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Abstract MATCH (Memetic Algorithm and Combinato-

rial Optimization Heuristics) is a new memetic algorithm for

automated sequence-specific polypeptide backbone NMR

assignment of proteins. MATCH employs local optimization

for tracing partial sequence-specific assignments within a

global, population-based search environment, where the

simultaneous application of local and global optimization

heuristics guarantees high efficiency and robustness.

MATCH thus makes combined use of the two predominant

concepts in use for automated NMR assignment of proteins.

Dynamic transition and inherent mutation are new tech-

niques that enable automatic adaptation to variable quality of

the experimental input data. The concept of dynamic tran-

sition is incorporated in all major building blocks of the

algorithm, where it enables switching between local and

global optimization heuristics at any time during the

assignment process. Inherent mutation restricts the intrinsi-

cally required randomness of the evolutionary algorithm to

those regions of the conformation space that are compatible

with the experimental input data. Using intact and artificially

deteriorated APSY-NMR input data of proteins, MATCH

performed sequence-specific resonance assignment with

high efficiency and robustness.

Keywords Protein NMR � Sequence-specific resonance

assignment � Genetic algorithm � Automation

Introduction

Sequence-specific NMR assignment of polypeptide chains is

aimed at obtaining resonance assignments of known chem-

ical structures consisting of a random linear array of multiple

copies of the 20 proteinogenic amino acid residues. NMR

experiments in common use for resonance assignments

identify limited fragments of the polypeptide via scalar

couplings. In homonuclear 1H NMR, these fragments rep-

resent the intra-residual 1H ‘‘spin systems’’, and sequential

assignment of two or several sequentially neighboring spin

systems can be achieved using 1H–1H dipolar couplings

manifested in nuclear Overhauser effects (NOE) (Wüthrich

1986). In 1H,13C,15N-heteronuclear triple resonance NMR

(Montelione and Wagner 1989, 1990; Ikura et al. 1990; Kay

et al. 1990), the connected fragments can extend over mul-

tiple sequentially adjoining residues, and identification of

neighboring fragments is achieved by chemical shift

matching of overlapping atoms. Sequence-specific infor-

mation is obtained from assignment of individual 1H spin

systems or heteronuclear fragments to amino acid types,

based either on recognizing characteristic peak patterns or on

statistical assessments of the chemical shift values. With the

thus identified sequence features in the NMR-connected

polypeptide segments, these can be matched with the

chemically determined amino acid sequence to obtain the

sequence-specific assignment (Wüthrich 1983). In principle,

an automated procedure seems to be the approach of choice
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for deriving assignments from such NMR data, since com-

puter-based procedures allow an objective treatment of the

data and enable simultaneous assessment of large quantities

of data. In practice, however, the inevitable presence of

spectral artefacts, absence of some expected signals, and

spectral overlap impose substantial obstacles for automated

resonance assignment routines. Therefore, notwithstanding

a large amount of excellent work toward full automation

(Atreya et al. 2002; Bartels et al. 1995, 1996; Billeter et al.

1988; Buchler et al. 1997; Coggins and Zhou 2003; Egh-

balnia et al. 2005; Gronwald et al. 1998; Güntert et al. 2000;

Hare and Prestegard 1994; Hyberts and Wagner 2003;

Kraulis 1994; Leutner et al. 1998; Lin et al. 2005; Lukin

et al. 1997; Olson and Markley 1994; Wand and Nelson

1991; Zimmerman et al. 1997), nearly all protein structure

determinations published so far have used either manual

approaches or computer-assisted assignment techniques in a

semi-automated, interactive fashion.

In an automated approach to NMR assignment of pro-

teins, an exhaustive search algorithm could map the NMR-

identified peptide segments to their most probable positions

in the primary structure. However, the inevitable presence of

spectral artefacts and spectral overlap in the experimental

data induce ambiguity and uncertainties into the sequential

as well as the sequence-specific information. As a conse-

quence, the cpu-time needed for an exhaustive search of the

corresponding configuration space is exponentially growing

with increasing protein size. This ‘‘combinatorial explosion’’

calls for the development of highly sophisticated assignment

algorithms, since purely deterministic approaches, such as

exhaustive search algorithms, are applicable only for sys-

tems with experimental input data of optimal quality.

Otherwise, techniques must be employed that enable the

algorithms to identify and avoid irrelevant regions of the

configuration space. The field of combinatorial optimization

in information technology works with algorithms that are in

principle applicable to the resonance assignment problem.

