
ETH Library

HOPE: A Python just-in-time
compiler for astrophysical
computations

Journal Article

Author(s):
Akeret, Joël; Gamper, Laurenz; Amara, Adam; Refregier, Alexandre

Publication date:
2015-04

Permanent link:
https://doi.org/10.3929/ethz-b-000097858

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported

Originally published in:
Astronomy and Computing 10, https://doi.org/10.1016/j.ascom.2014.12.001

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000097858
http://creativecommons.org/licenses/by-nc-nd/3.0/
https://doi.org/10.1016/j.ascom.2014.12.001
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Astronomy and Computing 10 (2015) 1–8
Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

HOPE: A Python just-in-time compiler for astrophysical
computations✩

J. Akeret ∗, L. Gamper, A. Amara, A. Refregier
ETH Zurich, Institute for Astronomy, Department of Physics, Wolfgang Pauli Strasse 27, 8093 Zurich, Switzerland

h i g h l i g h t s

• We discuss the reasons for the lower execution speed of Python.
• We present HOPE, a specialised Python just-in-time compiler.
• The package combines the ease of Python and the speed of C++.
• HOPE improves the execution speed up to a factor of 120 compared to plain Python.
• The code is freely available under GPLv3 license on PyPI and GitHub.

a r t i c l e i n f o

Article history:
Received 30 September 2014
Accepted 2 December 2014
Available online 10 December 2014

Keywords:
Python
Just-in-time compiler
Benchmark

a b s t r a c t

The Python programming language is becoming increasingly popular for scientific applications due to its
simplicity, versatility, and the broad range of its libraries. A drawback of this dynamic language, however,
is its low runtime performance which limits its applicability for large simulations and for the analysis
of large data sets, as is common in astrophysics and cosmology. While various frameworks have been
developed to address this limitation, most focus on covering the complete language set, and either force
the user to alter the code or are not able to reach the full speed of an optimised native compiled language.
In order to combine the ease of Python and the speed of C++, we developed HOPE, a specialised Python
just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of
the language and is able to translate Python code into C++while performing numerical optimisation on
mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator
to the function definition. We assess the performance of HOPE by performing a series of benchmarks
and compare its execution speed with that of plain Python, C++ and the other existing frameworks. We
find that HOPE improves the performance compared to plain Python by a factor of 2 to 120, achieves
speeds comparable to that of C++, and often exceeds the speed of the existing solutions. We discuss the
differences between HOPE and the other frameworks, as well as future extensions of its capabilities. The
fully documented HOPE package is available at http://hope.phys.ethz.ch and is published under the GPLv3
license on PyPI and GitHub.

© 2014 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

In recent years, the Python programming language has gained
a wide acceptance beyond its original use of simple scripting
for system administration and test automatisation. Python has
evolved to become a primary programming language for vari-
ous industries and many scientific research fields, notably in as-
trophysics (TIOBE Software, 2014; Diakopoulos et al., 2014). The

✩ This code is registered at the ASCL with the code entry ascl:1411.005.
∗ Corresponding author.

E-mail address: jakeret@phys.ethz.ch (J. Akeret).

http://dx.doi.org/10.1016/j.ascom.2014.12.001
2213-1337/© 2014 The Authors. Published by Elsevier B.V. This is an open access artic
0/).
reasons for this success are the simplicity, flexibility and main-
tainability of Python code as well the wide range of its libraries.
In particular, the widely used numerical Python packages NumPy
(van der Walt et al., 2011) and SciPy (Jones et al., 2001) allow for
fast prototyping and development of new applications. The flexi-
ble runtime and the dynamic typing are further features of the in-
terpreter language that are valued by developers. However, these
advantages come with a drawback: typically the execution time of
Python programs can be slower than native compiled languages
such as C or Fortran by orders of magnitudes.

While for many applications the performance of the software
is not a priority, in astrophysics and cosmology where large sim-
ulations and data analysis over large data sets are often required,

le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.

http://dx.doi.org/10.1016/j.ascom.2014.12.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2014.12.001&domain=pdf
http://hope.phys.ethz.ch
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.ascl.net/1411.005
mailto:jakeret@phys.ethz.ch
http://dx.doi.org/10.1016/j.ascom.2014.12.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8
speed can be crucial (see e.g. Refregier and Amara, 2014, Akeret
et al., 2013 and references therein for cosmology). In order, to in-
crease the overall performance one can parallelise the programs
to take advantage of multicore CPU architectures. An alternative
and complementary approach is to focus on improving the single
thread performance. The problem of improving the single thread
performance of dynamic languages, such as Python, has been ad-
dressed in various different ways that can be grouped broadly
into two categories: (1) development of optimising just-in-time
(JIT) compilers and (2) development of faster interpreters (Arnold
et al., 2005). The concept of the latter is to reduce the overhead
introduced by the dynamic nature of the language. The idea of
a JIT compiler is to produce faster machine or byte code dur-
ing runtime when needed (Cuni, 2010). In the Python landscape
both approaches have been implemented in various projects e.g.
the PyPy1 interpreter, the Numba2 JIT package or the Cython3

C-extension and others.
While most of these approaches aim to support the complete

language or a large portion of it, we find that some of the solutions
are often intrusive (i.e. require the user to tailor the code to the
framework) and that only a few of them are able to reach the full
speed of an optimised native compiled C++ code. To fully combine
the ease of Python and the speed of C++, we have therefore devel-
oped the HOPE package. HOPE is a specialised Python JIT compiler
that supports a subset of the Python language – primarily numer-
ical features commonly used in astrophysical calculations – and
aims to reach the highest possible execution speed. The package
translates Python code into C++ and is able to perform numeri-
cal optimisation on mathematical expression at runtime. By using
HOPE, the user benefits from being able to write common numeri-
cal code in Pythonwhile having the performance of compiled im-
plementations. To enable the HOPE JIT compilation, the user only
needs to add a decorator to the function definition. The package
does not require additional information, which ensures that HOPE
is as non-intrusive as possible.

