The important lower bound derived in
Example 4.12 on page 65 depends on κE(A,B,xk), where A,B are two
fixed matrices, and xk ∈ Rn the current search point. This makes it
hard to derive a uniform lower bound on E[β2

k], that does not depend on
k. The following remark shows that instead of considering every single
xk for k = 1, . . . , N , it is enough to consider an “average” point x̄ ∈ Rn

instead. This point can be viewed as a “typical” position of the scheme
with respect to the level sets of the objective function, see the discussion
in Section 4.3.1.

Remark B.1. Consider the same setting as in Theorem 3.6 and assume
E[γkβ2

k] ≥ a
σ(xk)+b , for a, b > 0 constant and σ : Rn → R≥0 nonnegative.

Then

E[fN] ≤ f0 · exp

− amN

L(σ̄ + b)


+DN , (B.3)

where σ̄ = 1
N

N−1
i=0 σ(xk).

Proof. By Theorem 3.6 it suffices to consider the expectation of the sum
SN :=

N−1
k=0 γkβ

2
k. The function 1

x is convex, therefore by Jensen’s
inequality and the assumptions we find

E[SN] ≥
N−1
k=0

a

σ(xk) + b
≥ aN

1
N

N−1
i=0 σ(xk) + b

=
aN

σ̄ + b
,

and the claim follows from monotonicity of ex.

B.4 Weighted Sampling of a Discrete Set

Proof of Example 4.15. If C has full rank n, then the matrix CTC ∈
Rn×n has also full rank. This well-known property of Gram matrices
can be shown in the following way: let x ∈ Rn s.t. CTCx = 0. Then
0 = xTCTCx = ∥Cx∥2. Thus the null space of CTC is contained in
the null space of C, which is trivial by assumption. Thus the inverse
(CTC)−1 exists and we can set C−1 := (CTC)−1CT the left inverse of
C. For the second part, note that

Eu∼wT [uu
T] =

m
i=1

∥ci∥2m
j=1 ∥cj∥

2

cic
T
i

∥ci∥2
=

1

∥C∥2F

m
i=1

cic
T
i =

CTC

∥C∥2F
.

120 Appendix B. Deferred Proofs

In Fact B.2 (just below) we derive λmin(C
TC) ≥

C−1
−2

2
and the

statement follows from the Lemma 4.8.

Fact B.2 (see e.g. [204]). Let C ∈ Rm×n and x ∈ Rn. If the left inverse
C−1 := (CTC)−1CT with C−1C = In exists, thenC−1

−2
= λmin(C

TC) , especially, ∥x∥2 ≤
C−1

2 ∥x∥2CTC .

Proof. We note
C−1

2 =
(CTC)−1CTC(CTC)−1

 =
(CTC)−1

,
which by definition equals the maximal eigenvalue of (CTC)−1, i.e.
λ−1
min(C

TC). The inequality follows with Lemma 2.2 by setting B =
CTC (and A = In).

B.5 Approximating the Covariance Matrix

Proof of Example 4.18. Let Σ̂ = Eu∼T the sample covariance and Σ =
E[uuT] = 1

nIn the exact covariance (see Example 4.9). By Fact 4.17
the sample covariance approximates Σ up to a factor of ϵ, that is,
equation (4.8) implies Σ̂ ≽ (1 − ϵ)Σ, and the statement follows from
Lemma 4.8.

Proof of Example 4.19. For Y ∈ SYMn and U = uuT for u ∈ Sn−1 we
have ⟨Y, U⟩2 =


ijkl uiujukulαijkl(Y) for coefficients αijkl(Y). Adam-

czak et al. [3, Thm. 4.2] prove that a quadratic Θ(n2) number of i.i.d.
samples from Sn−1 are enough to approximate its fourth marginal mo-
ments (as in equation (4.7) on page 68) with sufficient accuracy. Hence,
all the uiujukul terms in the above sum can also be approximated by the
sample estimation. These calculations are detailed in [237, Thm. 6].

B.6 Exact One Step Progress

Proof of Lemma 4.20. Example 4.5 gives an analytic expression for LSf

on a quadratic function. For x,u ∈ Rn, we have:

LSf (x,u)u = −xTAu

2f(u)
u = − uuT

∥u∥2A
∇f(x) . (B.4)

Therefore, we see thatQA = E


uuT

∥u∥2
A


was exactly defined to describe

the the expected step E[LSf (x,u)u] = −QA∇f(x). For fixed u and

B.7. Matrix Valued Random Pursuit 121

quadratic f we have:

f(x+) = f(x) +

∇f(x), LSf (x,u)u


+

1

2

LSf (x,u)u2
A

= f(x)− 1

2


∇f(x), uu

T

∥u∥2A
∇f(x)


,

where we used the expression (B.4) for LSf . The claim follows by taking
expectation on both sides.

Proof of Lemma 4.22. The lemma follows by comparing two different
bounds on the one step progress f(x) − E[f(x+) | x]. In Lemma 4.20

we quantified the exact one step progress as 1
2 ∥∇f(x)∥

2
QA

, and in Ex-

ample 4.12 we derived the lower bound 1
2nκT(A) ∥∇f(x)∥

2
A−1 . Therefore

∥∇f(x)∥2A−1

∥∇f(x)∥2QA

≤ nκT(A) .

On the other hand, by Lemma 2.2 we know that λ−1
min(AQA) is the

smallest number a such that ∥∇f(x)∥2A−1 ≤ a∥∇f(x)∥2QA
holds.

B.7 Matrix Valued Random Pursuit

Proof of Remark 5.2. Without loss of generality assume ∥Uk∥F = 1. To
show (i), we calculate the scalar product

⟨Xk+1, Uk⟩ = ⟨Xk, Uk⟩ − ⟨Xk, Uk⟩ ⟨Uk, Uk⟩ = 0 .

Next, (ii) follows by calculating the Frobenius norm of Xk+1 explicitly:

∥Xk+1∥2F = ⟨Xk+1, Xk+1⟩ = ⟨Xk, Xk⟩−2 ⟨Xk, Uk⟩ ⟨Uk, Xk⟩+ ⟨Xk, Uk⟩2

= ∥Xk∥2F − ⟨Xk, Uk⟩2

Finally, to show (iii), we verify:

PXk+1P
T = P (Xk − ⟨Xk, Uk⟩Uk)P

T

= PXkP
T − ⟨InXk, UkIn⟩PUkP

T

= PXkP
T −


PXkP

T , PUkP
T

PUkP

T ,

where the last line follows from the cyclic-shift property of the trace:
Tr[XkInUkP

TP] = Tr[PXkInUkP
T] = Tr[PXkP

TPUkP
T].

122 Appendix B. Deferred Proofs

Lemma B.3 (Matrix diagonalization). Let n ≥ 1 and consider the
following 2× 2 matrix:

C(n) :=


1− 2η −η
2η 1− (2n+ 3)η


,

where η = 1
n(n+2) . Then

C(n) =


2n+1−ω

4ω
2n+1+ω

4ω
1
ω

1
ω

 
λ1 0
0 λ2

 
−2 ω+2n+1

2
2 ω−2n−1

2


,

with ω =
√
4n2 + 4n− 7,

λ1 =
2n2 + 2n− 5− ω

2n(n+ 2)
, λ2 =

2n2 + 2n− 5 + ω

2n(n+ 2)
.

Proof. The claim can be verified by calculating the product of the three
matrices.

Lemma B.4. Let λ1, λ2 as in Theorem 5.4 and n ≥ 2. Then

1− 2

n
≤λ1 ≤ 1− 2

n+ 1
,

1− 5

2n(n+ 2)
≤λ2 ≤ 1− 2

n(n+ 2)
.

Proof. The main inequality we use 2n ≤ ω ≤ (2n+ 1) for n ≥ 2. Thus

λ1 ≤
2n2 − 5

2n(n+ 2)
=

(n+ 1)(2n2 − 5)

2n(n+ 1)(n+ 2)
≤ 2(n− 1)n(n+ 2)

2n(n+ 1)(n+ 2)
= 1− 2

n+ 1
,

λ1 ≥
n2 − 3

n(n+ 2)
≥ (n− 2)(n+ 2)

n(n+ 2)
= 1− 2

n
.

Similarly for the last two inequalities:

λ2 ≤
n2 + 2n− 2

n(n+ 2)
= 1− 2

n(n+ 2)
,

λ2 ≥
2n2 + 4n− 5

2n(n+ 2)
≥ n2 + 2n− 5/2

n(n+ 2)
= 1− 5

2n(n+ 2)
.

