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Abstract

The simultaneous simulation of microscale wind and wind turbine wake is
attempted in this work using a preconditioned multistage solver and an im-
mersed wind turbine model. This work demonstrates a low Mach number
preconditioning formulation for high Reynolds number, low Mach number
atmospheric flows. The preconditioning is implemented together with multi-
grid approach into a multistage solver in order to provide an efficient scheme,
which allows for the routine use of computational fluid dynamics in simula-
tions of the atmospheric flow and wakes within wind farms.
Microscale wind simulations are performed using the preconditioned solver
over several test cases including Askervein Hill, Kettles Hill and Bolund Hill
to demonstrate the superior convergence, accuracy and robustness of the
method. In addition, the performance of RANS solver is assessed in predic-
tion of microscale wind variations over topography with varying complexity.
Next, A novel immersed wind turbine model is developed and used to simu-
late the evolution of single and multiple wake interactions. The model is for-
mulated in order to reduce the stringent grid requirements for resolving the
blade boundary layer and near-wake region behind the wind turbines. The
model is first evaluated by comparing the predicted evolution of the veloc-
ity and turbulence intensity in the far wake with measurements performed
in a wind tunnel. Predictions are also compared with full-scale measure-
ments of a single wake at the Sexbierum wind farm. The performance of the
model is also assessed in predicting wake interaction in the same wind farm
by comparing the power performance with measurements in an operating
wind farm. The agreement between the model results and measurement for
all cases is satisfactory for both single and double wake predictions. In next
step, the simulations are performed over offshore wind farm Lillgrund and
sensitivity of power loss to wind direction is investigated in two first rows of
the farm. The results of simultaneous wind and wake flow are also presented
over two wind farms located in complex terrain in Spain and Switzerland.
The recovery rate of wake and turbulence characteristics in wind farm caused
by the topography are assessed. Overall the results of array loss in wind farm
located in complex terrain demonstrate the sensitivity of wind farm perfor-
mance in complex terrain to small variations in wind direction. The model
yield acceptable results for all test cases, however, to justify the additional
computational cost of RANS simulations compared to simplified engineering
models, the accuracy needs to be further improved and the computational
cost must be reduced. Overall, the results over various test cases demon-
strates the capability of the model to resolve the wake interaction in wind
farms and to estimate the array loss for different arrangements of turbines
and incoming wind directions. In addition to reducing the computational
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time, the model employs Cartesian grids, which facilitate the grid generation
process for wind farm simulations.
In the final part of the thesis, an immersed boundary method that is used in
connection with the Reynolds-Averaged Navier-Stokes equations with k −ω
turbulence model in order to efficiently simulate the wind flow over com-
plex terrain is presented. With the immersed boundary method, only one
Cartesian grid is required to simulate the wind flow for all wind directions,
with only the rotation of the digital elevation map. Thus the lengthy pro-
cedure of generating multiple grids for conventional rectangular domain is
avoided. Wall functions are employed with the immersed boundary method
in order to relax the stringent near-wall grid resolution requirements, as well
as to allow the effects of surface roughness to be accounted for. The im-
mersed boundary method is applied to moderately complex terrain test case
Askervein Hill and the highly complex terrain test case of Bolund Hill. The
simulation results of wind speed and turbulent kinetic energy show good
agreement with experiments for heights greater than 5m above ground level.
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Zusammenfassung

Die Mikromassstab Simulation von Wind simultan mit der Nachlaufströmung
einer Windturbine wird in dieser Arbeit mittels einem vor konditionierten
mehrstufigen Solver und einem immersiertem Windturbinen Modell behan-
delt. Diese Arbeit zeigt die vor konditionierte Formulierung der niedrigen
Mach Zahl für hohe Reynolds-Zahlen. Die vor konditionierte Formulierung
wurde zusammen mit einem Mehrgitterverfahren in einem mehrstufigen Sol-
ver implementiert. Dies erlaubt die routinierte Verwendung der numerischen
Strömungsmechanik für die Simulation der atmosphärischen Strömung und
der Nachlaufströmung einer Windturbine. Mikromassstab Windsimulatio-
nen wurden durchgeführt mit dem vor konditionierten Solver über mehrer
Testfälle wie Askervein Hill, Kettles Hill and Bolund Hill. Damit wurde die
Konvergenz, Genauigkeit und Robustheit dieser Methode zeigt. Zusätzlich
wurde die Leistung der RANS Solver bewertet mit der vorhersage der wind
veränderungen über untersichtliche Gelände.
Weiterhin wurde ein neuartiges immersiertes Windturbinen Modell entwi-
ckelt. Dieser wurde für Simulationen der Wechselwirkungen vom die
Nachlaufströmung von einzelne und mehrere Windturbinen eingesetzt. Das
Modell wurde so formuliert, dass die notwendige Gitter Auflösung erzielt wird,
um die Rotorblätter Grenzschicht und die Nachlaufströmung in der Nähe
der Windturbine auflösen zu können. Die Evolution des Modells erfolgte mit
dem Vergleich der vorhergesagten Geschwingkeit und Turbulenzintensität
der fernen Nachlaufströmung mit Windkanal Messungen. Die Vorhersage wur-
de auch mit Messungen an einer Nachlaufströmung von einer Windturbine
im Sexbierum Windpark verglichen. Die Leistungsfähigkeit des Modells ist
auch bewertet in der Vorhersage von Nachlaufströmunginteraktion zwischen
mehreren Windturbinen im gleichen Windpark, mittels Messungen von der
Leistung der Windturbinen. Die übereinstimmung zwischen den Resultaten
von Modell und Messergebnissen ist für alle Fälle gut. Diese stimmt fuer
beide einzel und doppelt Nachlaufströmungvorhersage. Weiter wurden auch
Simulationen über den off shore Windpark Lillgrund durchgeführt und die
Sensitivität vom Leistungsverlust in Abhängigkeit von Windrichtung in zwei
Reihen des Windparks untersucht. Simultan wurde der Wind und Nachlaufströmung
für zwei Windparks in komplexen Terrains in der Schweiz und Spanien simu-
liert. Das Verhalten der Nachlaufströmung der Windturbine und die gegebe-
nen Turbulenzeigenschaften in einen Windpark durch die Topografie wur-
den bewertet. Die Resultate zeigen, dass die Leistung vom Windparks die
im komplexen terrains gelegen sind, abhänig von dem Terrain und kleinen
Windrichtungwechseln ist. Das Modell zeigt akzeptable Ergebnisse für al-
le Testfälle, jedoch um die zusätzliche Rechenzeit der RANS Simulation im
Vergleich zu einfachen Modellen zu rechtfertigen, bedarft die Genauigkeit
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weiterer Verbesserungen und einer Reduktion der Rechenzeit. Insgesamt zei-
gen die Resultate der Testfälle die Fähigkeit des Modells die Interaktion der
NachlaufstrÃűmung in Windparks und der Verlust für verschiedeneTurbinen
Anordnungen sowie Windrichtungen, zu erfassen. Zusätzlich zur reduzier-
ten Rechenzeit, beinhaltet das Modell ein kartesisches Gitter, welche den Git-
ter Erstellungsprozess fÃijr Windpark Simulationen ermöglicht.
Im Abschluss, eine Grenzschicht Methode mit die Reynolds-gemittelten Navier-
Stokes Gleichungen und mit ein k −ω Turbulenzmodell ist vorgestellt. Die
Windströmung über komplexen Terrain kann, mit diese methode effizient
simuliert werden. Weiterhin ist nur ein kartesisches Gitter erforderlich um
die Windströmung in alle Richtungen zu simulieren. Das ist möglich mit die
Umdrehung der digitale topografische Karte. Damit wurde das lange Verfah-
ren der Erstellung von mehreren Gitter im konventionellen rechteckigen Be-
reich umgangen. Wandfunktionen wurden zusammen mit der immersierten
Grenzschicht Methode verwendet. Damit wurde die zwingende Gitterauflösung
in Wandnähe erfüllt und den Effekt der Oberflächenrauigkeit berücksichtigt.
Die immersierte Grenzschicht Methode wurde verwendet, um Testfälle mo-
derater komplexer Terrains wie Askervein Hill und sehr komplexen Terrains
wie Bolund Hill zu simulieren. Die Resultate der Windgeschwindigkeit und
der turbulenten kinetische Energie zeigen gute Ü bereinstimmungen mit den
experimetalen Daten die bei > 5m Bodenhöhe gemessen werden.
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CHAPTER

1
Introduction

The alternative energy resources has grown rapidly in recent decades aiming to reduce the
consumption of fossil fuels in the presence of ever-growing worldwide energy consump-
tion. Proponents of alternative energy argue that fossil fuels are inefficient, unsustainable,
environmentally destructive, and the primary contributor to global climate change. Addi-
tionally, high economical and political cost of ensuring the security of supply of fossil fuels,
the variability and the overall increase in the price over last decades are making the alter-
native energy resources more competitive.
The wind energy market has grown rapidly in recent decades. The EU wind energy sector
installed 11.6 gigawatts (GW) of capacity in 2012, bringing the total wind power capacity
to 105.6 GW. Wind energy represented 26% of all new EU power capacity installed in 2012,
representing investments of between 12.8 billion and 17.2 billion Euros. It is now meeting
7% of Europe’s electricity demand. The global wind energy statistics in 2012 also show the
same trend of continued expansion of the market, with annual market growth of almost
10%, and cumulative capacity growth of about 19% [8].
The growth in wind energy is not limited to Europe. In year 2013, the worldwide wind ca-
pacity reached 296,255 MW by the end of June 2013, out of which 13,980 MW were added
in the first six months of 2012 showing overall 6% growth. Even though this increase is less
than in the first half of 2012 and 2011, when 16.5 GW and 18.4 GW were added respectively.
All wind turbines installed worldwide by mid-2013 can generate around 3.5% of the world’s
electricity demand [10].
Despite the slight decrease in the growth rate of wind energy in 2013, the predictions show
that the growing trend in the use of renewable and wind energy will continue worldwide.
In the recently released International Energy Outlook 2013 (IEO2013) projects published
by the U.S. Energy Information Administration’s (EIA) indicates that the world energy con-
sumption will grow by 56% between 2010 and 2040, from 524 quadrillion British thermal
units (Btu) to 820 quadrillion Btu [2]. The report shows that renewable energy and nuclear
power are the world’s fastest-growing energy sources, each increasing 2.5% per year. In the
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Reference case, the renewable share of total energy use rises from 11% in 2010 to 15% in
2040. Almost 80% of the projected increase in renewable electricity generation is fueled by
hydro-power and wind power. Of the 5.4 trillion kilowatt-hours of new renewable genera-
tion added over the projection period 1.5 trillion kilowatt-hours (28%) is attributed to the
wind.