The program MATCH (memetic algorithm and combinato-

rial optimization heuristics) makes use of a memetic

algorithm that enables combined use of local and global

optimization heuristics. In the present implementation it is

particularly efficient for obtaining sequence-specific NMR

assignments for proteins with an input of APSY-NMR data

(Hiller et al. 2005; Fiorito et al. 2006).

Assignment strategy and algorithms

Graph presentation of the NMR assignment problem

in proteins

As a starting point for the present treatment we present the

sequence-specific resonance assignment problem by two

types of graphs, with the ‘‘template graph’’ describing the

expected data, and ‘‘measured graphs’’ representing the

experimental data obtained with a particular NMR exper-

iment (Fig. 1). As an illustration of the use of these graphs,

let us assume that extensive spin-system identification was

achieved prior to the optimization, which then enables

using the strategy for assignment with homonuclear 1H

NMR data (Wüthrich 1986). Sequential assignment is then

analogous to the identification of correct links between the

amino acid types corresponding to the spin systems, and

sequence-specific assignment is analogous to the mapping

of the measured graphs onto the primary structure repre-

sented by the template graph.

In the graph presentation of Fig. 1, the NMR assignment

problem for proteins is reducible to the well-known sub-

graph isomorphism problem (Ullman 1976; Garey and

Johnson 1979), which in turn is known to be NP-complete.

This means that the NMR assignment problem can be

solved by an algorithm for which the computational time is

polynomial in the size of the input (NP), and a fast algo-

rithm capable of solving this problem can be used to

efficiently solve all other NP problems.

Local and global optimization algorithms

In general, the algorithms for solving the resonance

assignment problem may be classified as either local and

global optimization. Local optimization algorithms refine a

preliminary solution by screening the adjacent configura-

tion space in search of information on the best candidate

solution. For the resonance assignment problem this is

equivalent to inducing local changes to a preliminary

global assignment. Local optimization can work in a highly

deterministic fashion, following a concrete optimization

strategy. The benefit of local optimization is high effi-

ciency resulting from the assumption that the underlying

data do not contain information that is incompatible with

the rationale used by the algorithm. Local optimization

thus gains efficiency at the expense of robustness. Global

optimization algorithms solve combinatorial problems by

optimizing all problem parameters independently. Usually

they are implemented in a population-based fashion, so that

multiple candidate solutions located in different regions of

the configuration space are simultaneously optimized. A

certain degree of randomness may be involved, analogous

to mutation in biological evolution (e.g., genetic algo-

rithms). The deteriorating influence of misleading

experimental input data is thus muted, and the risk of

getting trapped in local minima is greatly reduced. Overall,

a population-based global optimization approach has high

robustness on account of a loss of efficiency due to the fact

that numerous candidate solutions have to be managed

concurrently.
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Memetic algorithms

Global and local optimization strategies are comple-

mentary in that local algorithms are able to optimize

unambiguous regions of configuration space and arrive at

correct partial solutions to the problem even when facing

highly ambiguous input data, whereas in similar situa-

tions a global optimization algorithm may reject correct

partial solutions in favor of an apparent global solution.

A memetic algorithm is the logical attempt to merge

both approaches (Moscato 1989; Corne et al. 1999; Hart

et al. 2005; Ong et al. 2007), since it contains a local

optimization routine embedded in an evolutionary algo-

rithm. The evolutionary algorithm is meant to explore

the overall problem space, while the local search heu-

ristic refines discrete areas of this space. By employing

the memetic approach, MATCH is able to exploit the

benefits of both, local and global search heuristics, with

local optimization efficiently tracing correct partial

solutions inside a genetic environment that preserves

robustness.

Using MATCH with APSY-NMR input data

The NMR method APSY (Automated Projection Spectros-

copy) (Hiller et al. 2005) enables the automatic generation of

high-dimensional heteronuclear correlation peak lists from

analysis of a suitably selected group of experimental 2D

projections of the higher-dimensional experiment. Thereby

the use of high dimensions enables a significant reduction of

the number of spectra needed for the resonance assignment.

A further important merit of APSY spectroscopy is the

determination of highly precise correlation peak chemical

shifts (Fiorito et al. 2006), which is a key asset for fully

automated sequence-specific resonance assignment. APSY-

NMR data have previously been used as input for the auto-

matic assignment algorithm GARANT (Bartels et al. 1996),

yielding essentially complete backbone assignments of

globular (Fiorito et al. 2006) and unfolded (Hiller et al.

2007) proteins. In its present implementation, MATCH has

been optimized for high efficiency and reliability of auto-

matic backbone NMR assignment of proteins when using

input from APSY-NMR experiments.