B.8. Bound on the Convergence Factor 123

B.8 Bound on the Convergence Factor

Proof of Lemma 5.6. To show the lemma, we derive bounds on the spec-
tral norm of AB−1

K+j . Let Ek := Bk − A. The sequence (Ek)k≥0 is a
Local Search Scheme of the form (5.3) and by part (iii) of Corollary 5.3
we can estimate

E[∥EK+j∥2F] ≤ η
j · ∥E0∥2F · e

−ηK ≤ ηj · η

b ∥A−1∥2
<

ηj

b ∥A−1∥22
.

Thus by the reasoning of Lemma 3.15, we have ∥EK+j∥2F < ηj ·
A−1

−2

2

with probability at least

1 − 1

b


. If this inequality holds, then alsoA−1


2
∥EK+j∥2 ≤

A−1

2
∥EK+j∥F < ηj . The two claims of the

lemma now follow by Lemma B.5 below.

Lemma B.5 (Convergence factor). Let A ∈ PDn and let E ∈ SYMn

with
A−1

 ∥E∥2 ≤ c for c < 1 and ϱA as in (5.1). Then

ϱA(E +A) ≤ 1− 1− c
(1 + c)n

.

Proof. To show the lemma, we derive bounds on the smallest and largest
eigenvalues of the matrix (E +A)A−1. First we observe that

max
λmin(EA

−1)
 , λmax(EA

−1)
 = EA−1


2
≤ ∥E∥2

A−1

2
< c ,

by definition of the spectral norm and submultiplicativitiy. Therefore,
λmin((E +A)A−1) = λmin(In +EA−1) ≥ 1− c > 0, and (E +A)A−1 ∈
PDn. We have

κ

(E +A)A−1


=
λmin(In + EA−1)

λmax(In + EA−1)
≥ 1− c

1 + c
.

B.9 Estimate Sequence Construction

Proof of Lemma 6.10. Adapted from Lee and Sidford [140]. We prove

the form of φk by induction. Suppose that φk(x) = Φ∗
k +

ζk
2 ∥x− vk∥2B .

By the update rule, we see that

∇2φk+1(x) = (1− αk)∇2φk(x) + αkmB = [(1− αk)ζk + αkm]B .

124 Appendix B. Deferred Proofs

Therefore, φk+1(x) = Φ∗
k+1 +

ζk+1

2 ∥x− vk+1∥2B for ζk+1 and Φ∗
k+1 and

vk+1 yet to be determined. To compute vk+1, we compute the derivative
of φk+1 and note

∇φk+1(x) = (1− αk)ζkB(x− vk) + αkg
f
uk
(yk) + αkmB(x− yk)

= ζk+1Bx− (1− αk)ζkBvk + αkg
f
uk
(yk)− αkmByk .

On the other hand,

∇φk+1(x) = ζk+1B(x− vk+1) .

Combining these two expressions for ∇φk+1(x) and applying B−1 on
both sides yields the desired formula for vk+1.

Finally, to compute Φ∗
k+1, we evaluate φk+1(yk) in two different

ways. First, by the update rule we have

Φ∗
k+1 +

ζk+1

2
∥yk − vk+1∥2B = (1− αk)φk(yk) + αkf(yk)

= (1− αk)


Φ∗

k +
ζk
2
∥yk − vk∥2B


+ αkf(yk) . (B.5)

On the other hand, by the form of vk+1, we have

ζ2k+1 ∥vk+1 − yk∥2B = ∥(1− αk)ζkvk + (αkm− ζk+1)yk

−αkB
−1gfuk

(yk)
2
B

=
(1− αk)ζk(vk − yk)− αkB

−1gfuk
(yk)

2
B

= (1− αk)
2ζ2k ∥vk − yk∥2B +

α2
k

2ζk+1

gfuk
(yk)

2
B−1

− 2(1− αk)αkζk

gfuk

(yk),vk − yk


. (B.6)

Combining (B.5) and (B.6), together with

(1− αk)
ζk
2
− ζk+1

2
· (1− αk)

2ζ2k
ζ2k+1

=
(1− αk)ζk

2ζk+1
[ζk+1 − (1− αk)ζk]

=
mαk(1− αk)ζk

2ζk+1
,

yields the desired form of Φ∗
k+1.

Bibliography

[1] M. Abramson and C. Audet. Convergence of Mesh Adaptive Direct
Search to second-order stationary points. SIAM Journal on Optimiza-
tion, 17(2):606–619, 2006.

[2] M. Abramson, C. Audet, J. Dennis, and S. Digabel. OrthoMADS: A
deterministic MADS instance with orthogonal directions. SIAM Journal
on Optimization, 20(2):948–966, 2009.

[3] R. Adamczak, A. E. Litvak, A. Pajor, and N. Tomczak-Jaegermann.
Quantitative estimates of the convergence of the empirical covariance
matrix in log-concave ensembles. Journal of the AMS, 23:535–561, 2010.

[4] Y. Akimoto. Analysis of a Natural Gradient algorithm on monotonic
convex-quadratic-composite functions. In Proceedings of the 14th An-
nual Conference on Genetic and Evolutionary Computation, GECCO
’12, pages 1293–1300, New York, NY, USA, 2012. ACM.

[5] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi. Bidirectional relation
between CMA evolution strategies and natural evolution strategies. In
R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors, Parallel
Problem Solving from Nature, PPSN XI, volume 6238 of LNCS, pages
154–163. Springer Berlin Heidelberg, 2010.

[6] C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics
and Computing, 18(4):343–373, 2008.

[7] L. Armijo. Minimization of functions having Lipschitz continuous first
partial derivatives. Pacific Journal of Mathematics, 16(1):1–3, 1966.

[8] D. V. Arnold and N. Hansen. A (1+1)-CMA-ES for constrained op-
timisation. In Proceedings of the 14th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’12, pages 297–304, New York,
NY, USA, 2012. ACM.

125

126 Bibliography

[9] R. B. Ash. Probability and Measure Theory. Academic Press, Inc., 2000.

[10] G. Aubrun. Sampling convex bodies: a random matrix approach. Pro-
ceedings of the American Mathematical Society, 135:1293–1303, 2007.

[11] C. Audet and D. Orban. Finding optimal algorithmic parameters using
derivative-free optimization. SIAM Journal on Optimization, 17(3):642–
664, 2006.

[12] A. Auger. Convergence results for the (1,λ)-SA-ES using the theory
of φ-irreducible Markov chains. Theoretical Computer Science, 334(1-
3):35–69, 2005.

[13] A. Auger and N. Hansen. Linear convergence of comparison-based step-
size adaptive randomized search via stability of Markov chains. Tech-
nical report, INRIA Saclay - Île de France, 2013.

[14] M. Baes. Estimate sequence methods: extensions and approximations.
IFOR internal report, ETH Zürich, Switzerland, 2009.

[15] Y. Bao and R. Kan. On the moments of ratios of quadratic forms in
normal random variables. Journal of Multivariate Analysis, 117(0):229–
245, 2013.

[16] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2(1):183–202, 2009.

[17] S. Becker, J. Bobin, and E. Cands. NESTA: A fast and accurate first-
order method for sparse recovery. SIAM Journal on Imaging Sciences,
4(1):1–39, 2011.

[18] C. J. P. Bélisle, H. E. Romeijn, and R. L. Smith. Hit-and-Run algo-
rithms for generating multivariate distributions. Mathematics of Oper-
ations Research, 18(2):255–266, 1993.

[19] E. Berndt, B. Hall, R. Hall, and J. A. Hausman. Estimation and in-
ference in nonlinear structural models. Annals of Economic and Social
Measurement, 3(4):103–116, 1974.

[20] A. Berny. Selection and reinforcement learning for combinatorial opti-
mization. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton,
J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature - PPSN VI, volume 1917 of LNCS, pages 601–610. Springer
Berlin Heidelberg, 2000.

[21] D. A. Berry and D. Stangl. Bayesian biostatistics. Dekker, Inc., New
York, NY, USA, 1996.

Bibliography 127

[22] D. Bertsimas and S. Vempala. Solving convex programs by random
walks. Journal of the ACM, 51(4):540–556, 2004.

[23] H.-G. Beyer. Toward a theory of evolution strategies: Some asymptot-
ical results from the (1,+λ)-theory. Evolutionary Computation, IEEE
Transactions on, 1(2):165–188, 1993.