1.1 Modeling of Multiscale Flow for Wind Energy
Application

Following the increasing interest and investments in wind energy, many engineering tech-
niques have been developed in order to identify the suitable sites and estimate the annual
energy of the potential projects. In recent years, development of GIS based tools and their
application in large-scale assessment of various factors such as land availability, road ac-
cess, grid developments and cost related to construction and operation has facilitated and
improved the primary estimations of the overall cost of the potential projects. However, in
order to accurately estimate the revenue of a wind farm, the energy output must also be
predicted reliably. The process of energy production in wind farms consists of two main
processes. First, extracting the kinetic energy from the wind and conversion to mechani-
cal energy and second the process of conversion of mechanical energy to the useful energy
which is mostly electrical [153]. Even though the second phase also poses some technical
challenges specially as the dimensions of the wind turbines grow that has been the dom-
inant trend of last few years, but the real uncertainties are mainly attributed to the first
mechanism.
In order to predict the amount of mechanical power produced by wind turbine, first the
wind speed at the location of the turbine must be estimated. In the early years, large scale
wind prediction and site assessment was mainly carried out using field techniques com-
bined with a general understanding of the large-scale winds using meteorology and the
effect of local topography in the region of interest [67]. Even though these techniques were
sometimes useful in predicting the long-term wind availability over moderate terrain and
flat regions with dominant and distinct climatology they often failed when more complex
atmospheric and local effects were present. More advanced empirical tools were later de-
veloped using various mathematical relationships, as well as the upper-air wind data [128].
Apart from the general wind conditions at the location of a planned project obtained using
above-mentioned empirical tools, an accurate measurement of the wind speed has always
been a decisive factor in determining the input wind speed to the wind turbines and the
economic efficiency of a project. There has been a significant technical progress in terms
of near-site wind speed measurements, including the instrumentation, calibration, height
selection and placement of the measurements tower. However, the innate limitations of
these measurements in terms of cost, time period as well as being limited to few location
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and heights necessitates alternative complementary solutions.
In last few years, with the increase in computational resources and major developments
in numerical weather prediction, there has been an increased focus on the application of
mesoscale modeling techniques as a major focus of research in wind resource assessment
and mapping [11]. The modeling tools of weather forecasting, mesoscale modeling, are
used for climatological assessment of wind energy potential over region of interest with
grid resolutions in order of tens of kilometers. The simulations are typically performed over
a long time period, sometimes couple of decades to assess the climate in a region to the
extent of a country or a continent. These models offer a number of advantages for wind re-
source assessment, such as the ability to simulate, with reasonable accuracy, complex wind
flows in areas where surface measurements are scarce, flexibility in the choice of area of
interest, resolution, height above ground and time period to be studied. Large scale data
obtained using mesoscale simulations could be used together with other GIS data in order
to facilitate the search for suitable sites for wind energy projects.
As the interest in use of mesoscale modeling for wind resource assessment is growing, ex-
tensive studies are being performed to improve the model predictions in terms of wind
speed estimations [11] [105] [56] [69] . The extensive research in the field of numerical
weather predictions mostly focuses on accurate predictions of weather fronts and low level
wind predictions were not addressed adequately in this field in the past. However, in recent
years several studies investigated the effect of different factors including grid resolution,
the definition of surface roughness and atmospheric stratification and the part they play in
the overall uncertainty of the modeling aiming to further improve the estimation of highly
unsteady wind flow in the atmospheric boundary layer upstream of the wind turbines [23]
[102].
Even though mesoscale simulations provide flexibility for project developments and their
accuracy for wind resource assessment is in the rise, mesoscale solvers are not solely suffi-
cient for determining the incoming wind flow at the location of a wind turbine. Mesoscale
simulations are not sufficient for assessing microscale wind variations due to two main rea-
sons. The first is the fact that the mesoscale solvers are typically built based on hydrostatic
assumption in the atmosphere which filters out the vertically moving acoustic waves from
the momentum equation [68]. The hydrostatic approximation is derived assuming a bal-
ance between the pressure field and gravity in vertical direction and this assumption is rea-
sonable as long as the horizontal grid resolution is large (∼ O(km)). In scales relevant to
microscale wind flow simulations, the hydrostatic assumption fails and hence mesoscale
solvers can not provide an accurate assessment of the flow.
The second and possibly more important shortcoming of mesoscale modeling is related
to horizontal grid size which could not be eliminated by using non-hydrostatic models
[123]. Due to limitations of parameterization schemes as well as the computational cost,
mesoscale models typically have low grid resolutions (2−200km) and therefore fail to repre-
sent the relevant terrain forcing of small topographical features. However these microscale
structures have profound effect on the local wind distribution [132]. The variations of near-
surface wind speed due to topography could be significant. The increase or decrease of
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wind speed over high and low elevations above 100 percent are not uncommon in nature
and accurate prediction of this speed-up is very crucial in prediction of wind energy po-
tential of a site considering the fact that both the the power and the structural load on the
turbine are related to velocity cube (∼V 3) and square (∼V 2) respectively [59].
Even though significant improvements have been achieved during the last few years, wind
resource assessment still makes the largest contribution to the overall uncertainty in the
prediction of wind power generation. An error of 3% in the wind speed measurement can
lead to a discrepancy of about 10% in annual energy production. It is therefore absolutely
necessary to modify and improve all the available simulation and measurement techniques
to achieve the best possible accuracy. In addition, the growing interest and demand in wind
energy, results in future projects developments to be planned in sites with less ideal wind
conditions. Consequently, many techniques used for site calibration and annual energy
yield estimation used for "good quality" sites need to be revisited to decrease the model
uncertainties and identify and evaluate the potential wind project sites in more complex
terrains.
The second challenge in prediction of energy output from wind turbine is related to the field
of aerodynamics. Once the incoming wind profile is determined, the process of converting
the kinetic energy to mechanical energy by the turbine must be well understood and pre-
dicted. The system dynamics and interaction with the structure are also quite important,
however that is a rather challenging task. Wind turbines, the largest rotating machines on
earth, are subjected to highly turbulent and unsteady atmospheric boundary layer which
makes the design and performance prediction of these machines quite difficult [85]. Wind
turbines at the design point, operate while the rotating blade and non-uniform instanta-
neous wind velocity may create regions of separated, three-dimensional highly unsteady
flow field with length scales ranging from the turbulent boundary layer around the blades
to large extent of the low velocity wake region behind the turbine [36]. The combination of
large Reynolds number and low velocity makes both the experimental and numerical work
on the wind turbines rather costly and challenging. Numerical predictions of the three di-
mensional unsteady flow field in the near wake region and resultant loading distribution
on wind turbine blades of a single full-scale turbine requires substantial computational re-
sources.
Additional complexity in prediction of power performance arises considering the interac-
tion of the turbines within wind farms. Due to several limitations such as land availability,
cost, logistics, etc wind turbines usually are closely placed to each other within wind farms.
Therefore, turbines often operate in the wake of upstream turbines. Due to main character-
istics of wake flow, mainly meaning reduced momentum and increased turbulence, wind
turbines operating in the wakes of upwind wind turbines may have 30−40% power losses
compared to upwind turbine and up to 80% larger fatigue loads [124]. The power loss re-
duces the expected revenue of the wind farm and the increased loads reduce the expected
life span of the downwind wind turbines in the wind farm. Hence, in last few decades, there
has been a significant effort in developing analytical or semi-empirical models to simulate
wind turbine wakes. These models differ in approach, level of complexity, accuracy and
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computational cost. To date, the vast majority of wind farms have been designed using en-
gineering models which have been tuned and validated using experimental data. As wind
farms become larger and are placed in areas with increasing variety of wind and terrain
conditions, empirical correction upon empirical correction are being developed upon the
basis of scarce and perhaps erroneous experimental data [9]. Therefore, while some of the
models provide acceptable accuracy for single or multiple wakes in limited scenarios but
due to their inherently simplifying assumption, they often fail when more complex inflow
or ground features are present [43].
With the increase in available computational resources and further developments in mi-
croscale wind predictions, there has been an increased interest in using three-dimensional
field models, which solve the Reynolds-Averaged Navier Stokes (RANS) equations in con-
nection with a turbulence model [115]. This approach enables the wind flow and turbine
wake to be simulated simultaneously. As the microscale wind pattern over a specific topog-
raphy is affected by both the long extent of the wake and the blockage effect of the wind
turbines, the placement of turbines based only on a simulated microscale wind field may
not result in an optimized micrositing of wind turbines in a wind farm.
Overall, it is desirable to tackle the challenge of numerical prediction of the power output
of a wind farm by focusing on the relevant scales, resolving the microscale wind and wake
within the wind farm and minimizing the simplifying assumptions while keeping the com-
putational cost reasonable. The numerical simulations of multiscale physics involved in es-
timations of energy output of turbines could be achieved by offline coupling of mesoscale
and microscale flow solvers to obtain the wind flow upstream of the wind turbine with high
horizontal and vertical resolution and employing the appropriately designed models for
small scale aerodynamics around the wind turbine blades and vicinity of the rotor (Figure
1.1). In such approach, a unified wake model which copes with all types of wind farms and
their interaction with the earth’s boundary layer is achievable. Using Computational Fluid
Dynamics, eliminates the need for simplifying assumptions in treatment of wind or wake
flow over the terrain within a wind farm and can substantially improve predictions of wind
flow and wake effects within wind farms, and therefore provide a more accurate assessment
of the expected annual energy yield of a potential project. In addition, by reducing the com-
putational cost and eliminating common challenges in using CFD such as grid generation,
one can greatly improve the usability of such models and facilitate the path to routine use
of CFD in wind energy for micrositing purposes on an industrial scale.
Due to the fact that the speed of the wind flow is quite low, typically the microscale wind

simulations are performed using incompressible RANS solvers [151] [29] [117]. In these
solvers an elliptic equation for the pressure is obtained by the help of the continuity equa-
tions and the incompressibility assumption which makes the characteristic of the govern-
ing equations independent of the acoustic speed [149] [19]. This eliminates the problem of
large disparity between the convective and acoustic wind speed resulting in stiffness of the
numerical scheme that could be observed applying the compressible Navier Stokes equa-
tions for low speed flow [156] [148]. On the other hand there are wide variety of applications
in engineering that deal with many different working fluids and flow conditions. There are
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Figure 1.1: various scales involve in prediction of wind turbine performance and the selected ap-
proach to tackle the multiscale problem.

variety of application in which large region of low speed flow are embedded in a high speed
flow, or cases of low speed flows with density change due to heat release or thermal con-
duction [19]. Therefore the development of an all purpose solver that can be used for wide
range of engineering applications was also in the scope of the this work.
In this thesis the microscale wind flow simulations are made using an all purpose multi-
stage solver. Multistage time marching CFD solvers have been successfully used for a num-
ber of years for the computation of transonic and supersonic flows, because they have low
computational cost, have high accuracy in the solution, are relatively easy to implement,
and are well suited for parallelization [65]. However, when these solvers are used for wind
energy applications, their performance is rather poor [46] . In the region of low Mach num-
bers, the convergence behavior of these methods degrades due to the large disparity be-
tween the acoustic and convective wave speeds and the solution’s accuracy deteriorates as
a result of disproportional scaling of the artificial viscosity [84] [83]. Preconditioning tech-
niques enable low Mach number flows to be efficiently simulated using an existing com-
pressible solver. In this thesis, LEC’s existing compressible solver, MULTI3, has been mod-
ified and improved in order to obtain an all purpose solver for incompressible and com-
pressible fluid flow simulations. In the first step, the time integration of the solver has been
replaced with a multistage Runge-Kutta scheme. Multigrid method and wall function has
been integrated into the solver to improve the convergence and resolve the high Reynolds
number atmospheric flow accurately. Inlet and outlet boundary conditions has been mod-
ified and a preconditioning method is implemented into a multistage compressible RANS
solver and applied for the first time, to the author’s knowledge, to high Reynolds number
low Mach number atmospheric flow simulations.
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1.2 Research Objectives

In the scope of this thesis, the simultaneous simulation of microscale wind and wind tur-
bine wake was made using an all purpose RANS solver. The implementation of convergence
acceleration including preconditioning and multigrid method, efficient wake model and
numerical methods such as immersed boundary method were made in order to develop a
fast and reliable Navier-Stokes solver for wind farm simulations and array loss estimation
offhsore and over complex terrain. The overall research objectives could be summarized as:

• Modify and improve LEC’s existing compressible solver, MULTI3, to develop an all
purpose RANS solver for efficient simulation of compressible and incompressible
flows that could be used for wind flow simulations using preconditioning in an effi-
cient and robust manner

• Investigate the capabilities and limitations of RANS solver in predicting the wind
flows over wide range of topography

• Develop a computationally efficient model for wind turbine wake simulations to
decrease the computational cost of multiple wake simulations in wind farms while
maintaining the accuracy in the prediction of far wake development.

• Demonstrate the application of the developed microscale solver and immersed wind
turbine model for simultaneous simulation of wind flow in wind farms assessing the
interaction of the wake and wind flow with topography in highly complex terrain.

• Apply the widely used method of immersed boundary for high Reynolds number
microscale wind simulations in order to eliminate the difficulties of grid generation
for wind resource and array loss assessment for multiple wind directions.

1.3 Thesis Outline

Chapter 1
A short background and the research objectives are presented in the first chapter.
The background focuses on the flow modeling for wind energy application in differ-
ent scales and how the current work attempts to overcome the practical challenges
of use of microscale wind and wake flow simulations for more accurate assessment
of wind projects.

Chapter 2
In the second chapter, the governing equations of wind flow and the turbulence clo-
sure model are described and the variables are introduced.
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Chapter 3
The numerical method, called hybrid Runge-Kutta method, used in the in-house
solver is described in detail in this chapter. First the spatial and temporal discreti-
sations are discussed and then the various boundary conditions used for the flow
solver are detailed. The formulations and implementation of the generalized wall
function necessary for high Reynolds number wind flow simulations are also de-
scribed.

Chapter 4
The implementation of the multigrid method in connection with Runge-Kutta is
presented in this chapter. The concept of multigrid which employs series of coarser
grids in order to improve the convergence behavior of the solver, is briefly described
and then the implementations and treatments of boundary conditions are detailed.

Chapter 5
In this chapter, the implementation of low Mach number preconditioning technique
is presented. The preconditioning technique further improves the degraded con-
vergence behavior of Runge-Kutta for low Mach number flow which occurs due to
the large disparity between the acoustic and convective wave speeds. Different ap-
proaches are introduced in order to improve the performance of the precondition-
ing for high Reynolds number atmospheric flows and the required modifications of
boundary conditions are detailed.

Chapter 6
Performance of preconditioned multigrid is demonstrated for a broad range of at-
mospheric flow test cases including Askervein Hill, Kettles Hill and Bolund Hill and
its performance, accuracy and robustness assessed for the atmospheric wind simu-
lations. In addition the variations of local wind and turbulence due to topography
are discussed.

Chapter 7
A newly developed three-dimensional field wake model that is used for simulations
of wake flows in wind farms is described in this chapter. Next, predictions of single
and multiple wakes, which are relevant to the flow in wind farms, are also presented
using the immersed wind turbine model that is embedded in the preconditioned
solver and model results are assessed against wind tunnel and full scale measure-
ments.

Chapter 8
In this chapter, the simultaneous simulations of microscale wind and wake flow
in wind farm is reported and array loss estimations are compared with available
SCADA data for three wind farms. First, the simulations are performed over offshore
wind farm Lillgrund. Next the simulations of wind flow in two wind farms located in
complex terrain are presented.
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Chapter 9
The immersed boundary method is introduced in this chapter in order to further
facilitate the grid generation for the atmospheric flow simulations. The model and
the detailed implementation is described. The validation of results are presented for
the case of idealized flows and flow over Askervein and Bolund Hill.

Chapter 10
The chapter presents the summary of the results from all chapters and the final con-
cluding remarks on the thesis. Suggestion on the future work and further improve-
ments are also discussed.
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CHAPTER

2
Governing Equations

This chapter describes the governing equations of wind and in general fluid flows. As men-
tioned in the previous chapter, in the current study, the existing solver is modified to obtain
an all purpose Reynolds Averaged Navier Stokes solver and to use for atmospheric and wake
flow simulations. First, the conservation laws, governing the fluid motion are presented and
the non-dimensionalized equations are derived. The turbulence modeling approach used
in the code is next introduced.