We used the HOPE package in astrophysics applications such
as the development of PyCosmo (Refregier et al., in preparation)
and to rewrite UFig (the Ultra fast image generator) (Bergé et al.,
2013) into Python. PyCosmo is a Python cosmology package that
numerically integrates the Einstein–Boltzmann differential equa-
tions and computes various cosmological observables. The HOPE
package allowed us to improve the performance of the integration
by a factor of 50× compared to the pure Python implementation
by JIT compiling the integrated function. UFig is an image gener-
ator developed to simulate wide field cosmological galaxy surveys
thus enabling tight control of systematics effects through forward
modelling (Refregier and Amara, 2014; Bergé et al., 2013). HOPE
has allowed us to rewrite the originalC++ implementation ofUFig
into Python. Benchmarks show a performance comparable to the
earlier C++ code, but the new implementation has increased the
modularity, extensibility and readability of the code.

This paper is organised as follows. In Section 2, we discuss the
reason for the lower execution speed of dynamic languages, and
review the existing solutions to address the performance implica-
tions in Python. Section 3 explains how we address the perfor-
mance requirements using our JIT compiler package and describe
the HOPE architecture and design. In Section 4 we introduce the
benchmarks we used to compare the performance of HOPE to the
existing solutions. We show and discuss results in Sections 5 and 6
and finally conclude in Section 7. Information for downloading the
HOPE package and on its performance on an alternative platform
are described in Appendices A and B, respectively.

1 http://www.pypy.org.
2 http://numba.pydata.org.
3 http://www.cython.org.
2. Review of existing solutions

Python is a dynamic interpreted language, which requires an
interpreter for the execution of a program. Typically the perfor-
mance of Python is much slower than C or comparable compiled
languages. There are several reasons for this: Python has not been
designed to be a fast language, but, instead, readability has been
defined to be more important. In addition, everything in Python,
including simple values, are represented as objects in memory.
Therefore, the evaluation of a numerical expression requires the
interpreter to unbox every value and to load the appropriate oper-
ation, as operators can be overwritten dynamically.

Currently four main implementation of interpreters exist:
CPython, Jython, IronPython and PyPy. CPython is the ref-
erence implementation written in C and the most widely used
Python interpreter.Jython andIronPython are alternative im-
plementations of Python interpreters targeting the Java virtual
machine and the .NET frameworks, but they typically do not im-
prove performance (Cuni, 2010). PyPy is the most prominent ef-
fort to develop an alternative interpreter in order to increase the
execution speed. In the following, we always refer to the CPython
implementation if not explicitly stated otherwise.

If performance is critical, one approach is to write the critical
code in C or C++ and interface the implementation with Python
bindings. With this approach the performance requirements can
typically be met but often at the cost of the readability. Experience
shows that this makes it difficult for diverse users to maintain and
extend the C/C++ code. A further drawback of this approach is
that every change in the code requires a recompilation. During
development this has to be performed repeatedly, which lowers
the productivity and the development velocity of the team.

To be able to implement a code in Python but nevertheless be
able to properly address the performance needs, different alter-
native approaches exist, including: Numba, Cython, Nuitka and
numexpr (see Table 1). The Numba package is a JIT compiler that
generates optimisedmachine code at runtimeusing theLLVM com-
piler infrastructure. A similar but different approach is to translate
and compile the Python source code. The Cython C-extension for
Python is widely used for this. The Nuitka project4 is a static
Python compiler that focuses on full support of the language. A
further approach is the numexpr package5 that specialises in eval-
uating numerical expressions and additionally allows parallel ex-
ecution on multiple cores. Besides the frameworks listed in Ta-
ble 1 further solutions exist. Pyston6 is a very new project un-
der current development at Dropbox and is also built on the LLVM
compiler infrastructure. Further frameworks are topic to research
projects such as Pythran (Pythran, 0000; Guelton et al., 2014), a
static Python compiler and parakeet (Rubinsteyn et al., 2012),
which follows a similar approach as HOPE.

3. HOPE—A Python just-in-time compiler

HOPE is a specialised method-at-a-time JIT compiler written
in Python. It translates Python source code into C++ and com-
piles the generated code at runtime. In contrast to other existing
JIT compilers, which are designed for general purpose, we have fo-
cused our development of the subset of the Python language that
ismost relevant for astrophysical calculations. By concentrating on
this subset,HOPE is able to achieve very high performance for these
applications.

4 http://www.nuitka.net.
5 https://github.com/pydata/numexpr.
6 https://github.com/dropbox/pyston.

http://www.pypy.org
http://numba.pydata.org
http://www.cython.org
http://www.nuitka.net
https://github.com/pydata/numexpr
https://github.com/dropbox/pyston

J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8 3
Table 1
Description of existing packages with the version number used for the benchmarks.