Fig. 1 Representation of protein sequence-specific resonance assign-

ment by two types of graphs describing expected and observed data,

respectively. The ‘‘template graph’’ of the expected data extends over

the entire amino acid sequence. It is in this illustration represented by

a tripeptide segment –S–D–G– from the amino acid sequence and

includes knowledge about the magnetization transfer pathways in the

3D HNCA NMR experiment used. The widths of the sockets for each

atom type represent the expected chemical shift ranges, as obtained

from the BMRB data bank. The measured graphs, i, j, k, … are

typically short compared to the template graph, but could in principle

have any length up to that of the template graph. In this illustration,

the measured graph i consists of a dipeptide segment of residues i2
and i3 (arbitrary numbering), and it contains the experimental NMR

information from the two HNCA cross peaks on the extreme right

(arbitrarily numbered 5 and 6). The chemical shifts correlated by the

HNCA experiment are grouped together in the measured graph i, and

for each atom they are represented by a plug. An assignment for the

measured graph i is found if all its plugs fit within the sockets of a

segment of equal length in the template graph. The same kind of

assignment fit is searched for all measured graphs i, j, k, …

J Biomol NMR (2008) 41:127–138 129
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Methods

The flow diagram of the new memetic algorithm MATCH

for automated sequence-specific backbone resonance

assignment provides a survey of 10 individual modules,

which are grouped into two main building blocks, initial-

ization and optimization (outlined with shadowed boxes in

Fig. 2). Initialization includes the four modules [1] to [4]

needed to load all the necessary input data, to consolidate

the experimental NMR data, to generate an initial set of

measured graphs (Fig. 1), and to calibrate intrinsic

MATCH control parameters. The result of the initialization

process represents the input for the first cycle of optimi-

zation, which includes the elements [5] to [10] (Fig. 2).

Each optimization cycle starts with the creation of an initial

population of individuals. This is followed by multiple

evolutionary cycles, each consisting of local optimization

[6] and a global ‘‘cross-over’’ [8], where new individuals

are created and low-scoring individuals are eliminated.

Within each evolutionary cycle, the configuration space is

reduced whenever possible [7] and, if necessary, the

threshold for the assignment of a generic spin-system to a

specific-sequence position is decreased [9]. The result of

each round of optimization, which typically includes a

large number of evolutionary cycles, is stored as a new

population of ‘‘elite individuals’’ [10], and thereafter a next

round of optimization is started with the creation of a new

initial population. In the following, the individual modules

[1]–[10] are described in the order that they appear in

Fig. 2.

[1] Input resources

This module includes listings of the amino acid sequence

of the protein studied, a statistical analysis of chemical

shift values of proteins contained in the BioMagResBank,

and the experimental input data in the form of the fre-

quency coordinates of the NMR signals.

[2] Generation of generic spin-systems

Here, the input listings of the frequency coordinates of the

NMR signals are consolidated and transformed into a sin-

gle set of ‘‘generic spin-systems’’, G, containing all

available intra- and inter-residual chemical shifts for a

given spin-system,

G ¼ gk : k ¼ 1; ::;Nf g ð1Þ

where N denotes the number of amino acid residues in the

sequence of the protein. A generic spin-system, gk, is

designed to be composed of maximally 6 intra- and 12

inter-residual frequencies (Fig. 3):

gk � Xk
i�1
;Xk

i ;X
k
iþ1

� �
ð2Þ

Xk
i � xkð1HN

i Þ;xkð15NiÞ;xkð1Ha
i Þ;xkð13Ca

i Þ;
�

xkð13Cb
i Þ;xkð13C0iÞ

�
� xkðaÞ : a 2 A
� �

: ð3Þ

A is a set of atoms a that includes all backbone atoms

and Cb; and the index i denotes the unknown sequence

position. Each systemgk may exist in multiple states,

which enables to cope with unresolved ambiguities dur-

ing the consolidation process, since each frequency

dimension of gk is then allowed to be degenerate. Dif-

ferent values of the individual variables xkðaÞ in Eq. 3

may then represent sets of possible values for the reso-

nance frequency of the atom a.

[3] Buffer of candidate fragments

A graph exploration routine identifies all possible sequen-

tial connectivities between generic spin-systems up to a

user-given maximal length of the resulting fragments,

which is imposed by computer-technical considerations. To

Fig. 2 Flow diagram of the MATCH algorithm (see text). In the

optimization block, dotted arrows indicate entrance and exit pathways

into and out of the evolutionary cycle, and solid arrows connect the

elements within the evolutionary cycle

130 J Biomol NMR (2008) 41:127–138
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each generic spin-system gk 2 G; a set of sequentially

connected fragments is then associated,

sðgkÞ¼ gkgl1 ;gkgl1 gl2 ; . . .;gkgl1 . . .gln : gk;gl1 ;gl2 ; . . .;gln 2Gf g;
ð4Þ

with maximal fragment length

lmax
sðgkÞ ¼ nþ 1: ð5Þ

Thereby, n is the number of generic spin systems used to

generate the longest fragment. To ensure quick access to

sequential information during the optimization routine, we

then create a ‘‘buffer of candidate fragments’’,

S � sðgkÞ : gk 2 Gf g; ð6Þ

which contains all sequentially connected fragments of

generic spin-systems.