2.1 Conservative Laws

The three-dimensional compressible Reynolds averaged Navier Stokes equations are writ-
ten in conservative form for a Cartesian coordinate system as follows:

∂W

∂t
+ ∂(F −Fv )

∂x
+ ∂(G −Gv )

∂y
+ ∂(H −Hv )

∂z
= 0 (2.1)

The state vectors of the conservative variable viscous and inviscid fluxes are:

W =


ρ

ρu
ρv
ρw
ρE

F =


ρu

ρuu +p
ρvu
ρwu
ρEu

G =


ρv
ρuv

ρv v +p
ρw v
ρEv

H =


ρw
ρuw
ρv w

ρw w +p
ρEw

 (2.2)
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Fv =


0
τxx

τx y

τxz

τxxu +τx y v +τxz w +qx



Gv =


0
τy x

τy y

τy z

τy xu +τy y v +τy z w +qy

 (2.3)

Hv =


0
τzx

τz y

τzz

τzxu +τz y v +τzz w +qz


where the shear stresses are defined as:

τxx =µ
(

4

3

∂u

∂x
− 2

3

(
∂v

∂y
+ ∂w

∂z

))
τy y =µ

(
4

3

∂v

∂y
− 2

3

(
∂u

∂x
+ ∂w

∂z

))
τy y =µ

(
4

3

∂w

∂z
− 2

3

(
∂u

∂x
+ ∂v

∂y

))
τx y =µ

(
∂u

∂y
+ ∂v

∂x

)
(2.4)

τxz =µ
(
∂u

∂z
+ ∂w

∂x

)
τy z =µ

(
∂v

∂z
+ ∂w

∂y

)
τy x = τxy ,τzx = τxz ,τy z = τzy

and the heat fluxes are

qx =−κ∂T

∂x
qy =−κ∂T

∂y
qz =−κ∂T

∂z
(2.5)

The ideal gas relation is used to close the system of equations. This equation relates the
total energy per unit mass E to pressure p.

p = (
γ−1

)[
ρE − 1

2ρ

((
ρu

)2 + (
ρv

)2 + (
ρw

)2
)]

(2.6)
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Also total enthalpy per unit mass is defined as:

H = E + p

ρ
(2.7)

where ρ is density, u, v and w are the velocity components for the Cartesian coordinates, T
is the temperature, E is the total internal energy per unit mass, κ is the thermal conductivity,
γ is the ratio of specific heats and µ is the total eddy viscosity which is the summation of the
laminar viscosity calculated using the local temperature based on Sutherland’s law and the
turbulent viscosity calculated using the turbulence model described in the next sections
(Eq. 2.8).

µ=µl +µt µl = 1.461×10−6 T
3
2

T +110.3
(2.8)

The thermal conductivity is obtained using different Prandtl numbers for laminar and the
turbulent parts (Eq. 2.9).

κ= γµl

Prl
+ γµt

Prt
(2.9)

2.2 Non-dimensionalization

In practice, the governing equations are solved in a non-dimensionalized form in order to
minimize the error related to numerical computations. For the non-dimensionalization of
the Navier Stokes equations, the following reference quantities are defined:

µr e f : reference density

cr e f : reference speed of sound

Lr e f : reference length

µr e f : reference viscosity

A set of non-dimensionalized quantities are defined based on reference values described
above.

x∗ = x

Lr e f
y∗ = y

Lr e f
z∗ = z

Lr e f

u∗ = u

cr e f
v∗ = v

cr e f
w∗ = w

cr e f

ρ∗ = ρ

ρr e f
p∗ = p

ρr e f cr e f
2

E∗ = E

cr e f

2

(2.10)

H∗ = H

cr e f

2

t∗ = t ar e f

Lr e f
µ∗ = µ

µr e f

As a result of the above selected non-dimensionalization, the reference Reynolds number
Rer e f appears in the conservative form of the governing equations which scales the viscous
fluxes in non-dimesionalized RANS equations (Eq. 2.11).

Rer e f =
ρr e f cr e f Lr e f

µr e f
(2.11)
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2.3 Turbulence Model

The two-equation k−ω turbulence model is chosen to compute the eddy viscosity µt . Con-
sistent with the governing equations, the conservative formulation of the k−ω is preferred.
Eddy viscosity µt is substituted in the source terms by the corresponding value ρk/ω. This
decouples the ω equation from the k equation, and the set of coupled partial differential
equations (PDE) can be treated as a sequence of ordinary differential equations (ODE). The
non-dimensionalized k −ω equations reads:

∂Wt

∂t
+ ∂(Ft ,c −Ft ,d )

∂x
+ ∂(Gt ,c −Gt ,d )

∂y
+ ∂(Ht ,c −Ht ,d )

∂z
= P −D (2.12)

where subscript c and d refer to convective and diffusive parts. The source term at the
right hand side consists of production and destruction terms. In the above equation, the
turbulent state vector Wt is:

Wt =
[
ρk
ρω

]
(2.13)

and the convective and diffusive fluxes are:

Ft ,c =
[
ρuk
ρuω

]
Gt ,c =

[
ρvk
ρvω

]
Ht ,c =

[
ρwk
ρwω

]
(2.14)

Ft ,d =
(

µ
Rer e f

+σ∗µt

)
∂k
∂x(

µ
Rer e f

+σµt

)
∂ω
∂x


Gt ,d =

(
µ

Rer e f
+σ∗µt

)
∂k
∂y(

µ
Rer e f

+σµt

)
∂ω
∂y

 (2.15)

Ht ,d =
(

µ
Rer e f

+σ∗µt

)
∂k
∂z(

µ
Rer e f

+σµt

)
∂ω
∂z


The standard production terms defined by Wilcox [162] might give excessive results near
stagnation points. Launder and Kato [78] proposed a delimited production term taking a
vorticity parameter ω into account.

P =
[
µt SΩ
αSΩ

]
D =

[
β∗ρωk
β∗ρω2

]
(2.16)

where the definition of S andΩ are:

Ω2 = 1

2

[(
∂u

∂y
− ∂v

∂x

)2

+
(
∂u

∂z
− ∂w

∂x

)2

+
(
∂v

∂z
− ∂w

∂y

)2]
(2.17)

S2 = 1

2

[(
∂u

∂y
+ ∂v

∂x

)2

+
(
∂u

∂z
+ ∂w

∂x

)2

+
(
∂v

∂z
+ ∂w

∂y

)2]
(2.18)
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α, β, β∗, σ, σ∗ are the standard coefficients of Wilcox’s turbulence model. These constants
according to Wilcox are:

α= 5

9
β= 3

40
β∗ = 9

100
σ= 0.5 σ∗ = 0.5 (2.19)

and µt is calculated using Eq. 2.20.

µt = ρ k

ω
(2.20)
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3
Numerical Method

The numerical method used for the discretisation of the governing equations is presented
in this chapter. The numerical model is implemented into LEC’s in-house solver called
MULTI3. The solver was originally developed based on Ni’s Lax-Wendroff [110] method and
applied by Saxer in a 3D turbomachinery Euler flow [125], who used non-reflecting bound-
ary conditions and relative systems for rotating blade rows. Burdet extended the solver to
the Reynolds Averaged Navier-Stokes equations [24] and added the turbulence models of
Baldwin and Lomax and Spalart and Allmaras. Later Basol [15] extended the solver to in-
clude the turbulence model of Wilcox [162]. In this work, a multistage time integration
scheme has been added to the solver. Both numerical schemes employ the finite volume
method. After implementation and validation, the code has been used for the simulations
of atmospheric flow over hilly terrain and the development of the immersed wind turbine
model presented in the next chapters.
In this chapter, first the time and space discretisation of the governing equations are dis-
cussed. Next, the artificial smoothing and the stability of the method is analyzed and at the
end the various boundary conditions imposed at domain boundaries are described.

3.1 Time and Space Discretisation

3.1.1 Central Space Discretisation

The space discretisation of the Navier Stokes equations with emphasis on convective terms
are discussed here. The computational mesh is assumed to contain only hexahedral cells
with the flow vector stored in the cell vertices. The viscous fluxes are calculated based on a
purely central discretisation. The derivatives contained in the first order viscous fluxes Fv ,
Gv and Hv are calculated at the cell center using Gauss’s theorem. The second order viscous
fluxes are neglected since it has been shown that these terms have negligible effect on the
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accuracy of the whole computation, in particular in the range of high Reynolds number
flows [62]. The inviscid fluxes through a cell-face surface

−→
S are split into a central part and

a dissipation part. If the cell index is I , J , K , the numerical flux of cell-face I + 1
2 , J , K is given

by: (−→
Fc∆S

)
I+ 1

2 ,J ,K
= 1

2

[−→
Fc

(
WI ,J ,K

)+−→
Fc

(
WI+1,,J ,K

)]
∆S I+ 1

2 ,J ,K −Di+ 1
2 ,J ,K (3.1)

The first term on the right hand side of the equation corresponds to the central evaluation
of the inviscid fluxes. The cell-face value of the fluxes is here obtained by averaging the
fluxes at the face center using the values computed at the neighboring nodes. The second
term of the right hand side is called the numerical dissipation term. It corresponds to the
dissipation terms for an upwind scheme and the artificial dissipation for a central scheme.
The numerical dissipation term D I+ 1

2 ,J ,K depends on the type of the discretisation method
and is presented in detail in the next section.
After all the flux contributions from different cell faces are calculated, an intermediate invis-
cid residual RcI ,J ,K from all grid cells is obtained. In order to relate the cell-base to node-base
residual, a distribution formula is used. Several approaches of distributing the residuals are
suggested in literature. In the current implementation, a non-weighted sum due to Hall
[57] is used which is proved to be the most robust. Using this approach, the residual at each
node RcI ,J ,K is calculated using the sum of the residuals calculated at neighboring cells. (Eq.
3.2 )

−→
R i , j ,k = 1

8

(−→
R I ,J ,K +−→

R I−1,J ,K +−→
R I−1,J−1,K +−→

R I ,J−1,K+
−→
R I ,J ,K−1 +−→

R I−1,J ,K−1 +−→
R I ,J−1,K−1

)
(3.2)

In fact, many other node-base variables which are computed at cell center such as the time
step and volume are calculated using a similar approach (Eq. 3.3)

∆Vi , j ,k = 1

8

(
∆VI ,J ,K +∆VI−1,J ,K +∆VI−1,J−1,K +∆VI ,J−1,K+
∆VI ,J ,K−1 +∆VI−1,J ,K−1 +∆VI−1,J−1,K

)
(3.3)

Adding up all the residuals including the inviscid, viscous parts and the part related to arti-
ficial dissipation, the overall residual at cell vertices are known:

−→
R i , j ,k =−→

R ci , j ,k +−→
R vvi , j ,k +

−→
R dci , j ,k (3.4)

dropping the arrow bar, using the above definition, the time stepping scheme can be writ-
ten as:

dWi , j ,k

d t
=− 1

∆V
Ri , j ,k (3.5)

for each conservative flow variable. This is a system of ordinary differential equations which
has to be solved at every grid point.
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3.1.2 Artificial Dissipation

As described in the previous section, in order to achieve a stable scheme, artificial dissipa-
tion terms need to be added to the right hand side of Eq. 3.1 in the central discretisation.
It is well-known that central discretisation without artificial smoothing is unstable due to
the odd-even decoupling that occurs in neighboring nodes [19]. In addition to odd-even
decoupling, the central scheme suffers from non-physical oscillations near large discon-
tinuities such as shocks. These oscillations also contaminate the results and need to be
prevented using a second order smoothing term.
In this study, since an all purpose code was developed, the detailed implementation and
modification of both second-order and forth-order smoothing are described. However, in
the application of the preconditioned code for atmospheric and wind flow the second order
terms used in compressible flow to avoid oscillations near shocks are not used.
The dissipation terms are computed using two different approaches which differ in terms
of accuracy and computational cost. In next sections both methods are described in detail.

3.1.2.1 Isentropic Smoothing

The artificial smoothing added to the RANS equations to be solved is a combination of sec-
ond and fourth order smoothing formulated as:

D = ν(2)
[
∂2W

∂2x
+ ∂2W

∂2 y
+ ∂2W

∂2z

]
+ν(4)

[
∂4W

∂4x
+ ∂4W

∂4 y
+ ∂4W

∂4z

]
(3.6)

where the coefficients ν(2) and ν(4) are used to scale the second and fourth order terms re-
spectively. In the current cell-vertex implementation, unlike inviscid and viscous fluxes
which are calculated at cell center and then distributed to nodes, the artificial viscosity
terms are computed directly at cell vertices. The second order terms or ∇2W at node i is
approximated as:

∇2Wi =
ni∑

j=1
ω j

(
W j −Wi

)
(3.7)

where ni is the number of the nodes surrounding node i . This number is always 8 for the
internal nodes in a hexahedral mesh. Theω j represents a weight applied to the Laplacian in
order to keep the second order accuracy, even in irregular meshes. For fairly smooth mesh,
the weights for the stencil is close to 1.
The fourth order dissipation terms are calculated using ∆2W :

D (Wi ) =
n∑

j=1
ν(4) (∇2W j −∇2Wi

)
(3.8)
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where ν(4) is the multiplication of ε(4), a global constant that controls the amount of dissipa-
tion and a scale factor related to the spectral radius of the Jacobin matrix. In the isentropic
formulation of the artificial dissipation, this scale factor is taken proportional to the node-
base value for time step [92]. Therefore ν(4) becomes:

ν(4) ≈ ε(4)

∆t
(3.9)

The formulation of artificial dissipation described above is computationally cheap and easy
to implement. However, there are two main deficiencies of current approach that needs to
be addressed. The first problem is related to excessive artificial dissipation in the boundary
layer where the physical viscous fluxes are rather large compared to convective forces. In
the low Mach number region, either in wake flow or inside boundary layer, the numerical
smoothing may slightly alter the physical viscosity level which may result in inaccuracies in
modeling the near wall or wake diffusion. For Navier-Stokes equations, a possible strategy
is to reduce the level of artificial dissipation in the boundary layer by scaling ε(2) and ε(4)

based on local Mach number (Eq. 3.10). This method is implemented in MULTI3.

ε(2) = mi n

[
1,

(
M

M∞

)2]
ε(2)

ε(4) = mi n

[
1,

(
M

M∞

)2]
ε(4) (3.10)

The second deficiency of the method rises due to the fact that neither the calcualtion of
Laplacian nor the scaling of the terms is directional. This might be acceptable for Euler
equations where the aspect ratio of the computational cell is close to unity in the entire
computational domain. However the method may result in inaccurate results when ap-
plied to Navier-Stokes equations where highly stretched meshes are typically employed.
Using the current formulation, an excessive dissipation, proportional to cell aspect ratio
will be added in some directions. The problem can be eliminated by defining directional
derivatives and edge-based scaling of a smoothing term based on directional spectral ra-
dius instead of a cell-base time step.