Name Description Version

Numba Numba is an open source package, which brings JIT compiling to Python by generating machine code using the LLVM software stack.
Numba has been targeted to integrate into scientific Python applications. Similarly to HOPE the user can use a simple decorator to
instruct Numba to compile a function. As JIT compiler Numba is able to use the type information available at runtime to generate the
byte code.

0.13.3

Cython Cython is a compiler for Python and for the Cython programming language. It allows the user to integrate C or C++ function into
Python code as well as to compile Python code into machine code by adding static type declaration. This is done by using function
decorators and type definition extensions. Cython supports the functionality of the NumPy package.

0.20.2

PyPy PyPy is a Python interpreter written in a restricted subset of the Python language itself (RPython). PyPy is targeted towards speed
and efficiency. The included JIT compiler allows translating the Python code into native code at runtime.

2.3.1

Nuitka Nuitka is a static Python compiler aiming to support the entire Python language definition. It allows the compilation of a Python
code into an executable.

0.5.3

numexpr The numexpr package is designed for the efficient evaluation of numerical operations on array-like objects of the NumPy package.
Additionally, the evaluation can be executed in parallel.

2.4
HOPE is able to translate commonly used unary, binary and
comparison operators as well as augmented assign statements.
Currently the supported native built-in data types are bool, int
and float and their corresponding NumPy data types (e.g. int32,
float32 resp.int64,float64, etc.). This applies to scalar values
as well as the NumPy arrays with these types. Several features of
NumPy and mathematical functions like sin, cos, exp, etc. are also
supported. HOPE, for instance, allows operations on NumPy arrays
with the common slicing syntax (e.g. a[5:, 5:] = x). A full list of the
functionality backed by the package is published online7 and a set
of examples is provided on GitHub.8 The package can be used with
Python 2.7 as well as with Python 3.3+. We have tested HOPE in
Linux and Mac OSX environment with gcc and clang compilers.

HOPE infers the data types by analysing the function signature
and inspecting the Abstract Syntax Tree (AST) of the function at
runtime. This information is used to translate the Python function
into statically typed C++ code. Using Python’s native extensions
for C API9 the code is compiled into a shared object library, which
is then loaded into the interpreter runtime. During the process of
generating the C++ code, HOPE is able to apply various numerical
optimisations in order to improve the execution performance
of the compiled function (see Section 3.1). Once compiled, the
function is cached to disk to minimise lag on future executions of
the same code.

We have chosen to generate C++ code and compiling the code
into a library over other approaches, such as the direct generation
of byte code. This design decision was made as the intermediate
product – the generated code – is human readable, which greatly
simplifies the development and debugging process and, further-
more, allows the use of automatic hardware specific optimisation
of modern compilers without additional effort. The just-in-time
compiling process is described in Fig. 1. A function call undergoes
the following several steps:

Start The Python interpreter loads a function or method
previously decorated with the @hope.jit decorator.

Cache verification HOPE checks if a compiled version of the
requested functions has previously been cached. In case
the code is executed the first time, HOPE returns a
wrapper function containing a reference to the original
function.

Parse function The first time the decorated function is called,
the wrapper generates an abstract syntax tree (AST) by
parsing the function definition using the Python built-
in ast package.

7 http://pythonhosted.org/hope/lang.html.
8 https://github.com/cosmo-ethz/hope/tree/master/examples.
9 https://docs.python.org/2/extending/extending.html.
Fig. 1. Flow diagram of the step executed during a function call decorated with
HOPE.

Generate HOPE AST Using the visitor pattern, the Python AST
is traversed and a corresponding HOPE specific AST is
generated. During the traversal we use the Python built-
in inspect package to infer the data types of the live
objects such as parameters, variable and return values.
Using this information we are able to statically type the
HOPE AST i.e. scalar variables will be assigned a type
and array liked variable will receive a data type and a
shape information. Operations on arrays with the same

http://pythonhosted.org/hope/lang.html
https://github.com/cosmo-ethz/hope/tree/master/examples
https://docs.python.org/2/extending/extending.html

4 J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8
shape will be grouped into blocks. Furthermore a scope
is assigned to each variable in order to identify if it will
be passed as parameter or if it has to be instantiated. In
the latter case HOPE distinguishes between temporary
variables, used only once (block scope), and variables
used multiple time in the function (body scope).

Numerical optimisation HOPE traverses the new AST in order to
identify numerical optimisation possibilities and alters
the tree accordingly. A detailed explanation of the
optimisation is discussed in Section 3.1.

Generate C++ code A C++ code is generated from the HOPE AST.
First the function signature is created using the name
of the function, the type of the return value and the
names of the parameters including their type and shape
information. If necessary, statements for the instantiation
of new variables are generated. Next, each block is turned
into a loop statement according to the shape information
of the contained arrays. By grouping array operations, we
are able to evaluate the operation element-wise, which
improves cache locality. For variables with block scope
we can avoid allocating a whole array and instead a
scalar value can be allocated (an example is discussed
in Section 3.2). Finally, the generated code is augmented
with Python’s native extensions API statements, so that
the code can be called from the Python interpreter.

Compile code to shared object library The Python built-in
setuptools package is then used to compile a shared
object library from the generated code. Using this pack-
age and defining the generated code as an extension
greatly simplifies the handling of compiler and ensures
compatibility with the interpreter.