For the identification of sequential connectivities,

MATCH employs a scoring function that consists essen-

tially of a series of box potentials. There is a sequential

connectivity, gkgl; between two generic spin-systems, gk

and gl; if a set of inter-residual frequencies associated with

gk; xkðaÞ : a 2 A0
� �

; match their intra-residual counter-

parts in gl; xlðaÞ : a 2 A0
� �

; within a user-specified

tolerance window, DxðaÞ : a 2 A0f g,

Y
a2A

H DxðaÞ � xkðaÞ � xlðaÞ
�� ��� �

¼ A0j j; ð7Þ

where

H xð Þ ¼
1 : x� 0

0 : x\0

( )
ð8Þ

is the Heaviside step function, and A0 denotes the subset of

A that is used to establish sequential connectivities.

At this point, a first reduction of the configuration space

is possible. All generic spin-systems that are not sequen-

tially compatible with any other generic spin-system,

sðgkÞ ¼ [, are discarded from further consideration. This

may, for example, include spurious spin systems derived

from experimental artefacts in the NMR spectra.

[4] Calibration of control parameters

All relevant control parameters used in the optimization

routine are automatically adapted to the degree of ambi-

guity contained in the experimental input data (Table 1).

To estimate the degree of ambiguity, the graph exploration

routine of the buffer of candidate fragments determines the

set of all possible dipeptides represented by two sequen-

tially connected generic spin-systems,

Fig. 3 Consolidation of a

listing of 4D-APSY-HNCOCA

and a 4D-APSY-HNCACO data

into a single list of generic spin-

systems. The dotted lines

represent entry locations for

chemical shifts, where each row

is a complete set for the given

NMR experiment, and for the

generic spin system,

respectively

Table 1 Dependence of the control parameters of MATCH on the ambiguity, �a, of the experimental input data (Eq. 10)

Fast
�a 2 1:0; 1:5½ ½

Moderate
�a 2 1:5; 2:0½ ½

Slow
�a 2 2:0; 2:5½ ½

Very slow
�a 2 2:5;1½ �

Fa
cut 0.75 0.75 0.8 0.85

Ma
min(Eq. 18) 0.9 0.85 0.75 0.6

Fc
cut(Eq. 17) 0.1 0.1 0.1 0.1

Since the efficiency of the evolutionary algorithm scales with the size of the population used, which increases with �a (Eq. 11), the four columns

correlate with fast, moderate, slow and very slow convergence of MATCH

J Biomol NMR (2008) 41:127–138 131
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D � gkgl : gk; gl 2 Gf g � S ð9Þ

within the user-given chemical shift tolerance window of

Eq. 7. The average ambiguity per generic spin-system is

then calculated by Eq. 10,

�a ¼ Dj j
Gj j ; ð10Þ

where Dj jand Gj j denote the number of elements of the sets

D and G, respectively. The Table 1 shows how the control

parameters of MATCH are adjusted to the value of �a;
which is calculated with Eq. 10 by counting each dipeptide

once, so that values of �a [ 1:0 indicate that there are

degenerate connectivities.

[5] Genesis

The optimization, which is the core of the memetic algo-

rithm, starts with the ‘‘Genesis’’, where an initial

population of individuals is created, each representing a

projection of a set of measured graphs onto the template

graph (Fig. 4). The size of the population, M, influences

directly the optimization process, since small populations

enable fast convergence at the expense of robustness, while

large populations provide robustness but perform ineffi-

ciently. Based on numerical simulations, we use the

empirical formula (11) to adjust the population size to a

given value of the input ambiguity �a Eq. 10,

M �
50 � e1:5 � ð�a�1:0Þ 1:0� �a\1:5
75 � e2:0 � ð�a�1:5Þ 1:5� �a\2:0
125 � e2:0 � ð�a�2:0Þ 2:0� �a\2:5
minð500; 200 � e2:0 � ð�a�2:5ÞÞ �a� 2:5

8>><
>>:

ð11Þ

The scheme used to generate new individuals by

mapping fragments from the buffer [3] onto the amino

acid sequence is governed by the current fragment length,

lc; that is initially set to the maximal allowed fragment

length given in Eq. 5,

lc ¼ MAX lmax
sðgmÞ : gm 2 G

n o
: ð12Þ

A generic spin-system, gk 2 G; associated with a

fragment of length

lmax
sðgkÞ ¼ lc ð13Þ

is then randomly selected from the buffer [3]. The

‘‘sequence space’’ represented by the template graph is

then screened so as to map this candidate fragment onto the

position with the highest value of the ‘‘sequence-specific

scoring function’’ (see below). Thereby, if gk is associated

with multiple fragments of length lc; one of these frag-

ments is randomly chosen and mapped to a sequence

position. All generic spin-systems present in the mapped

fragment are then excluded from further use, the matched

residues are removed from the sequence space, and the

process restarts by randomly choosing a next generic spin-

system. The fragment length, lc; is reduced when either all

Fig. 4 Assignment optimization [6]. In the template graph (Fig. 1),

the sub-space of all sequence positions to which fragments have been

temporarily or permanently assigned, AS, is marked by dark grey

boxes, and the sub-space of all sequence positions to which no generic

spin-systems have been assigned either temporarily or permanently,

TS; is marked by white boxes. Measured graphs of variable lengths

(Fig. 1), the ‘‘candidate fragments’’, are represented by light grey and

pink boxes. An assignment is initiated by random selection of an

element of TS (left arrow to 25 in cycle 15) along with one of the

candidate fragments that was tentatively placed along the sequence

during genesis [5] (pink boxes). Next, a target position in TSis

randomly chosen (right arrow to 13 in cycle 15). If at least one edge

of the candidate fragment sequentially matches a generic spin-system

at or adjacent to the selected target position (Fig. 1), a swap is

performed (long vertical double-headed arrow). The process restarts

by selecting a new sequence position (arrow to 27 in cycle 16). After

multiple additional cycles, the initially selected 3-residue candidate

fragment could be enlarged and sequence-specifically assigned, since

it satisfies Eq. 18 (pink boxes in cycle 100)

132 J Biomol NMR (2008) 41:127–138
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fragments of the current length have been assigned, or if no

coherent sequence space is left unoccupied. This iterative

scheme is continued until all generic spin-systems have

been processed.

The sequence-specific scoring function indicates the

probability for a given fragment of sequentially connected

generic spin-systems to be compatible with a specific

position in the amino acid sequence of the protein. To this

end, MATCH employs a v2-significance test for deter-

mining the goodness-of-fit of an observed distribution to a

statistical distribution of chemical shift values in proteins

taken from the BioMagResBank. If xi are k independent,

normally distributed random variables (here chemical

shifts) with mean valuesli and variances ri; then the ran-

dom variable Z-score,

Z ¼
Xk

i¼1

xi � li

ri

� 	2

� 0; ð14Þ

is distributed according to the v2-distribution. In the

probability density distribution of v2; the shape

parameter, k, specifies the number of degrees of freedom:

v2ðZ; kÞ ¼ ð1=2Þk=2

Cðk=2Þ Zk=2�1e�Z=2; Z� 0; ð15Þ

where C denotes the Gamma function. The cumulative v2-

distribution function is defined as

FðZ; kÞ ¼ cðk=2; Z=2Þ
Cðk=2Þ ; Z� 0; ð16Þ

where c is the incomplete Gamma function. Thus, FðZ; kÞ
represents the probability that a given distribution of ran-

dom variables Z (here a given set of chemical shifts)

matches a reference distribution (here the expected chem-

ical shifts at specific positions in the amino acid sequence

of the protein).