3.1.2.2 Non-Isentropic Smoothing (JST scheme)

The formulation of the well-known non-linear artificial dissipation scheme of Jameson,
Schmidt and Turkel (JST) [72] is presented here. In order to develop a dissipation term
which is non-isentropic some modification to the previous scheme are required. Using the
JST formulation, the overall node-base dissipation term is written as:
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Di , j ,k (W ) = ν(2,x)
i+ 1

2 , j ,k

(
Wi+1, j ,k −Wi , j ,k

)+ν(2,y)

i , j+ 1
2 ,k

(
Wi , j+1,k −Wi , j ,k

)
+ν(2,z)

i , j ,k+ 1
2

(
Wi , j ,k+1 −Wi , j ,k

)−ν(4,x)
i+ 1

2 , j ,k

(∇2Wi+1, j ,k −∇2Wi , j ,k
)

(3.11)

−ν(4,y)

i , j+ 1
2 ,k

(∇2Wi , j+1,k −∇2Wi , j ,k
)−ν(4,z)

i , j ,k+ 1
2

(∇2Wi , j ,k+1 −∇2Wi , j ,k
)

where the edge-based scaling is given by:

ν2,x
i+ 1

2 , j ,k
= ε(2)∂ltλi+ 1

2 , j ,kΦ
x
i+ 1

2 , j ,k
(3.12)

∂lt andΦx
i+ 1

2 , j ,k
are:

∂lt =
∑nc

s=1∆Vs

nc | xi+1, j ,k −xi , j ,k |
Φx

i+ 1
2 , j ,k

= max
[
κi−1, j ,k ,κi , j ,k ,κi+1, j 1k

]
(3.13)

where nc is the total number of cells around the edge that connects the node number i and
i +1. The κ is defined in Eq. 3.14.

κi , j ,k =| pi+1, j ,k −2pi , j ,k +pi−1, j ,k

pi+1, j ,k +2pi , j ,k +pi−1, j ,k
| (3.14)

Here λi , j ,k is the absolute value of the largest eigenvalue of the Jacobian matrix and is used
to scale the soothing term in each direction, replacing the ∆t used in the previous formula-
tion. λ is calculated in each direction using Eq. 3.15

λi+ 1
2 , j ,k =

(
| uSx + vS y +wSz | +c

√
(Sx)2 + (S y )2 + (Sz)2

)
i+ 1

2 , j ,k
(3.15)

For the fourth order smoothing coefficients we set:

τ(4)
i+ 1

2 , j ,k
= ∂ltλi+ 1

2 , j ,k max

[
0,ε(4) −βΦx

i+ 1
2 , j ,k

]
(3.16)

where β is a user defined constant with typical value of 1. This dissipation model will be
called the non-isentropic scalar model.
Both artificial schemes described above are used for the simulations of this thesis and the
preconditioning approach is implemented and presented in connection with both schemes.
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3.1.3 Multistage Scheme

The explicit Runge-Kutta time stepping procedure is used to advance the solution to the
steady state. Runge-Kutta schemes also called multistage schemes advance the solution in
multiple series of updates or stages. The number of stages and coefficients can be tuned in
order to maximize the stability domain and the efficiency of the scheme depending on the
space discretisation used. The Runge-Kutta scheme with m number of stages is expressed
as:

−→
W (0) =−→

W (n)

−→
W (1) =−→

W (0) −α1
∆t

∆V

−→
R (0)

−→
W (2) =−→

W (0) −α2
∆t

∆V

−→
R (1) (3.17)

.

.

.

−→
W (n+1) =−→

W (m) =−→
W (0) −αm

∆t

∆V

−→
R (m−1)

where αk is the coefficient of k th stage and R(k) is the overall residual calculated using the
flow vector

−→
W (k).

3.1.3.1 Hybrid Runge-Kutta

The computational cost of a classical Runge-Kutta scheme could be substantially reduced
if diffusive fluxes, both numerical and artificial, are not calculated at every stage. Martinelli
[100] and Mavriplis [104] proposed an approach today known as hybrid Runge-Kutta in
which a blend of diffusive fluxes is used in the formulation for each stage. This effective
multistage scheme can be obtained if the convective part of the overall residual and the
diffusive part are stored separately (Eq. 3.18). The convective part includes the central dis-
cretisation of the convective terms described in the previous section and a diffusive part
that includes both the physical and artificial dissipation terms. The evaluation of the diffu-
sive fluxes is only performed at odd stages.

−→
R =−→

Rc −−→
Rd (3.18)

In the hybrid Runge- Kutta method, the stage coefficients are carefully optimized to reach
the same robustness of a classical Runge-Kutta scheme with higher allowable CFL number.
Overall, two Runge-Kutta methods are found particularly effective. The classical 4-stage
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Runge-Kutta scheme [72]:

−→
W (0) =−→

W (n)

−→
W (1) =−→

W (0) −α1
∆t

∆V

−→
R (0)

−→
W (2) =−→

W (0) −α2
∆t

∆V

−→
R (1) (3.19)

−→
W (3) =−→

W (0) −α3
∆t

∆V

−→
R (2)

−→
W (4) =−→

W (0) −α4
∆t

∆V

(−→
R (0) +2

−→
R (1) +2

−→
R (2) +−→

R (3)
)

−→
W (n+1) =−→

W (4)

with coefficients:

α1 = 0.5000, α2 = 0.5000, α3 = 1.0000, α4 = 0.1667 (3.20)

and 5-stage hybrid Runge-Kutta scheme:

−→
W (0) =−→

W (n)

−→
W (1) =−→

W (0) −α1
∆t

∆V

[−→
R (0)

c −−→
R (0)

d

]
−→
W (2) =−→

W (0) −α2
∆t

∆V

[−→
R (1)

c −−→
R (1)

d

]
(3.21)

−→
W (3) =−→

W (0) −α3
∆t

∆V

[−→
R (2)

c −−→
R (2)

d

]
−→
W (4) =−→

W (0) −α4
∆t

∆V

[−→
R (3)

c −−→
R (3)

d

]
−→
W (n+1) =−→

W (0) −α5
∆t

∆V

[−→
R (4)

c −−→
R (4)

d

]
α1 = 0.2500, α2 = 0.1667, α3 = 0.3750, α4 = 0.5000, α5 = 1.0000 (3.22)

β1 = 1.00, β2 = 0.00, β3 = 0.56, β4 = 0.00, β5 = 0.44 (3.23)

α and β are stage coefficients, Rc is the convective flux and and Rd is the summation of the
physical and artificial viscous fluxes. The stage coefficients αk and βk are given in Eq. 3.22
and Eq. 3.23 and Rd and Rc at even stages are calculated as:

−→
R (2,0)

d =β3
−→
R (2)

d + (
1−β3

)−→
R (0)

d−→
R (4,2)

d =β3
−→
R (4)

d + (
1−β3

)−→
R (2,0)

d (3.24)

The stability region along the real axis is almost doubled when using the 5-stage hybrid
Runge-Kutta instead of 4-stage Runge-Kutta. The overall computational cost per iteration
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is slightly lower since the viscous and diffusive fluxes are only calculated in 3 stages out of
5. Both formulations are implemented in the in-house code MULTI3. Overall using the 4-
stage scheme, the solver was slightly more robust. However, due to the fact that the hybrid
formulations showed more desirable convergence behavior, most of the results presented
in next chapters are obtained using the hybrid approach.

3.1.3.2 Time Step

For every explicit time-stepping scheme, there is a distinct criteria that defines the stability
of the scheme. A scheme is stable if the domain of dependence of the numerical method
includes the domain of dependence of the partial differential equation [62]. This means
that the time step or a distance by which the information travels within the computational
domain must be bounded. This is called the Courant-Friedrchs-Lewy of CFL condition.
The 1-D condition for the time step will read:

∆t =σ∆x

λc
(3.25)

where λc represents the maximum eigenvalue of the Jacobian matrix. In the physical terms
λc is the speed by which the information propagates in the domain. σ is the so-called CFL
number used to scale the time step to fulfill the stability condition. The maximum time step
for a simplified and linearized set of equations can be calculated using the von-Neumann
analysis. Since the governing equations of the fluid flow are highly non-linear, the applica-
tion of the von-Neumann method for Runge-Kutta scheme in connection with RANS equa-
tions can not be carried out. However, in order to obtain an approximate relation, The
von-Neumann analysis is applied to linearized form of Euler equation. The result of this
analysis on the Cartesian grid, gives the inviscid stability criteria as:

∆t =σ ∆V

max
(
λc

x ,λc
y ,λc

z
) (3.26)

whereσ is the CFL number and λc
x , λc

y and λc
z are the spectral radius of convective Jacobian

flux in i , j and k directions (Eq. 3.27).

λc
x = (| u | +c)∆Sx

λc
y = (| v | +c)∆Sy

λc
z = (| w | +c)∆Sz (3.27)

where the areas are calculated by averaging values on two opposite side for each direction.
Instead of Eq. 3.26, the mostly common used relation for inviscid time step is [19]

∆t =σ ∆V

λc
x +λc

y +λc
z

(3.28)
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For the Navier Stokes equations, similar to Euler equations, the relation for time step can
be proposed as:

∆t =σ ∆V(
λc

x +λc
y +λc

z
)+C

(
λv

x +λv
y +λv

z
) (3.29)

where C is a constant multiplied by the viscous spectral radius. Assuming the eddy viscosity
model the viscous spectral radius is written as:

λx
v = max

(
4

3ρ
,
γ

ρ

)(
µl

Prl
+ µt

Prt

)
∆(Sx)2

∆V
(3.30)

λ
y
v = max

(
4

3ρ
,
γ

ρ

)(
µl

Prl
+ µt

Prt

)
∆(Sy )2

∆V
(3.31)

λz
v = max

(
4

3ρ
,
γ

ρ

)(
µl

Prl
+ µt

Prt

)
∆(Sz)2

∆V
(3.32)

The maximum allowable CFL numbers for 4-stage and 5-stage hybrid Runge-Kutta are 2.0
and 3.6 respectively.
For steady-state computations, to accelerate the convergence rate, the time step computed
in each cell is locally used. This method, used to improve the convergence is called local
time stepping. On the contrary, in unsteady computations, the minimum time step calcu-
lated in computational domain is used to advance the solution in time. This is called global
time stepping.

3.2 Boundary Conditions

The accurate prescription of boundary conditions is very important in numerical simula-
tion of external flows. The difficulty comes from the nature of the problem to be solved. In
external atmospheric flow simulations, the artificial numerical boundaries must be placed
such that on one hand the far field flow field is correctly replicated and on the other hand by
limiting the domain extent the computational cost of the simulation is reduced. At differ-
ent boundaries of the computational domain, the information that is carried out by waves
must be reflected or passed on depending on the nature of the boundary. Mathematically
the governing time dependent Navier-Stokes equations (Eq. 2.1) are a hyperbolic propa-
gation dominated system of equations. This character is mainly attained by the inviscid
part of the equation. Therefore in this region, where the wave propagation is dominant,
the Navier-Stokes equations can be reduced to Euler equations. Therefore the boundary
conditions of a wide range of internal and external external flows are treated as inviscid.
To model the boundaries on which the shear stress or heat conduction is dominated, along
with the inviscid wave propagation boundary conditions, extra boundary conditions on ve-
locity and temperature gradient should also be specified. But this requirement makes the
boundary conditions at inlet and outlet very complex and precautions should be taken to
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avoid non-physical solutions in cases when viscous effects vanish in the limit. Therefore,
the system of equations for inlet and exit boundaries are based on Euler equations.
The additional required boundary conditions for the simulation of external or atmospheric
flow depends on the selected domain type. Specifically, there are two types of domains
which are used for atmospheric and microscale wind simulations. The first less known type
of domain is circular domain where one half on the domain is prescribed as inlet and sec-
ond half used as outlet. In this type of the domain, the inlet and outlet planes could be ad-
justed such that different wind directions are simulated using the same grid. This method
only requires renumbering of the computational cells at the boundary. Even though this
is very helpful in terms of wind simulations and micrositing, when simulations of various
wind directions are required, the use of one circular computational domains amplifies the
uncertainties in the definition of inflow boundary conditions. Additionally, the grid gener-
ation task over circular domains becomes more complicated since multiblock or unstruc-
tured grids are required to efficiently cover the domain. Instead, what is mostly used in
wind flow simulations is a rectangular domain which is aligned with wind directions. In
this type of domain the inlet and outlet boundary conditions could be imposed normal to
the surface and side boundaries which are ideally located far from the region of interest are
treated as periodic or symmetric.
In the following section, the boundary conditions that are implemented in this thesis are
described. The inlet and outlet boundary conditions are modeled as locally one-dimensional
and normal to the boundary and they are non-reflective in terms of mathematical defini-
tion. Next, the periodic and no-slip wall boundary conditions are described which could be
used for both internal and external flows.