Add library to cache Using the extracted information from the
function signature and a hash over the function body the
compiled shared object library is cached for future calls.

Load library The shared object library is dynamically loaded into
the runtime and the pointer to the wrapper is replaced
with the pointer to the function in the shared object
library to avoid unnecessary overhead.

Execute compiled function A call to the function is directed to
the function in the shared object library and executed
with the passed parameters.

Subsequent function call HOPE analyses the types of the passed
arguments and queries the cache for a functionmatching
the requested name and arguments. If the system
registers a cache hit for a function, the shared object
library is then loaded into the runtime and the compiled
function is evaluated, otherwise a new function will be
generated and compiled.

3.1. Optimisation

After the HOPE specific AST has been created the package
performs a static recursive analysis of the expressions to introduce
numerical optimisation. The supported possibilities are divided
into three groups: (1) simplification of expressions, (2) factorising
out subexpressions and (3) replacing the pow function for integer
exponents. To simplify expression we have used the SymPy
library (SymPy Development Team, 2014). SymPy is a Python
library for symbolic mathematics and has been entirely written in
Python. To apply the optimisation, the AST expression is translated
into SymPy syntax AST and passed to the simplify function.
The function applies various different heuristics to reduce the
complexity of the passed expression. The simplification is not
exactly defined and varies depending on the input. For instance,
one example of simplification is that sin(x)2 + cos(x)2 will be
simplified to 1. Furthermore the SymPy library is used to factorise
out recurring subexpression (common subexpression elimination)
using the previously created SymPy AST and SymPy’s cse
function.

FromC++11 on, thepow function in the C standard library is not
overloaded for integer exponents.10 The internal implementation
of the computation of a base to the power of a double exponent
is typically done using a series expansion, though this may vary
depending on the compiler and hardware architecture. Generally
this is efficient for double exponents but not necessarily for integer
exponents. HOPE therefore tries to identify power expressions
with integer exponents and factorises the expression into several
multiplications e.g. y = x5 will be decomposed into x2 = x2 and
y = x2×x2×x. This reduces the computational costs and increases
the performance of the execution.

3.2. Example

In this section, we show the translation process of HOPE using
the following simple example:

@hope. j i t
def f k t (x , y) :

z = x∗∗2 + 1
return z + y

As soon as this function is called, HOPE will create a statically
typed AST using the type information available at runtime.
Assuming that the function call was done with x and y defined
as one dimensional float64 NumPy array with same length, the
resulting AST can be visualised as the following pseudo code:

f k t (numpy : : f loat64 [] x , numpy : : f loat64 [] y) −> numpy : : f loat64 [] {
new numpy : : f loat64 [] re t = numpy : : f loat64 [len (x)]
for (i n t i = 0 ; i < len (x) ; ++ i) {

numpy : : f loat64 tmp = x [i] ∗ x [i]
numpy : : f loat64 z = tmp + 1
re t [i] = z + y [i]

}
return re t

Using the inspected data types of the parameters and by
analysing the mathematical expressions, HOPE is able to identify
that operations are performed on arrays with compatible data
types and dimensions and will group those expressions into a
block. The result of this block is a new array with the same data
type and dimension, which will also be used as return value. This
information tells HOPE that a new array has to be instantiated
and how the function signature will be defined. Next, the block is
turned into a loop over every element of the arrays, which includes
the power operation as well as the addition operations. Finally,
the power operation on the x value with the integer exponent is
optimised into a multiplication of the x value.

3.3. Quality assurance

TheHOPE package has been developed using the test-driven de-
velopment (TDD) approach, allowing us to ensure a high level of
code quality and numerical accuracy up to type-precision. For ev-
ery supported language feature we have written a unit test that is
executed for all the supported data types and array shape combi-
nations. This results in over 1600 unit tests being executed on our
continuous integration server per supported Python version.

10 http://en.cppreference.com/w/cpp/numeric/math/pow.

http://en.cppreference.com/w/cpp/numeric/math/pow

J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8 5
4. Benchmarks

In this section, we describe benchmarks aimed at assessing the
performance of HOPE and at comparing it to the other packages
described in Section 2. Since a standardised set of benchmarks for
testing the performance of software does not exist, we have gen-
erated our own series of tests. The first set are three numerical
micro-benchmarks published on the Julia language website11
and which are supported by the current version of HOPE. These
benchmarks have already been applied to various languages. We
omitted benchmarks with matrix manipulations, as good perfor-
mance typically depend on the proper use of specialised matrix li-
braries such as Intel’sMath Kernel Library (MKL) or the Basic Linear
Algebra Subprograms (BLAS). Additionally, we defined two bench-
marks favouring numexpr as they test the ability to compute poly-
nomials and mathematical expression which can be simplified.
Finally, we have specified two special purpose benchmarks rep-
resenting simplified versions of common problems in astrophysics
to compare the performance of the general-purpose frameworks.
To have a reference and baseline, we additionally implemented all
the benchmarks in C++.

For our benchmark tests we have chosen packages where
the user should, in principle, be able to write a code in Python
and that only minor modifications would needed to enable the
performance improvements. All the benchmarks have been made
available online as IPython notebooks.12 The following describes
the benchmarks and provide the associated Python source code.

4.1. Fibonacci sequence

The Fibonacci sequence is a common measurement of the
execution speed of repeated recursive function calls. The sequence
is defined as:

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.