[6] Assignment optimization

Assignment optimization is a local optimization step which

bears on the length and composition of the candidate

fragments from [3] and on their sequence-specific assign-

ment, and is performed independently for each individual

(Figs. 2 and 4). At any stage of the iteration, two subspaces

of the sequence space S are determined, ASand TS; where S

is the amino acid sequence of the protein represented by the

template graph in Fig. 1. AS is the sub-space of all

sequence positions to which candidate fragments (repre-

sented by measured graphs in Fig. 1) have been

temporarily or permanently assigned, and TS is the sub-

space of all sequence positions without such temporary nor

permanent assignments. Optimization is initiated by ran-

dom selection of a position in TS along with a candidate

fragment. Next, a sequence position in TSis randomly

selected and the candidate fragment is checked for com-

patibility with the spin-systems at and adjacent to the new

position. In cases where there is a sequential match for at

least one edge of the candidate fragment, a swap of can-

didate fragments is performed. Thereby, each candidate

fragment is given a fixed maximal number of attempts to

find a compatible sequence location. If this contingent of

attempts is used up, the procedure is started with a new

candidate fragment. For each candidate fragment the

sequence-specific score (Eq. 16) is eventually evaluated for

all possible (i.e., so far unassigned) sequence positions. If

the sequence-specific score, FðZ; kÞc; satisfies Eq. 17,

FðZ; kÞc�Fc
cut; ð17Þ

where Fc
cutis initially set to a small value, so as to avoid a

dominant impact of the local optimization (Table 1), then an

assignment is made. If Eq. 18 is satisfied for multiple

sequence positions, then one of these sequence positions is

randomly selected for an assignment. Once the target posi-

tion is determined, the candidate fragment remains

unchanged until the end of the optimization for the individual

considered. The concept of ‘‘inherent mutation’’ used in this

approach can thus recombine current sequential assignments

by searching for arrangements of all candidate fragments that

are compatible with the amino acid sequence.

[7] Assignment management

Whenever a local optimization step [6] in the evolutionary

cycle has been completed, the resulting assignments of can-

didate fragments are newly evaluated. ‘‘Temporary

assignments’’ are associated with individuals of the popula-

tion M (Eq. 11), whereas ‘‘permanent assignments’’ are

associated with all individuals within M (Fig. 5). First, all

previously stored temporary sequence-specific assignments

are removed from all individuals. Second, each individual is

reassessed: if the sequence-specific score of a candidate

fragment, FðZ; kÞc (Eq. 16), is above a predetermined

assignment threshold, Fa
cut (Table 1 and Eq. 17), a temporary

sequence-specific assignment is stored. The thus assigned

fragment will be excluded from the subsequent local optimi-

zation step, so that the problem space is temporarily reduced

and the efficiency of the subsequent process is improved.

Simultaneously, a cross-check throughout the entire

population M (Eq. 11) is performed. If the frequency with

which a fragment is mapped to a specific sequence posi-

tion, Ma; satisfies Eq. 18,

Ma�Ma
min; ð18Þ

a permanent sequence-specific assignment is stored (for

values of Ma
min see Table 1). The fragment concerned is

removed from the problem space and will remain mapped

J Biomol NMR (2008) 41:127–138 133
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to the permanent sequence position throughout the

remainder of the optimization process (Fig. 5), thus

increasing the efficiency of the process.

[8] Cross-over

‘‘Cross-over’’ is the key module of the evolutionary cycle. It

identifies the most promising individuals based on their

sequential and sequence-specific information. In addition to

commonly used routines, MATCH supports population size

control and recombination of more than two individuals. This

makes sense when dealing with highly ambiguous input data,

since this approach favors the probability of finding high-

scoring individuals as well as apparently correct fragments.

Initially, the parental population of individuals available

after the assignment management [7] is ranked according

to their sequence-specific scores (Eq. 16), and the

sequential and sequence-specific information of the

parental individuals is assigned to a repository (‘‘gene

pool’’). A fraction of the best-scoring individuals is then

selected for the cross-over, where the content of the gene

pool is transformed into a new population of individuals.

This is achieved by sorting the gene pool according to

fragment lengths and sequence-specific scores. It is sensi-

ble to prefer long fragments, because their scores are a

more reliable indication for the correctness of the assign-

ment. Analogous to the procedure applied in the ‘‘Genesis’’

[5], the maximal fragment length is defined (Eq. 12). The

corresponding fragments are mapped to their inherited

sequence positions on the new individual. As soon as all

fragments of the current length have been assigned, the

maximal length is decreased to the next possible value,

which again corresponds to the procedure [5]. The gener-

ation of the new individual is complete as soon as all

available generic spin-systems have thus been processed.

[9] Intervention

In order to monitor the progress of the optimization process

and to adapt the intrinsic control parameters, MATCH

determines the population homogeneity, H, after each step

in the evolutionary cycle, according to

H � T � N

Gj jN ð19Þ

where T; N and Gj jdenote the total number of different

sequence-specific resonance assignments of all generic spin

systems throughout the whole population, the number of

amino acids in the amino acid sequence, and the number of

generic spin-systems, respectively. The homogeneity

shows a cyclic behavior during the optimization process.

The local optimization reduces the level of homogeneity

due to inherent mutation and the local exploration of the

configuration space. During the cross-over the homogene-

ity is again increased. If the homogeneity shows no overall

upward trend during a specified number of optimization

cycles, the control parameters may have been set too

restrictively, so that they impede convergence. In this case,

MATCH intervenes and adapts the control parameters.