3.2.1 Inlet Boundary Condition

The characteristic equations can be derived from the Euler equations. For subsonic flows
which will be dealt in this thesis, four characteristics enter and one leaves the physical do-
main, Therefore, four characteristic variables are prescribed based on freestream values
and one characteristic is extrapolated from the interior of the physical domain. Therefore
the number of boundary conditions to be specified at the inflow is four. As a result:[

ρ− p

c2

]
b
=

[
ρ− p

c2

]
i nlet

(3.33)

[us]b = [us]i nlet (3.34)

[ut ]b = [ut ]i nlet (3.35)[
un + p

ρc

]
b
=

[
un + p

ρc

]
i nlet

(3.36)[
−un + p

ρc

]
b
=

[
−un + p

ρc

]
RK

(3.37)

The subscript denoting i nlet corresponds to the physical boundary conditions to be spec-
ified. b corresponds to the variables to be corrected at the inlet node according to wave
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propagation and RK corresponds to variables that were already calculated from the inter-
nal domain solved by Runge Kutta scheme. un , us and ut are the velocity normal and tan-
gential to the boundary. c is the speed of sound and c and ρ represent a reference state
which is set equal to the values calculated at the boundary node by the scheme in the cur-
rent implementation.
If the total pressure, temperature and flow angles at inlet are specified the required bound-
ary conditions are complete. First the static pressure is calculated using the equation which
is obtained by combining the isentropic relation and the fifth characteristic relation (Eq.
3.37). This equation is solved iteratively using a Newton-Raphson method. Once pb is
found, the freestream static pressure pi nlet is calculated using both Eq. 3.36 and Eq. 3.37.
Using the pi nlet and pt i nlet the absolute velocity and static temperature are known. The
velocity components at boundary are obtained using the given flow angles and two other
characteristic equations 3.34 and 3.35. Finally the five primitive variables at inlet are speci-
fied as:

pb = 1

2

(
pi nlet +pRK +ρc

(
un i nlet −un RK

))
(3.38)

ρb = ρi nlet +
pb −pi nlet

c2 (3.39)

un b = un i nlet +
pi nlet −pb

ρc
(3.40)

us b = us i nlet (3.41)

ut b = ut i nlet (3.42)

3.2.2 Outlet Boundary Condition

For the outflow boundary condition, one eigenvalue becomes positive. Therefore, the num-
ber of boundary conditions to be specified at the outflow is one which corresponds to pres-
sure. The resultant eigenvalue equations become:[

ρ− p

c2

]
b
=

[
ρ− p

c2

]
RK

(3.43)

[us]b = [us]RK (3.44)

[ut ]b = [ut ]RK (3.45)[
un + p

ρc

]
b
=

[
un + p

ρc

]
outlet

(3.46)[
−un + p

ρc

]
b
=

[
−un + p

ρc

]
RK

(3.47)

where the subscript outlet corresponds to physical boundary condition to be specified. In
case of atmospheric flow simulations, the static pressure is a good choice since the outlet
must be placed close to region where terrain and therefore flow gradients are zero and uni-
form distribution of pressure at outlet is expected. Once the static pressure is known, the
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rest of the variables are calculated as:

pb = poutlet

ρb = ρRK + poutlet −pRK

c2

un b = un RK + pout −pRK

ρc
(3.48)

us b = us RK

ut b = ut RK

3.2.3 Wall Boundary Condition

The relative velocity between the air flow and the terrain surface is zero. This condition
which is called the no-slip condition is expressed for a stationary wall as:

−→
V = 0 (3.49)

The temperature at the terrain surface or the heat flux in case of non-neutral atmosphere is
specified using:

T = Tw all (3.50)

or

−k
∂T

∂n
= qw all (3.51)

where n denotes the direction normal to the terrain surface and qw all is the heat flux at the
ground.
In this thesis, atmospheric stability is not considered and therefore the terrain is modeled
as adiabatic. The heat transfer at the wall is assumed to be zero and therefore:

∂T

∂n
= 0 (3.52)

At a solid boundary with no-slip condition, the momentum equation reduces to a form that
the normal pressure gradient becomes zero.

∂p

∂n
= 0 (3.53)

Pressure and temperature at the wall surface are calculated using Eq. 3.52 and 3.53.

3.2.4 Periodic Boundary Condition

As mentioned before, using a rectangular domain for atmospheric flow simulations re-
quires a proper definition of the side boundary conditions, which are located far from the
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region of interest to reduce the effect of the artificial boundary and retain accuracy.
In a cell vertex scheme, the periodic nodes depicted in Figure 3.1 are treated as internal
nodes during the computations (Eq. 3.54) and at the end the contribution of the other side
of the boundary is added (Eq. 3.55). The partial volume of both sides also needs to be added
up. Ideally, since the rectangular domain is aligned with the wind direction, there should
be no inflow/outflow across the periodic boundaries.

W1́ =W1 W2́ =W2 (3.54)

R1,tot = R1 +R2́ R2,tot = R2 +R1́ (3.55)

1’ 

3’ 

2 

4 

1 

2’ 

4’ 

3 

Figure 3.1: Periodic boundary condition for a cell vertex scheme in a hexahedral domain. The dummy
parts are denoted as primed.

3.3 Wall Function

For simulation of atmospheric flow and microscale wind similar to many other high Reynolds
number engineering problems, wall functions must be employed in order to accurately
represent the flow and turbulent field close to the no-slip ground. Wall functions or high
Reynolds number turbulent boundary conditions are typically used in engineering appli-
cations in order to reduce the stringent grid requirements close to the ground. In such
cases, the standard treatment of the low Reynolds number turbulence models referred to as
integration method are replaced by generic formulations of turbulent boundary layer pro-
file close to the ground.
The low Reynolds turbulence models require the first node above the wall to be located in

29



Numerical Method

viscous sub-layer (y+ < 1) whereas using the generic wall function formulation, the accu-
racy is maintained with first node located in the buffer or logarithmic layer. This reduces
the number of the required grid points in the boundary layer and overall mesh size as well
as the cell aspect ratio near the wall. The latter greatly improves the robustness of the solver
by reducing the numerical stiffness.
In wind flow simulations, in addition to very high Reynolds number of the flow (107 −1010)
which makes the use of low Reynolds number turbulence models practically impossible,
the use of wall function allows one to efficiently account for surface roughness which is
known to have great impact on microscale wind variations.

3.3.1 Generic Wall Function Formulation

The wall function approach relies on the characteristics of turbulent boundary layers. It has
been shown that under viscous flow condition, Turbulent boundary layer profiles remain
the same if expressed in suitable non-dimensionalized form. This empirical formulation
is called law of the wall. In turbulent flow, three regions with different velocity profiles are
distinguished. the laminar sub-layer, buffer layer and logarithmic layer. The edge of log-
arithmic layer depends on Reynolds number and its extent grows as Reynolds number in-
creases. For the case of atmospheric flow, the edge of boundary layer within which the law
of the wall holds is up to 300 (m). The universal laws of the viscous and logarithmic layers
are derived using friction velocity uτ and laminar viscosity µl for non-dimensionalization.
The velocity, viscosity and turbulent variables in plus units are:

u+ = u

uτ
y+ = yuτ

ν
µ+ = µt

µ
k+ = k

uτ2
ω+ = νω

uτ2
(3.56)

The equations of law of the wall are derived using the incompressible RANS equations and
simplifying assumptions of flow over flat plate with zero pressure gradient [163]. The law of
the wall for velocity, k and ω for viscous and logarithmic layers are expressed as:

u+ = y+ k+ = K y+3.23
ω+ = 7.2

β∗y+2 (3.57)

u+ = 1

κ
l n

(
y+)+B k+ = 1√

β∗ ω+ =
p

k+

β∗ 1
4κy+

(3.58)

where K = 0.0022, B = 5.1 and κ= 0.41−0.43.
In order to obtain a generalized wall function formulation, the constrain of the first node
being located in viscous or logarithmic layer must be removed. Unfortunately, unlike vis-
cous and logarithmic layer there is no analytical formulation available for buffer layer. A
simple yet effective solution is presented by Kalitzin et al. [75] where the non-dimensionalized
values of u, k and ω in buffer layer are obtained using a look-up table built based on a so-
lution of fully resolved boundary layer obtained using the developed solver MULTI3. The
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formulation obtained by a functional fit to profiles of u+, k+ and ω+ must give consistent
values with Eq. 3.57 and Eq. 3.58 at the edge of viscous (y+ = 5) and logarithmic (y+ = 30)
layers respectively. The detailed deviation and formulation of u+, k+ and u+ functions in
buffer layer can be found in [109].

3.3.1.1 Treatment of Surface Roughness

For many applications in engineering including atmospheric flow simulations, the assump-
tion of a fully smooth wall in description of turbulent boundary layer is quite unrealistic.
Surface roughness increases the shear stress and breaks up the viscous sub-layer struc-
ture and hence alters the flow field within the boundary layer. In order to formulate the
effect of surface roughness, the aerodynamic roughness height ks is defined. The non-
dimensionalized ks

+ is called the roughness Reynolds number and indicates different regimes
under which roughness affects the turbulent boundary layer profile in different mecha-
nism. The flow is considered fully rough if ks

+ > 55−90 which is always valid for microscale
wind simulations over terrain.
In atmospheric flow the effective roughness height z0 of a specific land cover is determined
by measuring average wind speed u with height z in neutral atmospheric conditions well
above the roughness elements. The surface roughness practically alters the shear at the wall
and shifts the velocity profile. The logarithmic law of the wall holds on a rough surface with
appropriate shift [163]:

u+ = 1

κ
l n(z+)+B − ∆U

uτ
(3.59)

∆U

uτ
= B −C + 1

κ
ln(ks

+) (3.60)

with C = 8.5 for a fully rough surface. Using the roughness height definition of z0 as:

z0 = kse(−8.0κ) (3.61)

we obtain the logarithmic profile of velocity over rough terrain as:

u

uτ
= 1

κ
ln

(
z

z0

)
(3.62)

The equivalent roughness height z0 for different terrain type is given in [161]. The surface
roughness can vary significantly over land and a transition from smooth to very rough sur-
face may occur. This transition can significantly affect the flow field. High local pressure
and velocity fluctuations can be observed in the vicinity of an abrupt roughness change. In
this scenario, the assumption behind the derivation of wall function formulation and equiv-
alent sand grain roughness definition break down and therefore larger errors in model pre-
diction are expected. Additionally the model accuracy deteriorates as the dimensions and
complexity of roughness elements increase. More advanced methodologies are presented
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in literature to attempt to represent the complex flow structure and turbulence behind large
canopies and forest edge accurately [133] and [164]. However, roughness modeling using
equivalent roughness height remains to be the most robust and effective approach in mi-
croscale wind simulations and wind farm modeling.

3.3.2 Implementation of Wall Function

There are many ways to implement wall-functions into a Navier Stokes code with classi-
cal approach but usually the main steps are as follows [75] (i) The u-velocity component
requires a condition that ensures the correct shear at the wall. This can be done either by
adding a source term to the momentum equation or prescribing an artificial viscosity at the
wall. (ii) The turbulent kinetic energy needs to be set at the first node and (iii) ω (or ε) also
needs to be corrected based on k (Eq. 3.58).
In the current work, the shear is corrected at the wall adjacent cell by defining an artificial
viscosity at the wall. The correct value of the shear is obtained by solving Eq. 3.57 or Eq. 3.58
on smooth wall depending on the y+ value or Eq. 3.62 for the rough terrain iteratively using
a Newton-Raphson method. In the case of variable roughness, the corresponding rough-
ness height z0 in Eq. 3.62 is used for each node on the terrain. Then an effective viscosity is
prescribed at the wall node as:

µe f f = τw
zp

up
(3.63)

where subscript p denotes the wall adjacent node. Since the viscous fluxes are calculated
at cell center in our cell vertex scheme, the laminar viscosity at wall nodes are altered such
that the average laminar viscosity at wall adjacent cells satisfies the condition given in Eq.
3.63. The correct friction velocity then is used to compute the correct k and ω at the node
above the wall.
Since the viscous time step is affected by the laminar viscosity (Eq. 3.30 ), in order to insure
the stability of the scheme, the new time step needs to be calculated at the wall using mod-
ified value of viscosity at the wall adjacent cell. This greatly improves the robustness of the
scheme especially when used in connection with variable roughness maps.

3.3.2.1 Validation

The implementation of wall function formulation is validated for flow over smooth and
rough flat plates. In order to separate the effect of numerical error in validation of wall
function with errors due to wall modeling δ−grids are used (Fig. 3.2).

Figure 3.3 and 3.4 show the profiles of u+,µ+,k+ and ω+ for different y+ values using a gen-
eralized wall function. It is observed that the values of all flow quantities agree well with the
fully resolved profile and the empirical relations.
Next, the prediction of flow over fully rough flat plate is evaluated. The case of fully rough
flat plate presented here is one of the cases experimentally studied by Ligrani and Moffat
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δ 

Figure 3.2: Schematic plot of fine and δ grid used for validation of wall function formulation.
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Figure 3.3: Predicted profiles of velocity and eddy viscosity obtained using wall function with different
y+ values. The results are compared with fully resolved profile and the available empirical formula-
tions.

[86]. In the measurement set-up, the ground is covered uniformly distributed elements
with equivalent aerodynamic roughness height of ks = 0.79mm (z0 = 2.97x10−2mm). The
roughness Reynolds number is Rek = 61.4 which indicates a fully rough boundary layer.
The free stream wind speed in the simulation 26.8 m/s, is the same as in the measurements.
The extent of the computational domain is 5×1m in the x and y directions. There are 200
grid points in the flow direction with local clustering at the leading edge of the plate and 56
grid points along y−axis. In order to separate the numerical error due to the grid resolution
from the modeling errors arising from use of wall functions, a δ-grid is used [75]. The grid
is generated such that the first node is located in logarithmic layer with y+ = 100. The free
stream Mach number in the simulation is 0.08 and the Reynolds number is roughly 107.
The simulations are performed with C F L = 3.5 and a fourth order smoothing coefficient of

33



Numerical Method

y+

k+

!
+

10-1 100 101 102 103 104 1050

3

6

9

12

15

10-5

10-4

10-3

10-2

10-1

100

101

102

y+ =1
y+ = 3
y+ = 15
y+ = 50
y+ = 200
wall law

Figure 3.4: Predicted profiles of k and ω using wall function with different y+ values.
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Figure 3.5: Velocity and turbulent kinetic energy profile in fully rough boundary layer.

The comparison of velocity profiles with measurements is also shown in Figure 3.5. The
agreement with measurements is quite satisfactory except for the region close to the edge
of the boundary layer. The predictions of skin friction are also compared with empirical
relations given by Schlichting [127] and Mills [108] (Figure 3.6).
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Figure 3.6: Predictions of skin friction coefficient over rough flat plate compared to empirical formu-
las.

More detailed validations of the wall function implemented in MULTI3 for three dimen-
sional flows can be found in [109].
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4
Multigrid Method

In the numerical simulation of all fluid flows, reducing the computational time is of pri-
mary importance. In addition to parallelization of the solver using OpenMP, numerical al-
gorithms are implemented into the solver to accelerate the convergence to steady state.
The multigrid method is known to be one of the most effective strategies to dramatically
reduce the solution time for range of fluid flow and solvers. In this chapter, the algorithm
and implementation of the multigrid method into our in-house RANS solver MULTI3 is dis-
cussed. This is accomplished within the scope of this thesis. An optimization of the solver
and multigrid solver is carried out and the best type of cycle and details of restriction and
prolongation method are presented and discussed. All the test cases in this thesis are sim-
ulated using multigrid, demonstrating the effectiveness and robustness of the method. On
average, compared to a single-grid solver, a multigrid solver converges to steady-state in
half to one-sixth the time.
The multigrid is used to accelerate the convergence of partial differential equations. The
theory was originally developed for linear set of equations and first was applied to ellip-
tic differential equations. Since then it has been used in connection with variety of equa-
tions and schemes. Considering the compressible Navier-Stokes equations, explicit meth-
ods typically apply a kind of update to the spatially discretised equations and this step is
repeated until the final solution is reached. At each time step and update cycle, the solver
decreases/smooths the error of the solution but in fact the damping characteristic of the
solver is different for different error frequencies. Most explicit solvers damp the high fre-
quency errors of the solution much more rapidly and efficiently while low frequency errors
seem to persist longer in the solution and delay the convergence to steady-state. Consid-
ering an error in a one-dimensional grid, the frequency of the error wave will double by
omitting the every other node in the grid (Figure 4.1 ). In other words, a low frequency error
on the fine grid appears as high frequency error on the coarse grid. Therefore, coarser grids
could be used in order to accelerate the elimination and damping of the low frequency er-
rors. However, the solution must be finally constructed on the fine grid in order to maintain
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the desired accuracy.