[24] H.-G. Beyer. Towards a theory of “evolution strategies”: Results for
(1,+λ)-strategies on (nearly) arbitrary fitness functions. In Y. Davidor,
H.-P. Schwefel, and R. Männer, editors, Parallel Problem Solving from
Nature - PPSN III, volume 866 of LNCS, pages 57–67. Springer Berlin
Heidelberg, 1994.

[25] H.-G. Beyer. The theory of evolution strategies. Natural Computing.
Springer-Verlag, New York, NY, USA, 2001.

[26] H.-G. Beyer. Convergence analysis of evolutionary algorithms which are
based on the paradigm of information geometry. submitted, 2013.

[27] H.-G. Beyer and H.-P. Schwefel. Evolution strategies a comprehensive
introduction. Natural Computing, 1(1):3–52, 2002.

[28] D. Bienstock and G. Iyengar. Solving fractional packing problems in
O*(1/ϵ) iterations. In Proceedings of the Thirty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’04, pages 146–155, New
York, NY, USA, 2004. ACM.

[29] R. G. Bland, D. Goldfarb, and M. J. Todd. Feature article—the Ellip-
soid method: A survey. Operations Research, 29(6):1039–1091, 1981.

[30] A. Boneh and A. Golan. Constraints’ redundancy and feasible region
boundedness by random feasible point generator (RFPG). In 3rd Euro-
pean Congress on Operations Research (EURO III), Amsterdam, 1979.

[31] J. Bourgain. Random points in isotropic convex sets. In Convex Ge-
ometric Analysis (Berkeley, CA, 1996). Math. Sci. Res. Inst. Publ.,
volume 34, pages 53–58. Cambridge University Press, Cambridge, 1999.

[32] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of
zonoids by zonotopes. Acta Mathematica, 162(1):73–141, 1989.

[33] G. E. Box and K. B. Wilson. On the experimental attainment of op-
timum conditions. Journal of the Royal Statistical Society. Series B
(Methodological), 13(1):1–45, 1951.

[34] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, Cambridge, 2004.

128 Bibliography

[35] C. Brif, R. Chakrabarti, and H. Rabitz. Control of quantum phenomena:
past, present and future. New Journal of Physics, 12(7):075008, 2010.

[36] Y. Brise and B. Gärtner. Convergence rate of the DIRECT algorithm.
Technical Report CGL-TR-47, ETH Zürich, 2012.

[37] S. H. Brooks. A discussion of random methods for seeking maxima.
Operations Research, 6(2):244–251, 1958.

[38] C. G. Broyden. The convergence of a class of double-rank minimization
algorithms 1. general considerations. IMA Journal of Applied Mathe-
matics, 6(1):76–90, 1970.

[39] W. J. Bühler. Two proofs of the Kantorovich inequality and some gen-
eralizations. Revista colombiana de matematicas, 21(1):147–154, 1987.

[40] M. A. Cauchy. Méthode générale pour la résolution des systèmes
d’équations simultanées. Comptes Rendus Hebd. Séances Acad. Sci.,
25:536–538, 1847.

[41] T.-S. Chiang and Y. Chow. A limit theorem for a class of inhomogeneous
Markov processes. The Annals of Probability, 17(4):1483–1502, 1989.

[42] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S.-H. Teng.
Electrical flows, Laplacian systems, and faster approximation of maxi-
mum flow in undirected graphs. In Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC ’11, pages 273–282,
New York, NY, USA, 2011. ACM.

[43] A. R. Conn, K. Scheinberg, and P. L. Toint. On the convergence of
derivative-free methods for unconstrained optimization. In M. Buh-
mann and A. Iserles, editors, Approximation Theory and Optimization,
Tribute to M. J. D. Powell. Cambridge University Press, Cambridge,
1996.

[44] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to
Derivative-Free Optimization. MPS/SIAM Ser. Optim. SIAM, 2009.

[45] A. D. D. Craik. Prehistory of Faà di Bruno’s formula. The American
Mathematical Monthly, 112(2):119–130, 2005.

[46] D. Creal. A survey of sequential Monte Carlo methods for economics
and finance. Econometric Reviews, 31(3):245–296, 2012.

[47] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large
Symmetric Eigenvalue Computations. Society for Industrial and Ap-
plied Mathematics, 2002.

Bibliography 129

[48] W. C. Davidon. Variable metric method for minimization. SIAM Jour-
nal on Optimization, 1(1):1–17, 1991.

[49] K. R. Davidson and S. J. Szarek. Chapter 8: Local operator theory, ran-
dom matrices and Banach spaces. In W. Johnson and J. Lindenstrauss,
editors, Handbook of the Geometry of Banach Spaces, volume 1, pages
317–366. Elsevier Science Publishers Ltd., 2001.

[50] J. Dennis, Jr. and V. Torczon. Direct Search methods on parallel ma-
chines. SIAM Journal on Optimization, 1(4):448–474, 1991.

[51] F. Deutsch and H. Hundal. The rate of convergence for the method
of Alternating Projections, II. Journal of Mathematical Analysis and
Applications, 205(2):381–405, 1997.

[52] S. J. Dilworth, R. Howard, and J. W. Roberts. A general theory of al-
most convex functions. Transactions of the AMS, 358:3413–3445, 2006.

[53] J. C. Duchi., P. Bartlett, and M. Wainwright. Randomized smoothing
for stochastic optimization. SIAM Journal on Optimization, 22(2):674–
701, 2012.

[54] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal
rates for zero-order optimization: the power of two function evaluations.
Technical report, Stanford University, 2013.

[55] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algo-
rithm for approximating the volume of convex bodies. Journal of the
ACM, 38(1):1–17, 1991.

[56] Y. C. Eldar and D. Needell. Acceleration of randomized Kaczmarz
method via the Johnson-Lindenstrauss lemma. Numerical Algorithms,
58(2):163–177, 2011.

[57] D. J. Evans. The use of pre-conditioning in iterative methods for solving
linear equations with symmetric positive definite matrices. IMA Journal
of Applied Mathematics, 4(3):295–314, 1968.

[58] H. G. Feichtinger, C. Cenker, M. Mayer, H. Steier, and T. Strohmer.
New variants of the POCS method using affine subspaces of finite codi-
mension with applications to irregular sampling. Proc. SPIE: Visual
Communications and Image Processing, 1818:299–310, 1992.

[59] D. A. Flanders and G. Shortley. Numerical determination of fundamen-
tal modes. Journal of Applied Physics, 21(12):1326–1332, 1950.

[60] R. Fletcher. A new approach to variable metric algorithms. The Com-
puter Journal, 13(3):317–322, 1970.

130 Bibliography

[61] R. Fletcher and C. M. Reeves. Function minimization by conjugate
gradients. The Computer Journal, 7(2):149–154, 1964.

[62] C. Forbes, M. Evans, N. Hastings, and B. Peacock. Statistical Dis-
tributions. John Wiley & Sons, Inc., New York, NY, USA, 4 edition,
2011.

[63] O. Friedmann, T. D. Hansen, and U. Zwick. Subexponential lower
bounds for randomized pivoting rules for the Simplex algorithm. In Pro-
ceedings of the Forty-third Annual ACM Symposium on Theory of Com-
puting, STOC ’11, pages 283–292, New York, NY, USA, 2011. ACM.

[64] A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms
for finding low-rank approximations. Journal of the ACM, 51(6):1025–
1041, 2004.

[65] A. Galántai. On the rate of convergence of the alternating projection
method in finite dimensional spaces. Journal of Mathematical Analysis
and Applications, 310(1):30–44, 2005.

[66] B. Gärtner and V. Kaibel. Two new bounds for the Random-Edge
Simplex algorithm. SIAM Journal on Discrete Mathematics, 21(1):178–
190, 2007.

[67] M. K. Gavurin. The use of polynomials of best approximation for im-
proving the convergence of iterative processes. Uspekhi Matematich-
eskikh Nauk, 5(3):156–160, 1950.

[68] G. Ghazal. Moments of the ratio of two dependent quadratic forms.
Statistics & Probability Letters, 20(4):313–319, 1994.

[69] G. Ghazal. Recurrence formula for expectations of products of quadratic
forms. Statistics & Probability Letters, 27(2):101–109, 1996.

[70] A. Giannopoulos, M. Hartzoulaki, and A. Tsolomitis. Random points
in isotropic unconditional convex bodies. Journal of the London Math-
ematical Society, 72(3):779–798, 2005.