[10] Elite buffer

The optimization for a given individual is completed when

either all generic spin-systems are permanently assigned, or

Fig. 5 Assignment management [7]. Illustration of temporary and

permanent assignments made by MATCH throughout a population of

individuals, M (Eq. 11). Black, permanent assignments; grey,

temporary assignments; white, no assignments
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the total sequence-specific scores of all individuals are

equal. The second criterion would enable the determination

of a final result even if incompatible apparent generic spin-

systems, which might be due to noise peaks or artefacts,

had not been eliminated in the course of the optimization

(see above). These are then not included in the sequence-

specific scoring, and are therefore readily identified when

all individuals have reached equal scores. The sequence-

specific assignment thus obtained is added to a new pop-

ulation of individuals stored in the ‘‘elite buffer’’ ([10]),

and the optimization restarts until a predetermined number

of elite individuals have been generated. Sequence-specific

resonance assignments which occur in more than 50% of

the elite individuals are accepted as being correct and are

printed out together with their sequence-specific scores.

Deleted and oscillating generic spin-systems are listed in a

supplementary output.

Results and discussion

Sequence-specific resonance assignment of the protein

TM1290

A list of NMR frequency positions for the 115-residue hypo-

thetical protein TM1290 from Thermotoga maritima, which

had been automatically generated with the GAPRO algorithm

(Hiller et al. 2005; Fiorito et al. 2006) from a 6D-APSY-seq-

HNCOCANH spectrum, was used as input for the MATCH

algorithm. The list contained 98 6D-correlations. MATCH was

instructed to generate 30 elite individuals, i.e., to perform 30

independent sequence-specific resonance assignments.

Despite the fact that APSY-NMR yields highly precise peak

positions (Fiorito et al. 2006), the tolerance windows used for

sequential matching were set to rather large values, i.e.,

Dxð1HNÞ = 0.05 ppm and Dxð15NÞ = 0.4 ppm. On aver-

age, 9.3 evolutionary cycles were performed per optimization

run, with a calculation time for each individual sequence-

specific resonance assignment in the range of 10–15 s.

The result obtained using automatic assignment with

MATCH is identical to the previous sequence-specific

assignment obtained with an interactive approach (Eteza-

dy-Esfarjani et al. 2003). The presentation of the data in

Fig. 6 shows for all residues for which an APSY-NMR

correlation could be observed (see caption to Fig. 6), that

they were correctly assigned. For all but five of the

assigned residues, all 30 elite individuals yielded identical

assignments, and for the remaining five residues the correct

assignment was obtained from 29 of the 30 elite individ-

uals. These results are far above the requirement (see

section [10] above) that at least 50% of the elite individuals

must yield an identical result for the sequence-specific

assignment to be accepted as a valid solution.

Similar results to those for TM1290 were obtained with

several other proteins for which high-quality 4D, 5D or 6D

APSY-NMR data sets could be recorded. These proteins

were selected as targets in an on-going structural genomics

project and represent different molecular sizes and differ-

ent secondary structure types. For most of these proteins,

the input data consisted of a combination of two or three

4D and 5D APSY-NMR experiments, whereby these

combinations were selected so that they had a similar

information content as the presently used 6D APSY-NMR

data set of TM1290. Although lower-dimensional spectra

quite naturally contain more extensive peak overlap than a

6D experiment, MATCH performed equally well with an

input consisting of a combination of lower-dimensional

peak lists (B. Pedrini, private communication). Based on

the experience gained so far in terms of robustness and

efficiency of the MATCH algorithm, we will broaden the

application range by including conventional triple-reso-

nance NMR experiments as input data.

Robustness tests

The automatic MATCH assignment of the 115-residue

hypothetical protein TM1290 (Fig. 6) was based on a

complete, artifact-free input of 6D correlations. In order to

assess the robustness of the MATCH algorithm when faced

with less complete or less precise input data, we deterio-

rated this peak list which had been automatically generated

from a 6D-APSY-seq-HNCOCANH spectrum and con-

tained 98 NMR signals. Thereby, instead of simply adding

random noise to the experimental data set, variant data sets

were generated by elimination of discrete sets of peaks,

controlled variation of chemical shifts, and recombination

of individual ones of the sets of six experimental chemical

shifts per peak into new, artefactual 6D correlation peaks.

To account for statistical outliers at a given extent of

deterioration, multiple MATCH calculations were per-

formed, and the performance of the program was evaluated

from comparison of the percentage of incorrectly assigned

peaks among the assignable peaks, D; and from the average

number of evolutionary cycles (Fig. 2) needed to obtain

convergence to the elite individuals, C.