H 

2H 

4H 

Figure 4.1: Discrete representation of a wave on three different grid level [90].

4.1 Grid Sequencing

One of the simplest algorithms for accelerating the convergence to steady state is grid se-
quencing in which coarse grid levels are used to generate a good initial guess for the final
solution on the finest level. In order to use grid sequencing, first coarse grid levels must be
constructed. It is convenient to perform this step such that the same solver and subrou-
tines could be used in all levels. The coarse grid could be simply constructed by removing
every second node on the fine grid in a cell-vertex solver. Once the coarse grid and all the
required variables and arrays are constructed, the solution procedure starts with an ini-
tial guess on the coarsest level. The update algorithm is repeated until the final solution is
reached. This solution is then prolonged to the next finer level and the whole procedure
is repeated until the finest grid is reached. Grid sequencing will not damp out all the low
frequency error modes and additional computations must be performed on the finest level
to obtain the final solution, but it is very effective in accelerating the convergence by gener-
ating a good initial guess. In addition, it provides a suitable ground for the implementation
of main multigrid algorithm described in the next section.

4.2 Multigrid Cycle

Multigrid approach employs coarser grid levels in order to accelerate the damping of the er-
rors on the fine grid using one or more constructed coarse grid levels. The effectiveness of
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multigrid method strongly depends on how effective the basic scheme is in damping high
frequency errors.
In the literature, considerable effort has been focused on applying multigrid method to
different kind of solvers. It is specifically proven to be very effective in connection with
the explicit Runge-Kutta scheme proposed by Martinelli [100] described in section 3.1.3.1.
Maksymiuk et al. [97] present a comparison of two schemes for solving viscous flow around
airfoils. They conclude that the Runge-Kutta solver using multigrid is considerably faster
than an approximate factorization implicit method without multigrid. Hulshoff [66] and
Arnone [7] have solved rotor and cascade flows with a Runge-Kutta method accelerated us-
ing multigrid.
A detailed and extensive description and analysis of multigrid cycle in connection with
Runge-Kutta scheme is given in [71]. This approach was used for implementation of multi-
grid into our in-house code MULTI3. The construction of different grid levels were de-
scribed in the previous section. In order to detail the algorithm here, the simplest multigrid
cycle is assumed with only two grid levels. In a multigrid cycle, transferring the informa-
tion from fine to coarse grid is called restriction and transferring from coarse to fine grid is
called prolongation. The detailed descriptions of restriction and prolongation methods for
a cell-vertex scheme are described in the next section.
A discretized explicit time difference equation can be expressed as [31] [19]:

∆
−→
W = ∆t

∆V

−→
R (4.1)

where
−→
W is the flow variables and ∆t

∆V

−→
R represents the right hand side of the equation where−→

R is the residual. The algorithm below describes the simplest multigrid cycle using two grid
levels:

• Form the right hand side of the differential equation

S0
1 = RHS(W 0

1 ) (4.2)

• Perform one (or two) full cycles of hybrid Runge-Kutta on the fine grid

W i
1 = I T ER(W 0

1 ,S0
1) (4.3)

• Form the residual vector for the new solution

R i
1 = RST RC T (W i

1 ) (4.4)

• Restrict the solution W i
1 to the coarse level

W 0
2 = RST RC T (W i

1 ) (4.5)
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• Restrict the residual R i
1 to the coarse level

Rr
2 = RST RC T (R i

1) (4.6)

• Form the right hand side of the equation using the restricted solution of the coarse
level W 0

2
S0

2 = RHS(W 0
2 ) (4.7)

• Form F2, the forcing function that will be used on coarse grid to maintain the accu-
racy of the fine solution

F2 = Rr
2 −S0

2 (4.8)

• Update the solution on the coarse grid using the residual of the fine level plus the
forcing function

W +
2 = I T ER(W 0

2 ,S0
2 +F2) (4.9)

• Prolong the difference between the new solution W +
2 and the initial restricted solu-

tion to the fine level
W cor r

1 = PRLNG(W +
2 −W 0

2 ) (4.10)

• Apply the correction to the solution on the fine grid

W +
1 =W i

1 +W cor r
1 (4.11)

Note that in the update process, on the coarse grid, the term of forcing function term is also
added to the right hand side of the equation. The algorithm is also illustrated in Figure 4.2.

time step 

restriction 

prolongation 

W1
0 S1

0 W1
i R1

i 

W2
0 R2

0 W2
+ 

Level H 

Level 2H 

S2=R2+F2 

F2=restrict(R1
i) - R2

i 

Wi
+=Wi

i+prolong(W2
+-W2

0) 

Figure 4.2: Illustration of the multigird method and algorithm for two level grid.

The basic multigrid scheme described above consists of two grid levels only. In practical
applications, more coarse grid levels are used in order to accelerate the convergence fur-
ther. If multiple grid levels are present, all the steps except the two last steps are repeated
until the coarsest grid is reached. It is important to note that the forcing function in consec-
utively coarser grids is formed using the difference between the calculated residual and the
"corrected" residual from the finer level which already includes the forcing function from
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previous grid levels [19]. Using this algorithm ensures that the accuracy on all grid levels is
controlled by the fine grid.
The multigrid cycle as described, is called V-cycle (Figure 4.3). Another typical multigrid cy-
cle called W-cycle is also shown in figure 4.3 which proves to be very effective for transonic
flows. In this thesis, a V-cycle with 3 or 4 levels is chosen as a very simple, yet effective,
approach.

Saw-tooth cycle 

2H 

4H 

8H 

V-cycle W-cycle 

Full Multigrid cycle 

H 

prolongation without time step 

time step and prolongation 

Saw-tooth cycle 

2H 

4H 

8H 

V-cycle W-cycle 

Full Multigrid cycle 

H 
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prolongation without time step 

time step and prolongation 

Figure 4.3: Illustration of two widely used multigrid cycles

4.3 Restriction and Prolongation

As shown in Figure 4.2 in a multigrid cycle, both the solution and residual vectors need to
be transferred between different grid levels. The restriction and prolongation must fulfill
the requirement of:

OR +OP >QE (4.12)

where the OR and OP represent the order of accuracy of prolongation and restriction and
OE shows the order of accuracy of numerical scheme which is equal to 2 for hybrid Runge-
Kutta in connection with the central discretisation used in this thesis. If this condition is
not satisfied the error introduced by theses two processes will contaminate the solution on
the fine grid and must be avoided.
Restriction process on a cell-vertex solver could be performed using two different approaches.
Since the coarse grid is constructed by removing every other node on the fine grid, there
will be a node on the fine grid for every computational point on the coarse level. Therefore
restriction could be performed by a simple injection for the flow variables. For transfer-
ring the node based residuals, however, special treatment is required. In a standard central
discretisation for three-dimensional flow, 8 fine grid cells construct one super cell on the
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coarse grid. Therefore the weighted averaged residual on a coarse grid in 3D reads:

R2H
i , j ,k = R H

i , j ,k+
1

2

(
R H

i+1, j ,k +R H
i−1, j ,k +R H

i , j+1,k +R H
i , j−1,k +R H

i , j ,k+1 +R H
i , j ,k−1

)
+1

4

(
R H

i+1, j+1,k +R H
i−1, j+1,k +R H

i+1, j−1,k +R H
i−1, j−1,k

+R H
i , j ,k+1 +R H

i+1, j ,k+1 +R H
i−1, j ,k+1 +R H

i+1, j ,k−1

+R H
i , j+1,k+1 +R H

i , j−1,k+1 +R H
i , j+1,k−1 +R H

i , j−1,k−1

)
+1

8

(
R H

i+1, j+1,k+1 +R H
i−1, j+1,k+1

+R H
i−1, j−1,k+1 +R H

i+1, j−1,k+1

+R H
i+1, j+1,k−1 +R H

i−1, j+1,k−1

+R H
i−1, j−1,k−1 +R H

i+1, j−1,k−1

)
(4.13)

Using the above mentioned formula for cell-vertex scheme poses a challenge in the proper
treatment of the boundary conditions, especially the symmetric or periodic boundary con-
ditions described in section 3.2.4. In this thesis, to preserve the accuracy of the calculated
residuals in periodic surfaces and to ensure that the residual transfer remains conservative,
an alternative approach is used. During the restriction of the residuals to the fine grid, the
node-based residuals are first added to obtain the cell-based residuals. In the next step,
the cell-based residuals of eight cells constructing the super-cell are added to compute the
overall cell-based residual on the coarse grid. Finally, this residual is distributed to the eight
surrounding nodes using a similar algorithm to that employed on the fine grid. Using such
algorithm, no special treatment is required at the periodic boundaries and the scheme re-
mains fully conservative.
In successful implementations of multigrid algorithm, appropriate treatment of boundary
conditions is of crucial importance. The physical boundary conditions need to be updated
after every iteration, restriction or prolongation at every grid level before computing the
residual or applying the correction. The residuals at nodes located at physical boundaries
including wall, inlet and outlet must be set to zero before the restriction process. This is not
applied to computational nodes located at periodic boundaries since they could be treated
as internal nodes using the algorithm described above.
The prolongation of the solution correction must be also performed from the coarse level

to fine grid levels. This is achieved using a linear interpolation. If the computational node
on the fine grid has a corresponding node on the coarse level, the value is directly copied
on the fine grid. Otherwise, a weighted averaged interpolation is applied as detailed (Figure
4.4 ). Prolongation using a distance weighted-averaged is another alternative for cell-vertex
solvers.
The application of the multigrid method including the update cycle performed on coarse
levels, restriction and prolongation all require additional computational time compared to
the basic solver. This needs to be taken into account in order to assess the overall perfor-
mance of the method. In the current implementation of a V-cycle, a 2-level multigrid has
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Figure 4.4: Algorithm used for linear interpolation of the correction from coarse to fine grid level
during prolongation [31].

31% additional cost per iteration. This increases to 34% and 35% for the three and four
levels respectively. As described in section 4.1, all the arrays in coarse grid levels are con-
structed such that same subroutine could be used for all levels.
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Figure 4.5: Convergence acceleration using multigrid method in connection with explicit multistage
scheme.

The performance of multigrid is assessed for the case of rough flat plate described in chap-
ter 3. Figure 4.5 shows the convergence history with 2 and 3 levels of multigrid using a
V-cycle in connection with hybrid Runge-Kutta. As observed using 2 and 3 level coarse
grids, results in 2x and 2.5x reduction in CPU time. The improvement of convergence rate
is marginal once the fourth layer is added. Therefore in most cases in this thesis, the num-
ber of levels is restricted to 3 or 4. Figure 4.6 shows the profiles of velocity and turbulent
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Figure 4.6: Distribution of velocity and turbulent kinetic energy in boundary layer over rough flat
plate obtained with hybrid Runge-Kutta and multigird algorithm.

kinetic energy using the multigrid method. As expected, the overall accuracy of scheme is
not affected by use of the coarse grid corrections.
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5
Local Preconditioning

In low Mach number flows, due to the disparity between the acoustic and convective wave
speeds, the governing equations become stiff. By analyzing the eigenvalues of Navier-
Stokes equations in a three-dimensional flow, the ratio of the largest and lowest eigenvalues
in the system increases and therefore the equations become so called ill-conditioned (Eq.
5.1).

Condi ti on Number = |λmax |
|λmi n | =

|V | +c

|V | À 1 (5.1)

As described in section 3.1.3.2, the largest allowable time step in a compressible solver is
controlled by the largest eigenvalues in the system, introducing disparity in wave propaga-
tion system. In other words, the convective waves in low Mach number flow, advance only
a small fraction of grid size in every time step and as a result the convergence rate deteri-
orates rapidly [156]. In addition, it is shown by several authors [84] [83] [65] that the ratio
of artificial smoothing terms (described in section 3.1.2) to physical fluxes does not scale
properly in the region of low Mach number flow. The result of this analysis is particularly
important because it shows that in low Mach number region, in addition to poor conver-
gence behavior, the disproportional scaling of the artificial dissipation terms contaminates
the solution and destroys the scheme’s accuracy.
In order to overcome the inefficiency of compressible solvers for low Mach number flow,
pressure based incompressible Navier-Stokes solvers are often used for simulations of low
speed fluid flow. These solvers convert the governing equations to an elliptic type and
eliminate the time step restriction by the acoustic waves. Even though this class of solver
is widely used in engineering applications, including low speed environmental flows, but
their application is restricted to globally incompressible flows with constant density. The
incompressible Navier-Stokes equations are not applicable for low speed flows where the
change in density due to heat release or heat transfer is significant or in many problems
in energy conversion systems where low and high Mach number flows exist side by side.
Therefore it is necessary to develop numerical algorithms which are applicable over all
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Mach numbers. This is achieved by using a preconditioning method in connection with the
compressible Navier-Stokes equations. There are several formulations and algorithms for
preconditioning presented in literature. An excellent review on different schemes is given
by Turkel [149].
The main issue addressed in this thesis, is the application of local preconditioning tech-
nique in connection with atmospheric flow simulations where due to large values of com-
puted eddy viscosity compared to aerodynamic flows with medium Reynolds number, the
local cell Reynolds number varies greatly in the computational domain, ranging from the
highly inviscid flow in some parts of the computational domain to very low Reynolds num-
ber in viscosity dominated flows.