We executed all the benchmarks with n = 20 resulting in the
answer 6765. The Python implementation is as follows:

def f i b (n) :
i f n < 2:

return n
return f i b (n − 1) + f i b (n − 2)

4.2. Quicksort

Quicksort is a powerful yet simple sorting algorithm that gained
widespread adoption in Unix as the default sorting function
and in the C standard library. It extends the complexity of the
previous recursive benchmark with a loop, multiple comparison
and different data types. The algorithm was implemented as
follows:

def qsort_kernel (a , lo , hi) :
i = lo
j = hi
i f False : return a
while i < hi :

pivot = a [(lo+hi) / / 2]
while i <= j :

while a [i] < pivot :
i += 1

while a [j] > pivot :
j −= 1

i f i <= j :
tmp = a [i]

11 http://julialang.org.
12 http://hope.phys.ethz.ch.
a [i] = a [j]
a [j] = tmp
i += 1
j −= 1

i f lo < j :
qsort_kernel (a , lo , j)

lo = i
j = hi

return a

The algorithm is used in the benchmarks to sort an array of 5000
uniform random float64.

4.3. Pi sum

This benchmark is a simple approximation of π/2, testing the
run time behaviour of two nested for-loops.

p =

501
j=1

10001
k=1

1
k ∗ k

def pisum () :
for j in range (1 , 501) :

sum = 0.0
for k in range (1 , 10001) :

sum += 1 . 0 / (k∗k)
return sum

4.4. 10th order polynomial

In this numerical benchmark a logarithm is approximated using
a Taylor expansion resulting in a 10th order polynomial. The
approximation is defined as follows:

ln(x) ≈

9
i=1

= (−1)i−1 (x − 1)i

i

and can be implemented in Python as such:

def ln_python (X) :
return (X−1) − (X−1)∗∗2 / 2 + (X−1)∗∗3 / 3 − (X−1)∗∗4 / 4 +

(X−1)∗∗5 / 5 − (X−1)∗∗6 / 6 + (X−1)∗∗7 / 7 −

(X−1)∗∗8 / 8 + (X−1)∗∗9 / 9

For our benchmarks, a slightly optimised version of this
implementation has been used:

def ln_python_exp (X) :
x = (X − 1)
x2 = x∗x
x4 = x2∗x2
x6 = x4∗x2
x8 = x4∗x4
return x − x2 / 2 + x ∗ x2 / 3 − x4 / 4 + x ∗ x4 / 5 − x6 / 6 +

x6 ∗ x / 7 − x8 / 8 + x8 ∗ x / 9

where X as been defined as an array of 10,000 uniform random
float64.

4.5. Simplify

This benchmark has been specified as

y(x) = sin2(x) +
(x3 + x2 − x − 1)
(x2 + 2 ∗ x + 1)

+ cos2(x)

def y (X) :
return np . sin (x)∗∗2 + (x∗∗3 + x∗∗2 − x − 1) / (x∗∗2 + 2∗x + 1) + np

. cos (x)∗∗2

where X as been defined as an array of 5000 uniform random
float64. The benchmark tests the ability of the packages to
efficiently compute polynomial expressions. As the expression can
be simplified to y = x this benchmark will favour frameworks,
which analyse and optimise the expression such as numexpr and
HOPE.

http://julialang.org
http://hope.phys.ethz.ch

6 J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8
4.6. Pairwise distance

Computing the two-point correlation function for a set of points
is a common problem in many areas of astronomy and cosmology.
A similar but simplified problem is the computation of the distance
between all the points. Using the l2 norm this results in a n × n
matrix for a given input array of size n. The distance is defined as:

Di,j =

 N
k=0

(Xi,k − Xj,k)2, ∀i ∈ I, ∀j ∈ J

where N = 3 is the number of dimensions and I = J = 1000 is
the number of points in the array. The naive solution used in the
benchmark is implemented as follows:

def pairwise_python (X, D) :
M = X. shape [0]
N = X. shape [1]
for i in range (M) :

for j in range (M) :
d = 0.0
for k in range (N) :

tmp = X[i , k] − X[j , k]
d += tmp ∗ tmp

D[i , j] = np . sqrt (d)

Additionally we benchmark the vectorised implementation of
this test using the NumPy package:

def pairwise_numpy (X, D) :
M = X. shape [0]
for i in range (M) :

D[i , :] = np . sqrt (np .sum((X[i , :] − X [:]) ∗∗ 2 , axis =1))

4.7. Point Spread Function

This benchmark has been inspired by calculations that simulate
astronomical imaging data. One step in these simulations is
to make realistic simulations of the images of stars. For many
astronomical applications stars are smaller than the resolution of
the instrument. Therefore, the resulting images are realisations of
the Point Spread Function (PSF) coming from the finite resolution
and atmospheric effects. A goodmodel for the PSF of ground-based
telescopes is a circular Moffat profile (Moffat, 1969), given by