[71] A. Giannopoulos and V. Milman. Concentration property on probability
spaces. Advances in Mathematics, 156(1):77–106, 2000.

[72] J. C. Gilbert, G. Le Vey, and J. Masse. La differentiation automatique
de fonctions representees par des programmes. Rapport de recherche
RR-1557, INRIA, 1991.

[73] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain
Monte Carlo in Practice. Chapman Hall, New York, 1996.

Bibliography 131

[74] P. Gilmore and C. Kelley. An Implicit Filtering algorithm for optimiza-
tion of functions with many local minima. SIAM Journal on Optimiza-
tion, 5(2):269–285, 1995.

[75] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber.
Exponential natural evolution strategies. In Proceedings of the 12th
Annual Conference on Genetic and Evolutionary Computation, GECCO
’10, pages 393–400, New York, NY, USA, 2010. ACM.

[76] F. Glover. Tabu Search–part I. ORSA Journal on Computing, 1(3):190–
206, 1989.

[77] D. E. Goldberg. Genetic algorithms in search, optimization, and ma-
chine learning, volume 412. Addison-Wesley Boston, 1989.

[78] D. Goldfarb. A family of variable-metric methods derived by variational
means. Mathematics of Computation, 24(109):23–26, 1970.

[79] A. Goldstein. On Steepest Descent. Journal of the Society for Industrial
and Applied Mathematics Series A Control, 3(1):147–151, 1965.

[80] G. H. Golub and C. F. V. Loan. Matrix computations. Johns Hopkins
University Press, 2012.

[81] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, suc-
cessive overrelaxation iterative methods, and second order Richardson
iterative methods. Numerische Mathematik, 3(1):157–168, 1961.

[82] J. G. D. Gooijer. Exact moments of the sample autocorrelations from
series generated by general arima processes of order (p, d, q), d = 0 or
1. Journal of Econometrics, 14(3):365–379, 1980.

[83] R. Gordon, R. Bender, and G. T. Herman. Algebraic Reconstruction
Techniques (ART) for three-dimensional electron microscopy and X-ray
photography. Journal of Theoretical Biology, 29(3):471–481, 1970.

[84] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combina-
torics. Springer Berlin Heidelberg, 1993.

[85] B. Grünbaum. Partitions of mass-distributions and of convex bodies by
hyperplanes. Pacific Journal of Mathematics, 10(4):1257–1261, 1960.

[86] O. Guédon and M. Rudelson. lp-moments of random vectors via ma-
jorizing measures. Advances in Mathematics, 208(2):798–823, 2007.

132 Bibliography

[87] H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribu-
tion for random walk Metropolis algorithm. Computational Statistics,
14(3):375–395, 1999.

[88] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis
algorithm. Bernoulli, 7(2):223–242, 04 2001.

[89] N. Hansen. The CMA evolution strategy: A comparing review. In
J. Lozano, P. Larraaga, I. Inza, and E. Bengoetxea, editors, Towards
a New Evolutionary Computation, volume 192 of Studies in Fuzziness
and Soft Computing, pages 75–102. Springer Berlin Heidelberg, 2006.

[90] N. Hansen. References to CMA-ES applications. available online, Dec.
2009. https://www.lri.fr/~hansen/cmaapplications.pdf.

[91] N. Hansen. The CMA evolution strategy: A tutorial. available online,
2011. https://www.lri.fr/~hansen/cmatutorial.pdf.

[92] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık. Comparing
results of 31 algorithms from the black-box optimization benchmarking
BBOB-2009. In Proceedings of the 12th Annual Conference Companion
on Genetic and Evolutionary Computation, GECCO ’10, pages 1689–
1696, New York, NY, USA, 2010. ACM.

[93] N. Hansen, S. D. Muller, and P. Koumoutsakos. Reducing the time com-
plexity of the derandomized evolution strategy with covariance matrix
adaptation (CMA-ES). Evolutionary Computation, IEEE Transactions
on, 11(1):1–18, 2003.

[94] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation
distributions in evolution strategies: the covariance matrix adaptation.
In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, pages 312–317, 1996.

[95] N. Hansen and A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, IEEE
Transactions on, 9(2):159–195, 2001.

[96] M. Hardt. The zen of Gradient Descent. blog, available online, Sept.
2013. http://mrtz.org/blog/the-zen-of-gradient-descent/.

[97] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57(1):97–109, 1970.

[98] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 1994.

https://www.lri.fr/~hansen/cmaapplications.pdf
https://www.lri.fr/~hansen/cmatutorial.pdf
http://mrtz.org/blog/the-zen-of-gradient-descent/

Bibliography 133

[99] E. Hazan. Sparse approximate solutions to semidefinite programs. In
Proceedings of the 8th Latin American conference on Theoretical infor-
matics, pages 306–316, Berlin, 2008. Springer-Verlag.

[100] R. Heijmans. When does the expectation of a ratio equal the ratio of
expectations? Statistical Papers, 40:107–115, 1999.

[101] G. T. Herman. Fundamentals of Computerized Tomography: Image
Reconstruction from Projections. Springer-Verlag, 1979.

[102] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of
Standards, 49:409–436, 1952.

[103] N. Higham. Optimization by Direct Search in matrix computations.
SIAM Journal on Matrix Analysis and Applications, 14(2):317–333,
1993.

[104] N. J. Higham. Functions of Matrices: Theory and Computation. SIAM,
2008.

[105] B. Holmquist. Expectations of products of quadratic forms in normal
variables. Stochastic Analysis and Applications, 14(2):149–164, 1996.

[106] R. Hooke and T. A. Jeeves. “Direct Search” solution of numerical and
statistical problems. Journal of the ACM, 8(2):212–229, 1961.

[107] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University
Press, Cambridge, reprint 1990 edition, 1985.

[108] G. Hounsfield. Computerized transverse axial scanning (tomography):
Part I. description of the system. The British Journal of Radiology,
46:1016–1022, 1973.

[109] T. Hu, V. Klee, and . Larman. Optimization of globally convex func-
tions. SIAM Journal on Control and Optimization, 27(5):1026–1047,
1989.

[110] L. Isserlis. On a formula for the product-moment coefficient of any
order of a normal frequency distribution in any number of variables.
Biometrika, 12:134–139, 1918.

[111] J. Jägersküpper. Analysis of a simple evolutionary algorithm for min-
imization in Euclidean spaces. In J. C. Baeten, J. Lenstra, J. Parrow,
and G. J. Woeginger, editors, Automata, Languages and Programming,
volume 2719 of LNCS, pages 1068–1079. Springer Berlin Heidelberg,
2003.

134 Bibliography

[112] J. Jägersküpper. Rigorous runtime analysis of the (1+1) ES: 1/5-rule
and ellipsoidal fitness landscapes. In Foundations of Genetic Algo-
rithms, volume 3469 of LNCS, pages 356–361. Springer Berlin Heidel-
berg, 2005.

[113] J. Jägersküpper. How the (1+1) ES using isotropic mutations mini-
mizes positive definite quadratic forms. Theoretical Computer Science,
361(1):38–56, 2006. Foundations of Genetic Algorithms Eighth Foun-
dations of Genetic Algorithms Workshop 2005.

[114] J. Jägersküpper. Lower bounds for Hit-and-Run Direct Search. In
J. Hromkovic, R. Královic, M. Nunkesser, and P. Widmayer, editors,
Stochastic Algorithms: Foundations and Applications, volume 4665 of
LNCS, pages 118–129. Springer Berlin Heidelberg, 2007.

[115] K. G. Jamieson, R. D. Nowak, and B. Recht. Query complexity of
derivative-free optimization. In P. L. Bartlett, F. C. N. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, NIPS, pages 2681–2689, 2012.

[116] M. Jebalia, A. Auger, and N. Hansen. Log-linear convergence and di-
vergence of the scale-invariant (1+1)-ES in noisy environments. Algo-
rithmica, 59(3):425–460, 2011.

[117] M. Jebalia, A. Auger, and P. Liardet. Log-linear convergence and opti-
mal bounds for the (1+1)-ES. In N. Monmarché, E.-G. Talbi, P. Collet,
M. Schoenauer, and E. Lutton, editors, Artificial Evolution, volume
4926 of LNCS, pages 207–218. Springer Berlin Heidelberg, 2008.

[118] D. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

[119] D. Jones, C. Perttunen, and B. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and
Applications, 79(1):157–181, 1993.

[120] D. Jones, M. Schonlau, and W. Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global Optimization,
13(4):455–492, 1998.