5.1 Preconditioning Formulation

In low Mach number flow regions, due to the disparity between the convective and acoustic
eigenvalues, the convective part of the governing equations become stiff. In order to solve
this problem, preconditioning, which improves the convergence behavior of the governing
equations at low Mach numbers, is employed. This is achieved by multiplying the time
derivatives of the Navier Stokes equations by a well-chosen preconditioning matrix P c [19].
Therefore, the governing equations in quasi-linear Jacobian form becomes:

P c ∂W

∂t
+ Ax

∂W

∂x
+ Ay

∂W

∂y
+ Az

∂W

∂z
= Rv (W ) (5.2)

where P c is the preconditioning matrix in conservative variables, Ax , Ay and Az are Jaco-
bian matrices and Rv is the sum of the viscous flux Jacobians. It is evident that if P c is non-
singular, the steady state solutions of the non-preconditioned and preconditioned equa-
tions are the same. Since the conservative variables are not well-suited for preconditioning
analysis, we replace the conservative variables by entropy variables Q = [d p/ρc,du,d v ,d w ,d p−
c2dρ]. Entropy variables are chosen since they result in much simplified formulations [65].
The replacement of variables and multiplication of Eq. 5.2 by P e−1

results in the system of
preconditioned Navier Stokes equation (Eq. 5.3).

∂Q

∂t
+P e−1

[
Ae

x
∂Q

∂x
+ Ae

y
∂Q

∂y
+ Ae

z
∂Q

∂z

]
= P e−1

[Rv (Q)] (5.3)

From the range of preconditioning matrices proposed in the literature, [149] the low Mach
number preconditioning of Weiss-Smith is used in this study [160]. Even though the Weiss-
Smith preconditioner does not result in the most optimum condition number, the robust-
ness of the implementation and the resultant scheme makes it a popular choice. The matrix
and parameters in the Weiss-Smith preconditioning are defined in Eq. 5.4 in terms of the
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entropy variables.

P e =


ε 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (5.4)

where ε is related to local Mach number as:

ε=


M 2

1−3M 2
M < 0.5

1 M ≥

It is also necessary to express the preconditioning matrix in the conservative variables since
most compressible codes, including ETH’s in-house code MULTI3, uses conservative vari-
ables.

P c = I − (
γ−1

) 1−ε
c2


φ −u − v −w 1

uφ −u2 −uv −uw u
vφ −uv − v2 − v w v

wφ −uw − v w −w 2 w
hφ uh vh wh h

 (5.5)

whereΦ, and h enthalpy are defined as:

φ= 1

2

(
u2 + v2 +w 2) h = E + p

ρ
(5.6)

The analytical formulation given in Eq. 5.5 is used to calculate the preconditioned residuals
in the Runge-Kutta time integration algorithm.

5.1.1 Time Step

As described in section 3.1.3.2, the maximum allowable time step for multistage explicit
methods are defined based on the absolute value of the maximum eigenvalue of the Jaco-
bian matrix. Since preconditioning alters the eigenvalues of the governing equations, the
maximum allowable time step of the scheme will be affected. In fact, preconditioning is de-
signed such that the wave propagation speed in the system is altered. The preconditioning
brings the values of acoustic and convective speeds closer to each other in order to ob-
tain the ideal condition number for the governing equations. Therefore, it is expected that
the time step in the preconditioned solver is restricted by the convective speed rather than
acoustic waves. Therefore, the formulations of eigenvalues in the calculation of time step
given in Eq. 5.7 are replaced with modified values of:

λ1,2,3 =| qn | λ4,5 = 1

2
(1+ε) qn +

√
4c2ε | S | + (1−ε)2 qn (5.7)
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where qn is convective wave speed defined as:

qn = unx + vny +wnz (5.8)

As shown in Eq. 5.3, the viscous eigenvalues are also affected by the preconditioning and
therefore need to be modified. However, the formulation and calculation of viscous eigen-
values are rather complicated and computationally expensive and are often left unchanged
in the calculation of the time step.

5.1.2 Artificial Dissipation

As mentioned before, in addition to poor convergence behavior, the accuracy of multistage
compressible solvers deteriorates in regions of low Mach number flow. One can demon-
strate that by analyzing the order of the different terms in an Euler equation for low speed
flow. It is shown that [70] [46] the value of entropy variables in the low Mach number limit
becomes:

O
(
Qe)=



d p
ρc

du
d v
d q

dρ− c2dρ

=


O (M)
O (1)
O (1)
O (1)
O (1)

 (5.9)

Since the inviscid Jacobian matrices in entropy variables are given as:

Ae
x =


c u 0 0 0
u c 0 0 0
0 0 c 0 0
0 0 0 c 0
0 0 0 0 c

 Ae
y =


c 0 v 0 0
0 c 0 0 0
v 0 c 0 0
0 0 0 c 0
0 0 0 0 c

 Ae
z =


c 0 0 w 0
0 c 0 0 0
0 0 c 0 0
w 0 0 c 0
0 0 0 0 c

 (5.10)

in the low Mach number region, (u ¿ c, v ¿ c w ¿ c) one can obtain the order of convec-
tive terms as:

Ae
x
∂Q

∂x
+ Ae

y
∂Q

∂y
+ Ae

z
∂Q

∂z
=


O

( 1
M

)
O (1)
O (1)
O (1)
O (1)

 (5.11)

Now knowing that the value of dissipation terms is related to the maximum eigenvalue of
the spectral radius of the Jacobian matrix multiplied by second or fourth order derivatives
(Eq. 3.6) the order of dissipation terms become:

D =


O (1)

O
( 1

M

)
O

( 1
M

)
O

( 1
M

)
O

( 1
M

)

 (5.12)
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By comparing Eq. 5.12 and Eq. 5.11, it is clear that the artificial dissipation terms do not
properly scale in the low Mach number regime and therefore require special treatment.
Hosseini [65] shows that introducing any low Mach number preconditioner matrix P c elim-
inates the problem and scales the artificial viscosity terms back to the order of the convec-
tive fluxes given in Eq. 5.11.
To ensure the stability and improve the accuracy of the solver, the formulations of both
isentropic and non-isentropic artificial viscosity are modified in the multistage scheme.
The isentropic smoothing is scaled by the spectral radius of Jacobian matrix via the cell-
based time step. Therefore, no direct modification of the scheme is required except that the
time step used in the artificial dissipation terms is obtained using the modified eigenvalues
in Eq. 5.7. For the non-isentropic case, a similar approach is used but since the spectral
radius is directly used in this formulation, Eq. 5.7 is used instead of Eq. 3.15. It must be
noted that since the isentropic smoothing is scaled by the local Mach number, further re-
duction using preconditioning sometimes results in inefficient damping of oscillations and
poor convergence. This might be the reason why in some cases the solver using isentropic
smoothing and preconditioning diverges using CFL number of 3.6.

5.1.3 Boundary Conditions

In most CFD solvers for simulation of compressible flows, the implementation of inlet and
outlet boundary conditions is typically based on characteristic variables as described in
section 3.2. In the formulation of preconditioning, the change in the eigenvalues of the
governing equations also necessitates a change in the characteristic-type boundary condi-
tions. Since the characteristic variables are defined based on speed of sound, in the region
of low Mach number flow, when u ¿ c, the characteristic boundary conditions are not well
posed. Therefore, it is necessary to modify the formulation in the preconditioned equa-
tions. The characteristic equations corresponding to modified acoustic modes are given
by:

∆un + u′
n ± c ′−un

εc

1

ρc
∆p = 0 (5.13)

where∆un and∆p are the differences between variables calculated to be corrected accord-
ing to wave propagation and variables calculated from the internal domain using

u′ = 1

2
un (1+ε) c ′ = 1

2

√
u2

n (1−ε)2 +4ε2c2 | S |2 (5.14)

un = uSx + vSy +wSz | S |=
√

S2
x +S2

y +S2
z (5.15)

It is also observed that a simplified set of boundary conditions yield the same results in low
Mach number flow regions [60]. In the simplified formulation, the simplified inlet bound-
ary condition is defined as:

ub = u∞ vb = v∞ wb = w∞ pb = pi ρb = ρ∞ (5.16)
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where all flow variables are specified from the upstream, except for the pressure which is
extrapolated from the domain. The simplified outlet boundary condition is as follows:

ub = ui vb = vi wb = wi pb = p∞ ρb = ρi (5.17)

5.2 Implementation

In order to implement the preconditioning into a multistage solver, first the precondition-
ing matrix must be expressed in conservative variables. For Weiss-Smith preconditioning
this formulation is given in Eq. 5.5. To solve the preconditioning equations, first the viscous
and inviscid fluxes are computed using the basic scheme. The modified artificial viscos-
ity described in section 5.1.2 is added to the physical fluxes to form the overall residual of
the preconditioning equations. As expressed in Eq. 5.3 this residual must be multiplied by
matrix P c . Since matrix P c has a special structure and all rows could be obtained by multi-
plying the first row with a scalar value, the multiplication process could be simplified and
written as [148]:

P c


R1

R2

R3

R4

R5

=


R1

R2

R3

R4

R5

− (1−ε2)(γ−1)

c2

(
φR1−uR2 − vR3 −wR4 +h

)


1
u
v
w
h

 (5.18)

Using Eq. 5.18, the multiplication of the residuals by the preconditioning matrix at every
stage of the Runge-Kutta scheme could be performed quickly, avoiding additional compu-
tational cost. Once the preconditioning residual is formed, it is multiplied by the modified
time step using Eq. 3.30 and corresponding stage coefficient to form the right hand side
of the equation. The right hand side is subtracted from the old flow vector to obtain the
solution at the new time step. Next, similar to the basic scheme, boundary conditions are
updated. Note that all the boundary conditions based on characteristics must be modified
in connection with preconditioning.
To integrate the multigrid method into the preconditioned solver, no major modification
of the algorithm is required. The update cycle on the coarse grids are modified similar to
the fine grid algorithm described above. The forcing function is formed by restricting the
preconditioned residual instead on the unpreconditioned one.
The formulations of wall and turbulent boundary conditions remain unchanged in connec-
tion with preconditioning. However it is important to note that since the viscous time step
is affected by the laminar viscosity, in order to insure the stability of the scheme, the new
time step needs to be calculated at the wall using the modified value of viscosity at wall ad-
jacent cell. Otherwise the modified viscosity in connection with preconditioning could re-
sult in too large time steps violating the stability criteria. This is necessary especially since
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the viscous eigenvalues are left unchanged. This greatly improves the robustness of the
preconditioned scheme in connection with the wall function especially when applied for
terrains with variable roughness. The remaining challenge in the implementation of pre-
conditioning is the choice of preconditioning parameter ε which is addressed in the next
section.

5.2.1 Choice of Preconditioning Parameter

As shown by Turkel [148], for efficient low Mach number preconditioning, the first com-
ponent of the preconditioning matrix (ε in Weiss-Smith preconditioning) must be propor-
tional to M 2. However, the preconditioning parameter initially defined by Eq. 5.1 needs
to be modified in order to avoid singularities in the matrix when the Mach number ap-
proaches to zero. In general, even though the stiffness of the governing equations is sub-
stantially improved using preconditioning, the robustness of the solver is often reduced as
M → 0. Various numerical test cases show that the preconditioning parameter, ε is the most
important factor that affects the robustness.

ε= mi n

(
1,max

(
εw ,σ

|∆p |
ρc2

))
(5.19)

A very efficient way of averaging and limiting ε, which addresses the singularity in the vicin-
ity of the stagnation point (Eq. 5.19), is proposed by Darmofal [45] In Equation 5.19, εw is
obtained from Eq. 5.1, ∆p is the maximum pressure gradient inside the computational cell
and σ is a user defined constant with typical value of 1.0. In addition to the above men-
tioned approach, it is also necessary to stop ε from reaching too small values specifically
close to no-slip walls. Therefore:

ε= mi n

(
1,max

(
εw ,σ

|∆p |
ρc2

, M 2
l i m

))
(5.20)

where Ml i m is specified as 10−5. The preconditioning formulation described above, is suited
for the efficient solution of the hyperbolic system of Euler equations in regions of low Mach
number. However, in order to maintain the efficiency of the approach in viscous dominated
flows where the equations have more a parabolic character, special treatment is required.
In atmospheric flow simulations, the Reynolds number is typically very high (∼ 107 −1010)
and therefore the characteristics of the governing equations are much like those of the Eu-
ler equations. However, due to large values of calculated eddy viscosity in the atmospheric
boundary layer at higher heights above ground, or in regions of separated flow, the local cell
Reynolds number often becomes too small in parts of the domain and thus the formulation
used in Eq. 5.20 results in too large a time step in these regions. Therefore, an additional
limiter for the preconditioning parameter is defined in the boundary layer as:

ε= mi n

(
1,max

(
εw ,σ

|∆p |
ρc2

, M 2
l i m ,βM 2

r e f

))
(5.21)
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where Mr e f represents the free stream Mach number and β is a user-defined variable with
typical values of 0.1-5.0. The scaling of variable β could be defined locally depending on
cell Reynolds number. The alternative approaches are also used mainly based on defining
the local Mach number based on the diffusion velocity [152].
Significant additional improvement is achieved if the preconditioning parameter in every
vertex or cell is related to the value of ε in the neighboring nodes (Eq.5.22 ).

εi , j ,k = max
(
εi+1, j ,k ,εi−1, j ,k ,εi , j+1,k ,εi , j−1,k ,εi , j ,k+1,εi , j ,k−1

)
(5.22)
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Figure 5.1: Convergence history for flow over fully rough flat plate. Preconditioned multigrid results
in more than 5x speed up in convergence.