I(r) = I0

1 +

 r
α

2
−β

where I0 is the value at the origin (r = 0), α and β are parameters
depending on the conditions of the observation (see Appendix B
in Bergé et al., 2013). The numerical integration in the x and y
direction is done using Gauss–Legendre integration with 7th order
coefficients:

def pdf (density , x_range , y_range , x_center , y_center , w2D, r50 , b , a
) :

for x in range (x_range) :
for y in range (y_range) :

dr = np . sqrt ((x − x_center) ∗∗ 2 + (y − y_center) ∗∗ 2)
density [x , y] = np .sum(w2D ∗ 2 ∗ (b − 1) / (2 ∗ np . pi ∗ (

r50 ∗ a)∗∗2) ∗ (1 + (dr / (r50 ∗ a))∗∗2)∗∗(−b))
return density

The density and w2D variables are 20 × 20 and 7 × 7 Numpy
arrays, respectively, while the other parameter are defined as
scalar values. A very similar approach has been implemented in
the UFig project (Bergé et al., 2013).
5. Results

We ran the benchmarks on a MacBook Pro OS X 10.9.2 with a
Intel Core i7 2.3 GHz processor and 16GB 1600MHzDDR3memory
aswell as on aMac Pro (seeAppendix B for details). The resultswith
the second system can be found in Appendix B. Table 1 shows the
versions of the packages used to conduct the test runs. To compile
the C++ code and HOPE benchmarks we used clang-503.0.40
and the -march=native, -stdlib=libc++ and -std=c++11
compiler options.

The benchmarks from Section 4 have been executedwith all the
frameworks of Table 1 except numexpr which could only be used
for the computation of the 10th order polynomial and the simplify
benchmark. Every test has been executed100 times using the built-
in timeit package and the median of the measured runtime has
been used for comparison in order to reduce the influence of other
processes interfering with the timing accuracy.

For all the benchmarks using Cython we have disabled the
wraparound and boundscheck compiler flags. The benchmarks
with numexpr have been executed with parallelisation using the
8 cores available on the testing infrastructure. Table 2 shows the
benchmark run times relative to the C++ implementation. The
Pairwise distance benchmark has been performed using both, the
plain Python implementation, as well as the vectorised imple-
mentation using the NumPy package (see results in parenthesis in
the table).

Generally Cython was able to improve the performance by a
factor 1.2× up to 53× compared to the Python runs. An excep-
tion is the simplify benchmark where the timing was marginally
worse. The runs with the Numba package show that, if the frame-
work is able to properly infer the data types and compile the func-
tion to LLVM, the performance is comparable to Cython. We have
not been able to perform the Quicksort benchmark using Numba
as the execution resulted in an Internal error. This might be
due to the currently limited support for recursive function calls.
The Pairwise distance benchmark shows that vectorising the code
with the NumPy package can drastically improve performance. The
impact is more pronounced on Python and Nuitka (155× and
131×, respectively) as with PyPy and NumPy (4.6×). However,
vectorisation is not always possible or can be difficult and may in-
crease memory consumption due to vector broadcasting. The al-
ternative interpreter PyPy was able to improve the performance
compared to CPython in the first three benchmarks (1.7× –26×)
but performed worse in the others (1.2× –17× slower). Numexpr
achieved better runtimes than Python for the two benchmarks
conducted. The improvement of the parallelisation was small,
whichmay be ascribable to the parallelisation overhead. For larger
problems the speed up could be larger. Attempts to conduct the
benchmarks with the parakeet project, which is implementing a
similar approach toHOPE, succeeded only for the Simplify and Pair-
wise distance benchmark. The improvement for the first bench-
mark was small and for the second, parakeetwas faster than the
vectorised NumPy implementation by a factor of 5.1×.

Our HOPE package was able to speed up the computation in all
of the benchmarks. A very large improvement can be seen in the
pairwise distance benchmark. This can be ascribed to the naive
Python implementation using multiple nested loops. As the bad
performance of loops in Python is commonly known, we expect
developers to implement this benchmark using Numpy instead.
Therefore we disregard this speed up for the further comparisons.
As can be seen in Table 2 HOPE improved the performance by a
factor of 2.4× to 119× compared to thePython runs andwas only
marginally slower than the native C++ implementation.

For the Pi sum benchmark Numba and PyPy were able to
improve the performance as much as HOPE and to match that of
C++. In the Pairwise distance benchmark Cython outperformed

J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8 7
Table 2
Benchmarks times relative to C++. Best results are highlighted in bold.

Python Numba Cython Nuitka PyPy numexpr HOPE C++
(NumPy) (NumPy) (NumPy) (8 cores)

Fibonacci 57.4 65.7a 1.1 26.7 21.1 – 1.1 1.0
Quicksort 79.4 –b 4.6 61.0 45.8 – 1.1 1.0
Pi sum 27.2 1.0 1.1 13.0 1.0 – 1.0 1.0
10th order 2.6 2.2 2.1 1.2 12.1 1.4 1.1 1.0
Simplify 1.4 1.5a,b 1.8 1.4 23.2 0.6 0.015 1.0
Pairwise distance 1357.8 1.8 1.0 1247.7 277.8 – 1.7 1.0(8.7) (9.5) (60.4)

Star PSF 265.4 250.4a 46.2 234.6 339.5 – 2.2 1.0
a Numbawas not able to compile down to LLVM.
b Compilation attempt resulted in Internal error.
HOPE and reached the same performance as the native C++
implementation. The simplify benchmark shows the power of
the optimisation capabilities of the HOPE package. Disabling the
optimisation option in HOPE would result in similar timing as the
native C++ implementation. For specialised problems such as the
Point Spread Function, HOPE and C++ both clearly outperform all
the alternative frameworks tested. The benchmarks conducted on
the Mac Pro system yield comparable results (see Table B.3 of
Appendix B).