[121] M. Jones. On moments of ratios of quadratic forms in normal variables.
Statistics & Probability Letters, 6(2):129–136, 1987.

[122] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichun-
gen. Bulletin International de l’Academie Polonaise des Sciences et des
Lettres, 35:355–357, 1937.

Bibliography 135

[123] G. Kalai. A subexponential Randomized Simplex algorithm (extended
abstract). In Proceedings of the Twenty-fourth Annual ACM Symposium
on Theory of Computing, STOC ’92, pages 475–482, New York, NY,
USA, 1992. ACM.

[124] G. Kalai. Linear programming, the Simplex algorithm and simple poly-
topes. Mathematical Programming, 79(1-3):217–233, 1997.

[125] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an
O*(n5) volume algorithm for convex bodies. Random Structures & Al-
gorithms, 11(1):1–50, 1997.

[126] V. G. Karmanov. Convergence estimates for iterative minimiza-
tion methods. USSR Computational Mathematics and Mathematical
Physics, 14(1):1–13, 1974.

[127] V. G. Karmanov. On convergence of a random search method in con-
vex minimization problems. Theory of Probability and its applications,
19(4):788–794, 1974. (in Russian).

[128] C. T. Kelley. Iterative Methods for Optimization. Number 18 in Fron-
tiers in Applied Mathematics. SIAM Philadelphia, 1999.

[129] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neu-
ral Networks, 1995. Proceedings., IEEE International Conference on,
volume 4, pages 1942–1948, 1995.

[130] J. Kiefer. Sequential minimax search for a maximum. Proceedings of
the AMS, 4:502–506, 1953.

[131] K. V. Kim, Y. Nesterov, and B. V. Cherkasskiı. An estimate of the effort
in computing the gradient. Soviet Mathematics Doklady, 29(2):384–387,
1984.

[132] S. Kirkpatrick, D. Gelatt, Jr., and M. P. Vecchi. Optimization by sim-
mulated annealing. Science, 220(4598):671–680, 1983.

[133] G. Kjellström and L. Taxen. Stochastic optimization in system design.
Circuits Systems, IEEE Transactions on, 28(7), 1981.

[134] A. Kleiner, A. Rahimi, and M. I. Jordan. Random Conic Pursuit for
semidefinite programming. In J. Lafferty, C. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems, NIPS, pages 1135–1143. Curran Associates, Inc.,
2010.

136 Bibliography

[135] J. N. Knight and M. Lunacek. Reducing the space-time complexity of
the CMA-ES. In Proceedings of the 9th Annual Conference Companion
on Genetic and Evolutionary Computation, GECCO ’07, pages 658–665.
ACM, 2007.

[136] T. Kolda, R. Lewis, and V. Torczon. Optimization by Direct Search:
New perspectives on some classical and modern methods. SIAM Review,
45(3):385–482, 2003.

[137] J. Kuczyński and H. Woźniakowski. Estimating the largest eigenvalue
by the Power and Lanczos algorithms with a random start. SIAM
Journal on Matrix Analysis and Applications, 13(4):1094–1122, 1992.

[138] A. Kumar. Expectation of product of quadratic forms. Sankhyā: The
Indian Journal of Statistics, Series B, pages 359–362, 1973.

[139] C. Lanczos. Solution of systems of linear equations by minimized it-
erations. Journal of Research of the National Bureau of Standards,
49:33–53, 1952.

[140] Y. T. Lee and A. Sidford. Efficient accelerated Coordinate Descent
methods and faster algorithms for solving linear systems. In FOCS,
pages 147–156. IEEE Computer Society Press, 2013.

[141] D. Leventhal and A. Lewis. Randomized Hessian estimation and direc-
tional search. Optimization, 60(3):329–345, 2011.

[142] A. Y. Levin. On an algorithm for the minimization of convex func-
tions (in russian). Doklady Akademii nauk SSSR, 160:1244–1247, 1965.
(English translation: Soviet Mathematics Doklady, 6, 286–290, 1965.).

[143] R. M. Lewis, V. Torczon, and M. W. Trosset. Direct Search methods:
then and now. Journal of Computational and Applied Mathematics,
124(1-2):191–207, 2000. Numerical Analysis 2000. Vol. IV: Optimization
and Nonlinear Equations.

[144] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der
Wahrscheinlichkeitsrechnung. Mathematische Zeitschrift, 15(1):211–
225, 1922.

[145] D. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[146] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer
New York, 2008.

Bibliography 137

[147] M. Loog, J. J. Duistermaat, and L. M. J. Florack. On the behavior
of spatial critical points under Gaussian blurring a folklore theorem
and scale-space constraints. In M. Kerckhove, editor, Scale-Space and
Morphology in Computer Vision, volume 2106 of LNCS, pages 183–192.
Springer Berlin Heidelberg, 2001.

[148] I. Loshchilov. CMA-ES with restarts for solving CEC 2013 benchmark
problems. In IEEE Congress on Evolutionary Computation (CEC),
pages 369–376. IEEE Computer Society Press, 2013.

[149] I. Loshchilov, M. Schoenauer, and M. Sebag. BI-population CMA-ES
algorithms with surrogate models and line searches. In Genetic and Evo-
lutionary Computation Conference (GECCO Companion), pages 1177–
1184. ACM, 2013.

[150] L. Lovász and M. Simonovits. Random walks in a convex body and
an improved volume algorithm. Random Structures & Algorithms,
4(4):359–412, 1993.

[151] L. Lovász and S. Vempala. Hit-and-Run from a corner. SIAM Journal
on Computing, 35(4):985–1005, 2006.

[152] L. Lovász and S. Vempala. Simulated annealing in convex bodies
and an volume algorithm. Journal of Computer and System Sciences,
72(2):392–417, 2006.

[153] J. R. Magnus. The moments of products of quadratic forms in normal
variables. Statistica Neerlandica, 32(4):201–210, 1978.

[154] J. R. Magnus and B. Pesaran. Evaluation of moments of quadratic
forms and ratios of quadratic forms in normal variables: background,
motivation and examples. Computational Statistics, 8:21–37, 1993.

[155] K. Marti. Controlled random search procedures for global optimization.
In V. Arkin, A. Shiraev, and R. Wets, editors, Stochastic Optimization,
volume 81 of Lecture Notes in Control and Information Sciences, pages
457–474. Springer Berlin Heidelberg, 1986.

[156] A. M. Mathai and S. B. Provost. Quadratic forms in random vari-
ables: theory and applications. Number 126 in Statistics: textbooks
and monographs. Dekker, Inc., New York, NY, USA, 1992.

[157] J. Matoušek. On variants of the Johnson-Lindenstrauss lemma. Random
Structures & Algorithms, 33(2):142–156, 2008.

[158] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for
linear programming. Algorithmica, 16(4-5):498–516, 1996.

138 Bibliography

[159] J. Matyas. Random optimization. Automation and Remote Control,
26:246–253, 1965.

[160] S. Mendelson. On weakly bounded empirical processes. Mathematische
Annalen, 340(2):293–314, 2008.

[161] S. Mendelson and A. Pajor. On singular values of matrices with inde-
pendent rows. Bernoulli, 12(5):761–773, 2006.

[162] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[163] H. Mobahi and Y. Ma. Gaussian smoothing and asymptotic convexity.
Technical report, University of Illinois at Urbana-Champaign, 2012.

[164] R. Morgan and M. Gallagher. Length scale for characterising contin-
uous optimization problems. In C. A. C. Coello, V. Cutello, K. Deb,
S. Forrest, G. Nicosia, and M. Pavone, editors, Parallel Problem Solv-
ing from Nature - PPSN XII, volume 7491 of LNCS, pages 407–416.
Springer Berlin Heidelberg, 2012.

[165] E. Moulines and F. R. Bach. Non-asymptotic analysis of stochastic
approximation algorithms for machine learning. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances
in Neural Information Processing Systems, NIPS, pages 451–459. Cur-
ran Associates, Inc., 2011.

[166] C. L. Müller. Black-box Landscapes: Characterization, Optimization,
Sampling, and Application to Geometric Configuration Problems. PhD
thesis, ETH Zürich, Switzerland, 2010.

[167] C. L. Müller and I. F. Sbalzarini. Gaussian adaptation revisited - an
entropic view on covariance matrix adaptation. In C. Di Chio et al.,
editor, EvoApplications, number 6024 in LNCS, pages 432–441, Berlin,
2010. Springer-Verlag.