Elimination of peaks is equivalent to a decrease of the

average length of some candidate fragments and thus

challenges the sequence-specific scoring (Fig. 7). By

experience, if the average fragment length is below 6, then

the sequence-specific scoring gradually loses reliability and

the quality of the sequence-specific assignment decreases.

In the test of Fig. 7, we observe a virtually flawless per-

formance if up to 10% of the peaks are missing, and the

average number of incorrectly assigned peaks were below

8% even if 20% of the peaks were removed. Thereby, the

number of evolutionary cycles needed to achieve
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convergence increased at an exponential rate with the

extent of elimination (Fig. 7). This behavior of the algo-

rithm results from the use of dynamic transition. MATCH

absorbs the increasing ambiguity of the sequence-specific

assignments in the local assignment optimization by fre-

quent switching to global, population-based optimization.

Variation of the input chemical shifts (Fig. 8) challenges

again the sequence-specific scoring. In this computer

experiment, all input peaks were simultaneously manipu-

lated by random variation of the frequency coordinates

within a predetermined interval around the experimental

values. The range of the interval is defined by a given

number of standard deviations for each atom involved in a

correlation peak, which were taken from the BioMagRes-

Bank. MATCH performed highly reliably and with good

efficiency as long as the chemical shift variation was below

one standard deviation (Fig. 8). Again, dynamic transition

enabled MATCH to cope with the decreased accuracy of

the sequence-specific scoring. For chemical shift variations

above one standard deviation, the performance of MATCH

deteriorates dramatically, emphasizing the importance of

precise frequency measurements. This behavior reflects an

important feature of the v2-distribution (Eq. 15): with

exponentially increasing Z-scores, the cumulative v2-dis-

tribution (Eq. 16) rapidly goes toward 0 if the deviation

from the expected values exceeds one standard deviation.

In the experiment of Fig. 9, elimination of correct input

signals (Fig. 7) is combined with the admixture of spurious

signals, which is achieved by recombination of the sets of

six experimental chemical shifts of a predetermined frac-

tion of all input peaks into new, artefactual 6D correlation

peaks. MATCH performed reliably and efficiently as long

as the extent of recombination was below 10%. Compari-

son with Fig. 7 shows further that the introduction of up to

10% of spurious peaks has no measurable effect on the

outcome of the assignment. More extensive addition of

Fig. 6 Assignment statistics for TM1290. The input peak list of the

protein had been automatically generated from a 6D-APSY-seq-

HNCOCANH spectrum using the GAPRO algorithm with standard

parameter set. MATCH had been instructed to generate 30 elite

individuals, E (Fig. 2), which are represented along the vertical axis.

For each sequence position along the horizontal axis, a green column

represents the number of identical, correct sequence-specific assign-

ments. The grey areas indicate that there are no peaks present in the

input peak list which could be mapped to the given sequence position,

either because the positions are occupied by prolyl residues, or

because the NMR signals were broadened beyond detection by slow

dynamic processes (Etezady-Esfarjani et al. 2003)

Fig. 7 Robustness test of MATCH when facing incomplete input

peak lists. From the input used in Fig. 6, variable percentages of the

6D APSY-NMR peaks were deleted before the assignment process

was started, whereby different selections of peaks were deleted in

each of the calculations resulting in the generation of 30 elite

individuals for each extent of elimination. D is the percentage of

erroneous assignments obtained from analysis of the 30 elite

individuals, and C is the average number of evolutionary cycles

(Fig. 2) needed to achieve convergence to the elite individuals

136 J Biomol NMR (2008) 41:127–138

123



artefacts overburdens inherent mutation, because recom-

bined peaks may be very similar to real peaks, and reduced

performance of MATCH is observed when compared to the

situation arising from deletions of the input data without

introduction of artefacts (Fig. 7).

Overall, the data of Figs. 7–9 show that MATCH is able

to cope with significantly lower quality experimental input

data than those obtained from 6D APSY-NMR in Fig. 6,

including the admixture of artifactual peaks, imprecise

frequency positions and missing signals. Current applica-

tions of MATCH for backbone resonance assignment of a

variety of proteins are in agreement with the computer

simulations presented above (B. Pedrini, personal com-

munications). This indicates that MATCH should also be

applicable for automatic backbone assignment using input

measured with conventional triple-resonance NMR exper-

iments. In the present implementation of MATCH such

applications would require that the format of the input peak

lists correspond to the format of the GAPRO output from

APSY-NMR experiments (Hiller et al. 2005).

For academic users, MATCH will be distributed free-of-

charge as a module of the stand-alone ATNOS/CANDID

program (Herrmann et al. 2002a, b). Download informa-

tion is available under http://www.mol.biol.ethz.ch/groups/

wuthrich_group/software.
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