6. Discussion

When using Cython, the user has to provide to the package a
statically typed function signature, as well as statically typed vari-
ables in order to achieve the desired performance improvements.
The package numexpr yields good performance (as can be seen
in Table 2) but it requires the user to write expressions as strings.
This limits the applicability and,more importantly, removes syntax
highlighting and variable recognition in editors and integrated de-
velopment environments (IDE). The benchmarks indicate that the
PyPy interpreter is only able to partially increase the performance
compared to CPython. The project is under active development
and interesting concepts are being addressed within it. Packages
with C extension such as SciPy are currently not fully supported,
which limits the use of PyPy in scientific applications. Since com-
piling thePython codewith the static compilerNuitka improved
the performance only marginally, the overhead arising from the
compilation process do not appear to be justified. Numba, which
is the only package besides HOPE that does not require the user
to alter the code or change the runtime environment, shows good
performance as soon the package is able to compile down to LLVM.
As the project is also under active developmentwe expect that fur-
ther support and features will be implemented soon. Focusing on a
subset of the Python language enables HOPE to generate C++ code
targeted towards high execution performancewithout the need for
the user to modify the Python implementation. The performance
differences compared to the C++ implementation arise through
small overheads introduced by the code generation process. It has
to be noted that HOPE is still under active development and many
language features of Python are currently not supported. In cases
where HOPE is not able to translate the code it will provide the user
the according information including the line of code, which caused
the problem. In these cases exploring possible improvements in
performance through Cython would be an option. This requires
the user manually adapt the code. For an experienced user gains
are likely to be possible.

7. Conclusion

Python is becoming increasingly popular in the science com-
munity due to the large variety of freely available packages and
the simplicity and versatility of the language. However, a draw-
back of Python is the low runtime and execution performance of
the language. For many use cases this is acceptable but for large
simulations and numerical computations, such as those used in as-
trophysics and cosmology, accelerating the performance of codes
is crucial. This can be achieved by parallelising the computation
on multicore CPU architectures. Alternatively and complementar-
ily, the single thread performance of the code can be optimised.
Rewriting the application in C (or other compiled languages) can
be time consuming and reduces the readability and maintainabil-
ity of the code. A set of solutions exists in the Python landscape to
improve the performance, such as alternative interpreters, static
Python code compiler or just-in-time compilers. We find that
some of those solution are intrusive i.e. they require the user to
change the code and some are not able to fully achieve the speed
of a corresponding C/C++ implementation.

To address these limitations, we introduced HOPE, a specialised
Python just-in-time compiler able to apply numerical optimisa-
tion to mathematical expressions during the compilation process.
We conducted different benchmarks to assess its performance and
compared it with existing solutions. The tests show that HOPE is
able to improve the performance compared to plain Python by
a factor of 2.4 × –119× depending on the benchmark scenario.
We find that the performance of our package is comparable to
that of C++. Some of the other packages that we tested are also
able to improve the execution speed but do not increase the per-
formance in specialised test cases such as the computation of a
ground-based point spread function. We have used our package to
improve the performance of the PyCosmo project (Refregier et al.,
in preparation) as well as to be able to rewrite the Ultra fast im-
age generator (UFig) C++ package (Bergé et al., 2013) in Python
without compromising its performance. We plan to apply HOPE to
further projects and therefore continuously increase its supported
language features and improve its optimisation capabilities. To
simplify the installation we are distributing the code through the
central PyPI server13 and provide the full documentation of the
package online.14 In Appendix A we describe the distribution and
installation of HOPE.

Appendix A. Distribution

Detailed documentation, supported language subset and in-
stallation instructions can be found on the package website
http://hope.phys.ethz.ch. The HOPE package is released under the
GPLv3 license and has been uploaded to PyPI15 and can be installed
using pip16:

13 https://pypi.python.org/pypi/hope.
14 http://hope.phys.ethz.ch.
15 https://pypi.python.org/pypi/hope.
16 www.pip-installer.org/.

http://hope.phys.ethz.ch
https://pypi.python.org/pypi/hope
http://hope.phys.ethz.ch
https://pypi.python.org/pypi/hope
http://www.pip-installer.org/

8 J. Akeret et al. / Astronomy and Computing 10 (2015) 1–8
Table B.3
Benchmarks times relative to C++ (Mac Pro). Best results are highlighted in bold.

Python Numba Cython Nuitka PyPy numexpr HOPE C++
(NumPy) (NumPy) (NumPy) (8 cores)

Fibonacci 65.5 62.6a 1.0 31.6 12.4 – 1.0 1.0
Quicksort 109.0 –b 5.0 62.7 39.2 – 1.1 1.0
Pi sum 31.9 1.0 1.0 16.6 1.1 – 1.0 1.0
10th order 4.0 3.9 3.8 3.5 25.8 2.3 1.2 1.0
Simplify 1.4 1.3a,b 1.4 1.2 7.9 0.8 0.017 1.0
Pairwise distance 2076.6 16.2 1.0 1460.8 254.4 – 1.7 1.0(13.9) (13.7) (75.2)

Star PSF 374.7 385.9a 98.8 348.7 500.1 – 2.0 1.0
a Numbawas not able to compile down to LLVM.
b Compilation attempt resulted in Internal error.
$ pip install hope --user

This will install the package and all of the required dependen-
cies. The development is coordinated on GitHub http://github.
com/cosmo-ethz/hope and contributions are welcome.