[168] C. L. Müller and I. F. Sbalzarini. Global characterization of the CEC
2005 fitness landscapes using fitness-distance analysis. In Proceedings
of the 2011 International Conference on Applications of Evolution-
ary Computation - Volume Part I, EvoApplications’11, pages 294–303,
Berlin, Heidelberg, 2011. Springer-Verlag.

[169] V. A. Mutseniyeks and L. A. Rastrigin. Extremal control of continu-
ous multi-parameter systems by the method of random search. Eng.
Cybernetics, 1:82–90, 1964.

Bibliography 139

[170] A. L. Nagar. The bias and moment matrix of the general k-class es-
timators of the parameters in simultaneous equations. Econometrica,
27(4):575–595, 1959.

[171] F. Natter. The Mathematics of Computerized Tomography. John Wiley
& Sons, Inc., New York, NY, USA, 1986.

[172] D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT
Numerical Mathematics, 50(2):395–403, 2010.

[173] D. Needell and R. Ward. Two-Subspace Projection method for coherent
overdetermined systems. Journal of Fourier Analysis and Applications,
19(2):256–269, 2013.

[174] N. S. Needell, Deanna and R. Ward. Stochastic Gradient Descent and
the randomized Kaczmarz algorithm. arXiv:1310.5715v3, 2013.

[175] J. A. Nelder and R. Mead. A Simplex method for function minimization.
The Computer Journal, 7(4):308–313, 1965.

[176] A. S. Nemirovski. Efficient methods in convex programming. available
online, 1995. http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.

pdf.

[177] A. S. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochas-
tic approximation approach to stochastic programming. SIAM Journal
on Optimization, 19(4):1574–1609, 2009.

[178] A. S. Nemirovski and D. B. Yudin. Problem Complexity and Method
Efficiency in Optimization. John Wiley & Sons, Inc., New York, NY,
USA, 1983.

[179] Y. Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376,
1983.

[180] Y. Nesterov. On an approach to the construction of optimal methods
of minimization of smooth convex functions. Ekonomika i Matematich-
eskie Metody, 24:509–517, 1988.

[181] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer
Academic Publishers, Boston, USA, 2004.

[182] Y. Nesterov. Smooth minimization of non-smooth functions. Mathe-
matical Programming, 103(1):127–152, 2005.

http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf
http://www2.isye.gatech.edu/~nemirovs/Lect_EMCO.pdf

140 Bibliography

[183] Y. Nesterov. Rounding of convex sets and efficient gradient meth-
ods for linear programming problems. Optimization Methods Software,
23(1):109–128, 2008.

[184] Y. Nesterov. Random gradient-free minimization of convex functions.
Technical report, ECORE, 2011.

[185] Y. Nesterov. Efficiency of Coordinate Descent methods on huge-scale
optimization problems. SIAM Journal on Optimization, 22(2):341–362,
2012.

[186] Y. Nesterov. Gradient methods for minimizing composite functions.
Mathematical Programming, 140(1):125–161, 2013.

[187] Y. Nesterov and A. S. Nemirovskii. Interior Point Polynomial Algo-
rithms in Convex Programming, volume 13 of Studies in Applied Math-
ematics. SIAM, 1994.

[188] H. Neudecker. The Kronecker matrix product and some of its applica-
tions in econometrics. Statistica Neerlandica, 22(1):69–82, 1968.

[189] D. J. Newman. Location of the maximum on unimodal surfaces. Journal
of the ACM, 12(3):395–398, 1965.

[190] J. Nocedal and S. J. Wright. Numerical optimization. Springer New
York, 2 edition, 2006.

[191] Y. Ollivier, L. Arnold, A. Auger, and N. Hansen. Information-geometric
optimization algorithms: A unifying picture via invariance principles.
Technical report, INRIA Saclay - Île de France, 2013.

[192] J. E. Orosz and S. H. Jacobson. Finite-time performance analysis of
static simulated annealing algorithms. Computational Optimization and
Applications, 21(1):21–53, 2002.

[193] Z. Páles. On approximately convex functions. Proceedings of the AMS,
131:243–252, 2003.

[194] M. S. Paolella. Computing moments of ratios of quadratic forms in
normal variables. Computational Statistics & Data Analysis, 42(3):313–
331, 2003.

[195] G. Paouris. Concentration of mass on convex bodies. Geometric &
Functional Analysis GAFA, 16(5):1021–1049, 2006.

[196] E. J. G. Pitman. The “closest” estimates of statistical parame-
ters. Mathematical Proceedings of the Cambridge Philosophical Society,
33:212–222, 1937.

Bibliography 141

[197] B. Polyak. Introduction to Optimization. Optimization Software, Inc.,
New York, NY, USA, 1987.

[198] J. Ponstein. Seven kinds of convexity. SIAM Review, 9(1):115–119,
1967.

[199] M. Powell. A Direct Search optimization method that models the ob-
jective and constraint functions by linear interpolation. In S. Gomez
and J.-P. Hennart, editors, Advances in Optimization and Numerical
Analysis, volume 275 of Mathematics and Its Applications, pages 51–
67. Springer Netherlands, 1994.

[200] M. Powell. UOBYQA: unconstrained optimization by quadratic ap-
proximation. Mathematical Programming, 92(3):555–582, 2002.

[201] M. Powell. The NEWUOA software for unconstrained optimization
without derivatives. In G. Pillo and M. Roma, editors, Large-Scale
Nonlinear Optimization, volume 83 of Nonconvex Optimization and Its
Applications, pages 255–297. Springer US, 2006.

[202] M. J. D. Powell. Direct search algorithms for optimization calculations.
Acta Numerica, 7:287–336, 1998.

[203] V. Protasov. Algorithms for approximate calculation of the minimum
of a convex function from its values. Mathematical Notes, 59(1):69–74,
1996.

[204] S. Puntanen, G. P. H. Styan, and J. Isotalo. Matrix Tricks for Linear
Statistical Models: Our Personal Top Twenty. Springer Berlin Heidel-
berg, 2011.

[205] L. A. Rademacher. Approximating the centroid is hard. In Proceedings
of the Twenty-third Annual Symposium on Computational Geometry,
SCG ’07, pages 302–305, New York, NY, USA, 2007. ACM.

[206] L. B. Rail. Automatic Differentiation: Techniques and Applications,
volume 120 of LNCS. Springer-Verlag, 1981.

[207] L. A. Rastrigin. The convergence of the random search method in the
extremal control of a many-parameter system. Automation and Remote
Control, 24:1337–1342, 1963.

[208] L. Rastrygin. Problems of random search. Radiophysics and Quantum
Electronics, 15(7):747–754, 1972.

[209] I. Rechenberg. Evolutionsstrategie; Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

142 Bibliography

[210] L. Rios and N. Sahinidis. Derivative-free optimization: a review of
algorithms and comparison of software implementations. Journal of
Global Optimization, 56(3):1247–1293, 2013.

[211] F. Romeo and A. Sangiovanni-Vincentelli. A theoretical framework for
simulated annealing. Algorithmica, 6(1–6):302–345, 1991.

[212] H. H. Rosenbrock. An automatic method for finding the greatest or
least value of a function. The Computer Journal, 3(3):175–184, 1960.

[213] M. Rudelson. Random vectors in the isotropic position. Journal of
Functional Analysis, 164(1):60–72, 1999.

[214] M. Rudelson and R. Vershynin. Sampling from large matrices: An
approach through geometric functional analysis. Journal of the ACM,
54(4):21, 2007.

[215] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in
the 20th century. Journal of Computational and Applied Mathematics,
123(12):1–33, 2000. Numerical Analysis 2000. Vol. III: Linear Algebra.

[216] T. Sawa. Finite-sample properties of the k-class estimators. Economet-
rica, 40(4):653–680, 1972.

[217] T. Sawa. The exact moments of the least squares estimator for the
autoregressive model. Journal of Econometrics, 8(2):159–172, 1978.

[218] C. Schaffer. A conservation law for generalization performance. In
W. W. Cohen and H. Hirsch, editors, Proceedings of the Eleventh In-
ternational Machine Learning Conference, pages 259–265. Rutgers Uni-
versity, New Brunswick, NJ, 1994.

[219] T. Schaul. Natural evolution strategies converge on sphere functions. In
Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’12, pages 329–336, New York, NY, USA, 2012.
ACM.

[220] M. Schumer and K. Steiglitz. Adaptive step size random search. Auto-
matic Control, IEEE Transactions on, 13(3):270–276, 1968.

[221] H.-P. Schwefel. Evolutionsstrategie und numerische Optimierung. PhD
thesis, Technische Universität Berlin, 1975.

[222] H.-P. Schwefel. Evolution and Optimum Seeking: The Sixth Generation.
John Wiley & Sons, Inc., New York, NY, USA, 1993.

Bibliography 143

[223] M. I. Sezan and H. Stark. Image Recovery: Theory and Application,
chapter Applications of convex projection theory to image recovery in
tomography and related areas, pages 155–270. Academic Press, Inc.,
1987.

[224] D. F. Shanno. Conditioning of quasi-Newton methods for function min-
imization. Mathematics of Computation, 24(111):647–656, 1970.

[225] N. Shor. Cut-off method with space extension in convex programming
problems. Cybernetics, 13(1):94–96, 1977.

[226] G. Shortley. Use of Tschebyscheff-polynomial operators in the numer-
ical solution of boundary-value problems. Journal of Applied Physics,
24(4):392–396, 1953.

[227] B. Shubert. A sequential method seeking the global maximum of a
function. SIAM Journal on Numerical Analysis, 9(3):379–388, 1972.

[228] V. Simoncini and D. B. Szyld. Recent computational developments in
Krylov subspace methods for linear systems. Numerical Linear Algebra
with Applications, 14(1):1–59, 2007.

[229] M. D. Smith. On the expectation of a ratio of quadratic forms in normal
variables. Journal of Multivariate Analysis, 31(2):244–257, 1989.

[230] R. L. Smith. Efficient Monte Carlo procedures for generating points
uniformly distributed over bounded regions. Operations Research,
32(6):1296–1308, 1984.

[231] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application
of simplex designs in optimisation and evolutionary operation. Techno-
metrics, 4(4):441–461, 1962.

[232] G. W. Stewart, III. A modification of Davidon’s minimization method
to accept difference approximations of derivatives. Journal of the ACM,
14(1):72–83, 1967.

[233] S. U. Stich. On low complexity acceleration techniques for randomized
optimization. In T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith,
editors, Parallel Problem Solving from Nature - PPSN XIII, volume
8672 of LNCS, pages 130–140. Springer International Publishing, 2014.

[234] S. U. Stich and B. Gärtner. Random Pursuit in Hilbert space. Technical
report, ETH Zürich, 2013. Technical Report CGL-TR-88.

144 Bibliography

[235] S. U. Stich and C. L. Müller. On spectral invariance of randomized
Hessian and covariance matrix adaptation schemes. In C. A. C. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, editors, Par-
allel Problem Solving from Nature - PPSN XII, volume 7491 of LNCS,
pages 448–457. Springer Berlin Heidelberg, 2012.

[236] S. U. Stich, C. L. Müller, and B. Gärtner. Supporting online ma-
terial for optimization of convex functions with Random Pursuit.
arXiv:1111.0194v2, 2012.

[237] S. U. Stich, C. L. Müller, and B. Gärtner. Variable metric Random
Pursuit. submitted, arXiv:1210.5114v3, 2012.

[238] S. U. Stich, C. L. Müller, and B. Gärtner. Matrix-valued iterative
random projections. Technical report, ETH Zürich, 2013. Technical
Report CGL-TR-87.

[239] S. U. Stich, C. L. Müller, and B. Gärtner. Optimization of con-
vex functions with Random Pursuit. SIAM Journal on Optimization,
23(2):1284–1309, 2013.

[240] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with
exponential convergence. Journal of Fourier Analysis and Applications,
15(2):262–278, 2009.

[241] J. Sun, J. M. Garibaldi, and C. Hodgman. Parameter estimation us-
ing metaheuristics in systems biology: A comprehensive review. Com-
putational Biology and Bioinformatics, IEEE/ACM Transactions on,
9(1):185–202, 2012.

[242] K. Tanabe. Projection method for solving a singular system of linear
equations and its applications. Numerische Mathematik, 17(3):203–214,
1971.

[243] V. Torczon. On the convergence of Pattern Search algorithms. SIAM
Journal on Optimization, 7(1):1–25, 1997.

[244] G. A. Tribello, M. Ceriotti, and M. Parrinello. A self-learning algorithm
for biased molecular dynamics. Proceedings of the National Academy of
Sciences, 107(41):17509–17514, 2010.

[245] P. Tseng. On accelerated proximal gradient methods for convex-concave
optimization. submitted to SIAM Journal on Optimization, 2008.

[246] P. Vaidya. A new algorithm for minimizing convex functions over convex
sets. Mathematical Programming, 73(3):291–341, 1996.

Bibliography 145

[247] D. Vanderbilt and S. G. Louie. A Monte Carlo simulated annealing
approach to optimization over continuous variables. Journal of Com-
putational Physics, 56(2):259–271, 1984.

[248] S. Vempala. Recent progress and open problems in algorithmic con-
vex geometry. In K. Lodaya and M. Mahajan, editors, IARCS An-
nual Conference on Foundations of Software Technology and Theoreti-
cal Computer Science, volume 8 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 42–64, Dagstuhl, Germany, 2010.

[249] R. Vershynin. Approximating the moments of marginals of high-
dimensional distributions. The Annals of Probability, 39(4):1591–1606,
2011.

[250] J. H. M. Wedderburn. Lectures on Matrices (Colloquium Publications).
American Mathematical Society, New York, 1938.

[251] T. Whitney and R. Meany. Two algorithms related to the method of
Steepest Descent. SIAM Journal on Numerical Analysis, 4(1):109–118,
1967.

[252] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and
J. Schmidhuber. Natural evolution strategies. Journal of Machine
Learning Research, 15:949–980, 2014.

[253] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolu-
tion strategies. In Evolutionary Computation, 2008. CEC 2008. IEEE
Congress on, pages 3381–3387, 2008.

[254] P. Wolfe. Convergence conditions for ascent methods. SIAM Review,
11(2):226–235, 1969.

[255] P. Wolfe. Convergence conditions for ascent methods. II: Some correc-
tions. SIAM Review, 13(2):185–188, 1971.

[256] D. Wolpert and W. Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[257] D. H. Wolpert and W. G. Macready. No free lunch theorems for search.
Working papers, Santa Fe Institute, 1995.

[258] D. J. Woods. An Iteractive Approach for Solving Multi-objetive Opti-
mization Problems. PhD thesis, Rice University, Houston, Texas, USA,
1979.

[259] M. H. Wright. Direct search methods: Once scorned, now respectable.
In Pitman Research Notes in Mathematics Series, pages 191–208, 1995.

146 Bibliography

[260] S. Yi, D. Wierstra, T. Schaul, and J. Schmidhuber. Stochastic search
using the Natural Gradient. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML ’09, pages 1161–1168,
New York, NY, USA, 2009. ACM.

[261] T. Ypma. Historical development of the Newton-Raphson method.
SIAM Review, 37(4):531–551, 1995.

[262] D. B. Yudin and A. S. Nemirovskii. Evaluation of the informational com-
plexity of mathematical programming problems. Ekonomika i Matem-
aticheskie Metody, 12:128–142, 1976.

[263] D. B. Yudin and A. S. Nemirovskii. Informational complexity and ef-
fective methods of solution for convex extremal problems. Ekonomika i
Matematicheskie Metody, 12:357–369, 1976.

[264] R. Zieliński and P. Neumann. Stochastische Verfahren zur Suche nach
dem Minimum einer Funktion. Akademie-Verlag, Berlin, Germany,
1983.

[265] A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for
solving least squares. SIAM Journal on Matrix Analysis Applications,
34(2):773–793, 2013.