Appendix B. Mac Pro results

The benchmarks described in Section 4 have been conducted
on a Mac Pro system with an Intel Xeon E5 Ivy Bridge 12-core
(2.7 GHz) and 64 GB (4 × 16 GB) of 1866 MHz DDR3 memory to
test the effect of different hardware. As can be seen in Table B.3,
the timings are comparable to the results in Table 2, leading to the
same conclusions as discussed in Section 6.

References

Akeret, J., Seehars, S., Amara, A., Refregier, A., Csillaghy, A., 2013. CosmoHammer:
cosmological parameter estimation with the MCMC Hammer. Astron. Comput.
2 (0), 27–39. arXiv:1212.1721. URL:
http://www.sciencedirect.com/science/article/pii/S221313371300022X.

Arnold, M., Fink, S., Grove, D., Hind, M., Sweeney, P., 2005. A survey of adaptive
optimization in virtual machines. Proc. IEEE 93 (2), 449–466.
doi:10.1109/JPROC.2004.840305.

Bergé, J., Gamper, L., Réfrégier, A., Amara, A., 2013. An ultra fast image generator
(UFIG) for wide-field astronomy. Astron. Comput. 1, 23–32,
doi:10.1016/j.ascom.2013.01.001, arXiv:1209.1200.

Cuni, A., 2010. High performance implementation of Python for CLI/.NET with JIT
compiler generation for dynamic languages (Ph.D. thesis), DISI, Universitá di
Genova, Technical Report DISI-TH-2010-05.
Diakopoulos, N., Romero, J., Cass, S., IEEE Spectrum’s 2014 Ranking (07 2014). URL:
http://spectrum.ieee.org/static/interactive-the-top-programming-
languages [cited 2014-08].

Guelton, S., Falcou, J., Brunet, P., 2014. Exploring the vectorization of Python
constructs using Pythran and Boost SIMD. In: Proceedings of the 2014
Workshop on Programming Models for SIMD/Vector Processing. WPMVP’14.
ACM, New York, NY, USA, pp. 79–86. doi:10.1145/2568058.2568060, URL:
doi:10.1145/2568058.2568060.

Jones, E., Oliphant, T., Peterson, P., et al. SciPy: open source scientific tools for
Python, (2001). URL: http://www.scipy.org/ (accessed 12.08.14).

Moffat, A.F.J., 1969. A theoretical investigation of focal stellar images in the
photographic emulsion and application to photographic photometry. Astron.
Astrophys. 3, 455.

Pythran: enabling static optimization of scientific pythran: enabling static
optimization of scientific Python programs. In: Proc. of the 12th Python in
Science Conf., SCIPY 2013.

Refregier, A., Amara, A., 2014. Away forward for Cosmic Shear:Monte-Carlo control
loops. Phys. Dark Universe 3, 1–3. arXiv:1303.4739,
doi:10.1016/j.dark.2014.01.002.

Refregier, A., Amara, A., Gamper, L., Akeret, J., 2015. PyCosmo: a cosmological
Boltzmann solver in accelerated Python. Astron. Comput. (in preparation) tbd.

Rubinsteyn, A., Hielscher, E., Weinman, N., Shasha, D., 2012. Parakeet: a just-
in-time parallel accelerator for Python. In: Presented as Part of the 4th
USENIX Workshop on Hot Topics in Parallelism. USENIX, Berkeley, CA, URL:
https://www.usenix.org/conference/hotpar12/parakeet-just-time-parallel-
accelerator-python.

TIOBE Software. Tiobe index for August 2014 (08 2014). URL: http://www.tiobe.
com/index.php/content/paperinfo/tpci/index.html [cited 2014-08].

SymPyDevelopment Team, SymPy: Python library for symbolicmathematics, 2014.
URL: http://www.sympy.org.

van der Walt, S., Colbert, C., Varoquaux, G., 2011. The NumPY array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13,
URL: doi:10.1109/MCSE.2011.37.

http://github.com/cosmo-ethz/hope
http://github.com/cosmo-ethz/hope
http://github.com/cosmo-ethz/hope
http://github.com/cosmo-ethz/hope
http://github.com/cosmo-ethz/hope
http://arxiv.org//abs/1212.1721
http://www.sciencedirect.com/science/article/pii/S221313371300022X
http://dx.doi.org/10.1109/JPROC.2004.840305
http://dx.doi.org/10.1016/j.ascom.2013.01.001
http://arxiv.org//abs/1209.1200
http://refhub.elsevier.com/S2213-1337(14)00068-7/sbref4
http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://dx.doi.org/10.1145/2568058.2568060
http://doi.acm.org/10.1145/2568058.2568060
http://www.scipy.org/
http://refhub.elsevier.com/S2213-1337(14)00068-7/sbref8
http://arxiv.org//abs/1303.4739
http://dx.doi.org/10.1016/j.dark.2014.01.002
http://refhub.elsevier.com/S2213-1337(14)00068-7/sbref11
https://www.usenix.org/conference/hotpar12/parakeet-just-time-parallel-accelerator-python
https://www.usenix.org/conference/hotpar12/parakeet-just-time-parallel-accelerator-python
https://www.usenix.org/conference/hotpar12/parakeet-just-time-parallel-accelerator-python
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.sympy.org
http://dx.doi.org/10.1109/MCSE.2011.37