Index

∥x∥2 (Euclidean norm), 33
∥X∥2 (Spectral norm), 34
∥X∥F (Frobenius norm), 33
≼,≽, (Löwner ordering), 33
⟨·, ·⟩ (inner product), 33
(1+1)-ES, 26, 30–33, 60–62, 92
1/5-th success rule, 31–32, 60–62,

110

(A1) angle condition, 24
generalized, 42

Accelerated Random Gradient, 21,
22, 92

approximate solution, 1, 18
average condition number, 34

Ball-Walk, 16
Barrier method, 29
BFGS, 15
black-box

complexity, 19
constraints, 28
optimization, 1

Ck (smooth functions), 35
C1

L (bounded curvature), 36
C1

m,L (strongly convex), 36
Center of Gravity method, 13, 16,

19, 20
CMA-ES, 4–7, 17–33, 76–77, 82,

108–110
condition number, 24, 34, 36

Conjugate Gradient, 14
convergence factor, 57, 70–72, 76,

83, 85–88, 94–96, 123
exact, 71, 80, 109

convex, 2, 35
asymptotically, 30, 110
strongly, 36

Coordinate Descent, 91
Random, 91

(D1) sufficient decrease, 42
(D2) sufficient decrease (line src.),

48
decrease

simple, 23
sufficient, 23, 41

definition
average condition number, 34
Chebyshev polynomial, 27, 28
condition number, 34
convex, 2, 35
eigenvalue, 34
elliptical distribution, 37
Euclidean norm, 33
exact convergence factor, 65
Frobenius norm, 33
gradient, 13
Hessian matrix, 14
line search

exact, 47
inexact, 48

Lipschitz continuous, 12

147

148 Index

normal distribution, 37
relative condition number, 34
spectral norm, 34
spherical distribution, 37
strongly convex, 36
subdifferential, 13
subgradient, 13

distribution
chi-squared χ2, 112, 113
elliptical Sn−1

A , 37, 112–115
normal N , 37, 111–114
spherical Sn−1, 37, 112–115
uniform, 37

(E1) (expected) sufficient decrease,
47

(E2) (expected) sufficient decrease
(line search), 48

eigenvalue, 34
perturbation, 115

Ellipsoid method, 14, 16, 19
Protasov, 16

Estimate Sequence, 91, 100
construction, 101–103, 123–124
probabilistic, 91, 100
quadratic, 102

Euclidean norm, 33
Evolution Path, 32
exact convergence factor, 65

Fast Gradient method, 14, 20, 26,
91

Random, 21, 22, 92
Fibonacci method, 21
Frobenius norm, 33, 79–85

g (Gradient Oracle), 93
Gaussian Adaptation, 17, 32, 77,

110
Gaussian smoothing, 29
Gradient Descent, 14, 16, 20, 27

natural, 17
Random, 16, 21, 22, 59

Gradient Oracle, 59, 93, 94, 110

Heavy Ball method, 14

Hessian estimation, 81–85

affine invariant, 84

Randomized, 77, 82–85, 97, 108

Hit-and-Run, 16, 28

In (idendity matrix), 35

Implicit Filtering, 16

inequality

κE ≤ κT ≤ κ, 65

λmin(AB−1) ∥x∥2B ≤ ∥x∥2A, 35

Bühler, 63

Cauchy-Schwarz, 63, 80

Chebyshev, 54

Grünbaum, 13

Jensen, 66, 119

Kantorovich, 63

Markov, 53

quadratic lower bound, 36

quadratic upper bound, 36

interpolation

quadratic, 60, 118

κ (condition number), 20–24, 34,
56, 64, 65, 83, 92, 107

κE (exact convergence factor), 56,
65, 71, 108, 119

κF (relative condition number), 34,
56, 67, 83, 84, 90, 109

κT (average condition number), 34,
51, 56, 62–73, 84, 92–96,
107–110

Kaczmarz’ method, 7, 76, 88–90,
108

λ, λmin, λmax (eigenvalues), 34

LS (line search oracle), 23, 47, 48,
57, 94

(L1) line search oracle

absolute error, 58

(L2) line search oracle

relative error, 58

L-BFGS, 15, 26

Index 149

line search, 21, 49–52, 92–93, 107–
110

exact, 23, 47, 60, 77, 89, 94, 95
inexact, 48, 57–59

Löwner ordering, 33, 63, 120

Metropolis-Hastings algorithm, 12

N (multivariate normal), 37
N(ϵ) running time, 18
Natural Gradient Descent, 17
Nelder-Mead method, 16, 29

one step progress, 22, 49, 61, 80, 108
exact, 72

PDn (positive definite mat.), 33
Penalty method, 28
Protasov’s method, 16

quadratic
lower bound, 36
upper bound, 36

Quasi-Newton methods, 15, 26

(RHE) Randomized Hessian estima-
tion, 77, 82, 98, 109

Random Conic Pursuit, 8
Random Coordinate Descent, 91
Random Gradient Descent, 16, 21,

22, 59
Random Pursuit, 5–7, 22–28, 40, 97

Accelerated, 91–96, 103–106
applications

Hessian estimation, 82
linear equations, 88–90

deterministic, 6

in Hilbert Space, 77
SYMn, 78
Rn, 78

matrix-valued, 78–81
relative condition number, 34
RP, see Random Pursuit
running time N(ϵ), 18

Sn−1, Sn−1
A (unit sphere), 35, 37

SYMn (symmetric matrices), 33
SARP, 93–96, 98, 103–106
separation oracle, 13
simple decrease, 23
Simulated Annealing, 12
smoothing

adaptive, 110
Gaussian, 29

spectral norm, 27, 34, 123
step size control

adaptive, 31–32, 60–62, 110
strongy convex, 36
Subgradient method, 19–21
sufficient decrease, 6, 23, 41, 47
sufficient decrease (line search), 48

theorem
Central Limit, 52
Isserli, 111
no free lunch, 2, 12
Weyl, 88, 115

Trust-Region methods, 15

variable metric, 14–15, 17, 25
algorithm, 26
covariance adaptation, 33
Hessian estimation, 76–77, 81–

85

	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Black-Box Optimization
	Convex Optimization
	Outside the Box
	Towards Theory

	Random Pursuit Framework
	Previous Work

	Contents and Contributions

	Background
	Methods for Optimization
	Global Optimization
	Lipschitzian Optimization

	Convex Optimization with Derivatives
	Nonsmooth Functions
	Smooth Functions

	Convex Optimization without Derivatives
	Gradient-Based Methods
	Gradient-Free Methods
	Variable Metric Methods

	Complexity
	Algorithmic Schemes and Solutions
	Complexity of Convex Problems
	First-Order Oracles
	Zeroth-Order Oracles

	The Components of Search Schemes
	Step Size
	Search Directions
	Accelerated Schemes
	Constraints and Non-Smooth Functions
	Randomization as a Design Principle

	Evolution Strategies
	Step Size Adaptation
	Covariance Estimation

	Notation and Definitions
	Vector Spaces, Norms and Eigenvalues
	Condition Number
	Quadratic Norms
	Function Classes and Quadratic Bounds
	Probability Distributions

	Benchmark Functions

	Convergence of Local Search
	Local Search with Sufficient Decrease
	Smooth Convex Functions
	Convergence in Expectation
	Line Search with Sufficient Decrease
	Improvements for Line Search Oracle
	One Step Progress
	Improved Results

	Two Concentration Bounds
	Linear Convergence
	Small Deviation

	Random Pursuit
	Line Search
	Bisection
	Gradient Oracles
	Special Case: Quadratic Functions
	One-Fifth Success Rule

	Search Directions
	Deterministic Search Directions
	Towards Random Search Directions
	Spherical and Elliptical Distributions
	Discrete Distributions
	Rank-One Matrices
	Sampling from Random Sets

	Discussion
	Summary of Selected Results
	Simple vs. Improved Bounds
	The Exact Convergence Factor

	Viewed from a Different Angle

	Applications of Random Pursuit
	Random Pursuit in a Hilbert Space
	Random Pursuit on the Reals
	Random Pursuit on Symmetric Matrices

	Learning the Hessian
	On the Complexity of Hessian Learning
	Affine Invariant Hessian Estimation
	A Note on General Convex Functions
	Example and Implementations
	Unconstrained
	Rejection Sampling
	Projection Step

	Kaczmarz' Method

	Accelerated Random Search
	Summary of the Results
	Gradient Oracles
	Convergence of SARP

	Numerical Demonstration
	Benchmark Functions
	Algorithmic Schemes
	Discussion of the Results

	Estimate Sequence Method
	Facts
	Probabilistic Construction

	Acceleration with Gradient Oracles
	Convergence of Two SARP Instances

	Conclusion
	Tools and Lemmas
	Selected Random Variables
	Normal Random Variables
	Products of Quadratic Forms
	Ratios of Quadratic Forms
	Scaled Normal and Elliptical Vectors

	Ratio of Quadratic Forms
	Perturbation
	Slow Convergence with Additive Error

	Deferred Proofs
	Convergence with Sufficient Decrease
	Interpolation of Quadratic Functions
	Typical Search Position
	Weighted Sampling of a Discrete Set
	Approximating the Covariance Matrix
	Exact One Step Progress
	Matrix Valued Random Pursuit
	Bound on the Convergence Factor
	Estimate Sequence Construction

	Bibliography
	Index