Figure 5.1 shows the convergence history (RMS residual) for the solution with and with-
out preconditioning with the preconditioned characteristic-type inlet and outlet boundary
conditions. It is observed that use of preconditioning results in more than 5x speed-up
in convergence. The comparison of velocity profiles with measurements is also shown
in Figure 5.2. The agreement with measurements is quite satisfactory. The predictions
of skin friction are also compared with empirical relations given by Schlichting [127] and
Mills [108] (Figure 5.3). The performance of preconditioning in connection with different
boundary conditions for atmospheric flow simulations are investigated further in the next
chapter.
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Figure 5.2: Velocity and turbulent kinetic energy profile in fully rough boundary layer obtained using
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CHAPTER

6
Atmospheric Flow over Hilly Terrain

It is well known that atmospheric boundary layer flows are significantly influenced by the
underlying topography. In order to assess the wind resource for the planning and analysis of
wind farms, measurements and/or the simulation of atmospheric flow over specific terrain
are required [122] [51] [99]. In the case of gentle topography and low hills, analytical solu-
tions and simple linear models that yield predictions with acceptable accuracy have been
developed [138]. The key paper on linear models was presented by Jackson and Hunt [67]
where they proposed a formula for fractional speed-up as a function of upstream undis-
turbed wind velocity in the near surface of low two-dimensional hill. Mason and Sykes
[101] extended the previously developed theory to three dimensions and later its applica-
tion to three dimensional atmospheric flow was demonstrated by Walmsley et al. [158] and
Taylor et al. [142]. In the three-dimensional code of Walmsley, the linear formula is derived
in wave-number space and the flow equations are solved using the Fourier transform. The
typical formulation of wind speed-up using the linear theory is given as a function of hill
height, horizontal extent of the hill, the surface cover or roughness and finally a function
that represents the precise shape of the hill [35].
The successful application of linear models for real case scenarios have been reported by
several authors. The results show that linear models are able to resolve flow deficit both
upwind and summit of isolated hills of moderate slop. These models have very low compu-
tational cost and can be used to obtain accurate flow predictions over hills with sufficiently
gentle slopes and attached flows [20].
The linear models however, due to simplified assumptions in their formulation, often fail
to predict the separation region downstream of steep hills [111]. The formulation of linear
models is only valid for small flow perturbations, which makes them unreliable in highly
complex terrain. Some empirical corrections have been added to the models to improve
their accuracy in separated flow regions, but these relations are often site-specific and do
not overcome the inherent limitations of the model. Even though the poor predictions of
wind flow on the lee-side of an isolated hill may not seem particularly important for wind
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energy applications, in real case scenarios and for the purpose of wind farm micrositing,
this model inefficiency may result in major inaccuracies even in planning a farm located on
moderately sloped terrain consisting of array of hills where acceleration and deceleration of
flow occur over the extent of the farm. Additionally, in recent years, wind turbines are being
installed in increasingly complex topographies where in addition to flow separation, high
vertical wind velocities, strong shear, three-dimensional effects and unsteadiness becomes
important and are not present in simplified linear formulations. Moreover, the accurate
prediction of flow downstream of steep topography is important in other applications of
atmospheric flow simulations such as the study of pollution dispersion or calculation of
drag on man-made or natural obstacles. Therefore non-linear models started merging as a
suitable alternative from the work of Raithby et al.[119].
With the increase in computational resources and major developments in computational
fluid dynamics, there has been an increased focus on the application of non-linear models
for wind resource assessment. Raithby et al. pioneered the use of three-dimensional CFD
in atmospheric flow simulations over Askervein Hill [119] followed by Beljaars [17]. Raithby
used the three-dimensional RANS equations which long has been used for simulation of
environmental water flows to air flow simulations over Askervein Hill. He compared the re-
sults obtained with second order closure k − ε turbulence model of measurements of 1983
over the hill. Whereas the agreement of speed-up over hill was satisfactory, rather large dis-
crepancies were observed in prediction of turbulent quantities. Raithby attributed the error
to both deficiencies of turbulence models as well as the inaccuracies of the measurement.
In his study however the simulations were performed using a rather coarse grid with 20×20
grid points in horizontal and 19 grids in vertical directions with first node located 0.75 m
above ground level. This also might have contributed to the overall error.
Following Raithby, RANS methods with second order closure turbulence models have been
used for atmospheric flows over moderately sloped and complex terrains by several authors
[49] [103] [80] [29] [22]. Over the years the various aspects on microscale wind modeling
has been addressed and the effect of several parameters on accuracy of predictions have
been investigated. Primarily the effect of the inflow boundary condition and the stratifi-
cation of the flow has been studied by Coppin et al. [35]. They found that the assessment
of incoming flow shear and atmospheric stability very important in accurate prediction of
wind speed at hilltop. In most studies the models were applied to one or two cases and
were not extensively validated for a broad range of applications. In an attempt to evaluate
the performance of RANS solver for microscale wind simulations, Kim et al. [80] used the
non-linear flow model in connection with k −ε turbulence model to assess wind variations
over four different test cases. Measurement data was available at all sites which had differ-
ent levels of terrain complexity. The selection of the test cases was based on the criteria of
well-defined geometry and upstream wind profile. The simulations overall showed good
agreement with measurements and the comparison with linear models demonstrated the
superiority of non-linear models at predictions of wind flow at lee-side of the hill.
The effect of horizontal grid resolution was later addressed by Castro et al, [29]. Castro stud-
ied the effect of vertical and horizontal grid resolution on the accuracy of prediction over
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Askervein Hill. 12 different grids were used in connection with two different maps of the hill
and surrounding areas. The effect of variable roughness was also studied over the hill where
the roughness height was varied between 0.01 and 0.03 m as a linear function of hill height.
As expected by introducing variable roughness, the velocity close to ground increased im-
proving the agreement between measurement and predictions.
Undheim [150] also addressed the effect of grid resolution and the accuracy of the digital el-
evation map (DEM) of the area. He included the downstream hills around Askervein hill in
his simulations performed with high resolution grid and DEM and could predict the speed-
up with very good accuracy at all locations especially in the downstream wake region. He
also investigated the effect of variations in wind direction in predicted wind speeds to as-
sess the effect of small fluctuations in wind directions which could normally occur during
the measurements.
While most of the RANS studies of wind flow were focused on few reliable measurements of
flow over moderately sloped terrain, the real challenges and uncertainties of various model-
ing methods over complex terrain were not quantitatively addressed until recently. In 2007
a measurement campaign was designed to addressed the lack of high fidelity experimental
data over highly complex terrain. The measurements were performed over a small hill with
12 m height and 170 m length with a circular leading edge with almost vertical slope [18].
The results of Bolund experiment were used to perform a blind comparison with wide range
of numerical models including linear, second order closure and LES models. The results of
the blind comparisons further indicated the superiority of RANS solvers in real complex
terrain test cases [16].
More detailed modeling of turbulence is possible using large eddy simulations (LES) ap-
plied to two-dimensional hills and relatively simple flows [5] [117]. Large eddy simulations
have also been used for three-dimensional cases including Askervein Hill [130]. However,
the LES for atmospheric flow seems to be in early stages due to immature modeling tech-
niques and large computational cost. The recent results of the Bolund Hill complex terrain
test case, show that there are still challenges in achieving sufficiently accurate predictions
using large eddy simulations [16].
In this chapter, the predictions of the preconditioned solver are assessed for the flow over
three dimensional hills and the performance of the multigrid method, preconditioning and
different boundary conditions on the performance and accuracy of the numerical scheme
for wind predictions are assessed.

6.1 Inflow Boundary Condition

The modeling of atmospheric boundary layer in wind engineering is typically limited to the
surface layer where the well-known logarithmic profiles for velocity and turbulent quanti-
ties withholds. The equations in the surface layer are derived using Monin Obukhov sim-
ilarity theory assuming homogeneous and steady-state conditions. Using the logarithmic
equations and neglecting the Coriolis forces, height independent equations are obtained
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for turbulent kinetic energy and wind direction. For atmospheric flow simulations, the vari-
ations of wind velocity, k and ω at inlet plane are specified based on Eq. 6.1.

u = uτ
κ

ln

(
z

z0

)
k = u2

τ√
β∗ ω= uτ

4
√
β∗κz

(6.1)

The inlet boundary conditions for all atmospheric flow simulations in this study are ob-
tained using Eq. 6.1. Typically the values of surface roughness are obtained over a topogra-
phy using standardized values for different land covers and uτ is obtained using the mea-
surements of turbulent kinetic energy or velocity of undisturbed flow.

6.2 Turbulence Model Coefficients

The standard coefficients of turbulence models are often empirically determined based on
wind tunnel measurements of various flows and therefore in order to employ the turbu-
lence closure models for atmospheric flow simulations, the coefficients of these models
need to be revisited. A detailed description and derivation of modified coefficients for k−ω
turbulence model for atmospheric simulations can be found in [118]. The first modification
is required to match the profiles of turbulent kinetic energy in the surface layer. Various

measurement show the value between 0.17 and 0.18 for
u2
τ

k in neutral atmosphere [37] [112]
[135] and therefore the value for β∗ becomes:

β∗ = 0.033 (6.2)

The range of values for von-Karman constant is between 0.37 and 0.41 [52]. The value of
0.41 is used in this thesis since it better represents the wind over surface with relatively
small roughness height [53]. The remaining coefficients are obtained using the simplified
equations of k andω for the decaying homogeneous isotropic turbulence and also the sim-
plified momentum and turbulence equation for incompressible constant pressure bound-
ary layer flow. Finally the modified coefficients for k −ω turbulence model for simulation
of atmospheric flow become:

α= 0.3706 β= 0.0275 β∗ = 0.033 σ= 0.5 σ∗ = 0.5 (6.3)

6.3 Flow over Kettles Hill

Simulations are first performed over the moderately complex terrain case, Kettles Hill. The
Kettles Hill experiments are comprised of field measurements of boundary-layer flow over
a low hill. The data were collected over two time periods, February 1981 reported in [141]
and March 1984 in [107]. The Kettles Hill site was selected after a nationwide search for a
hill that was isolated in flat terrain with uniform surface cover. Further criteria for selection
were that the mean slope that should be around 0.2, terrain micro structures or man-made
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obstacles were absent, and that wind speeds and directions were constant. Kettles Hill is
located approximately 8 km to the east of Pincher Creek in Alberta. The height of the hill is
approximately 100 meters and the elevation is about half of the hill height 600 meters to the
west. The wind in this area is predominantly from the west and the main axis of the hill lies
along this west-east line (Fig. 6.1).

As shown in Figure 6.1, the coordinate system is chosen to be aligned with the hill. The

Figure 6.1: Computational grid superimposed on digital elevation of Kettles Hill. Line A goes through
hilltop and along which measurements were performed.

x-axis goes from true west to east and the y-axis from south to north. The center of the
coordinate system was placed at the hilltop. To the west (negative x-axis), the hill matches
the condition of being relatively isolated with a flat and uniform fetch. In this direction
the terrain has no change in elevation for about 18 km. During the first two measurement
runs in 1984, the ground was covered in large parts (90% and 60%) by snow. A following
measurement run was then conducted with a snow cover of 10%. For all the following mea-
surements, the surface on the hill was covered partially by short grass and mud. Despite
these non-ideal conditions an experimental estimation of the surface roughness between
0.006 and 0.01 m was made. The surface roughness of 1 cm is used for the simulations. The
digital elevation map of the area was used to create the computational grid for wind direc-
tion of 255o . The resolution of the grid is 20 m in the refined zone around the area where the
measurements were made. The extent of the computational domain is 8×8km. The first
cell height is 0.5 m with a total number of 71 grid points to cover the domain height of 5000
m. The inlet boundary condition is specified based on the logarithmic profile with friction
velocity of 0.5 m/s in order to duplicate the measurements of undisturbed wind of the run
5b of 1981.
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Figure 6.2: Convergence history for flow over Kettles Hill. 4x and 6x speed-up in CPU time is obtained
using 2 and 3 level V-cycle multigrid.

Iteration x 103

R
es

id
ua

l d
ro
p

0 1 2 3 4
-7.5

-6.5

-5.5

-4.5

-3.5

-2.5
Unpreconditioned
Preconditioned
Preconditioned Multigrid

Figure 6.3: Convergence history for flow over Kettles Hill. 11x speed-up in CPU time is obtained using
preconditioned multigrid to reach residual of 10−7.

The simulations are first performed using the unpreconditioned hybrid Runge-Kutta in
connection with different number of cycles of multigrid method. Figure 6.2 shows the con-
vergence history of simulations performed over Kettles Hill with 2 and 3 levels of coarsening
in the V −cycle described in chapter 4. Considering the computational overhead of the cy-
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cle, 4x and 6x speed-up is obtained respectively using the multigrid approach. Additional
coarsening has marginal effect on the speed-up and therefore the number of cycles used
for most of the simulations is limited to 3.

Figure 6.3 shows the convergence history from the non-preconditioned and preconditioned
schemes together with the results obtained using preconditioned multigrid with two level
coarsening. The computational overhead is 3% for preconditioning and 34% for precondi-
tioned multigrid with two level coarsening. Accounting for the computational cost of the
algorithm, there is 11x speed-up in computational time to reach the residual value of 10−7

using preconditioned multigrid.
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Figure 6.4: Prediction of wind flow over Kettles Hill compared to measurements. Predictions are im-
proved at hilltop using preconditioning.

Figure 6.4 and 6.5 show the comparison of normalized wind speed along the hill for all
three cases. The bars on the plot show the recorded variations of the wind flow during the
measurements. Numerical results show good qualitative agreement with measurements,
however the quantitative agreement at hilltop is relatively poor. As expected, the predic-
tions at both heights are improved using the preconditioning.

6.4 Flow over Askervein Hill

The simulations are next performed over Askervein Hill with moderately complex topogra-
phy. The hill is located in the Isle of Uist in Scotland. A detailed survey on the measurements
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Figure 6.5: Predictions of wind flow over Kettles Hill at 10 m above ground level.

is reported in [140]. The detailed measurements over this hill have been used by various re-
searchers for evaluation of numerical models [29] [150]. The digital elevation map of the
isolated hill with resolution of 23 m is used for grid generation. The dimension of the com-
putational domain is 6×6 km. The grid resolution in the clustered region around the hill is
23 m in x and y directions and the distance of the first node above ground is 0.5 m. These di-
mensions result in a total of 1 million computational nodes. Figure 6.6 shows the Cartesian
grid superimposed on the digital elevation map of the hill. The roughness height is 0.03 m
and is constant over the entire hill.
The inlet boundary condition for velocity and turbulent quantities are specified using the

value of 0.65 for friction velocity. This results in approximately 9 m/s wind velocity at 10 m
above ground level. The simulations are performed using both the characteristic and sim-
plified inlet/outlet boundary conditions.
The effect of preconditioning on the convergence rate of the solution over Askervein Hill is

shown in Figure 6.7. It is observed that the preconditioned solver converged to the final so-
lution in 15000 iterations (2 hours on single Opteron 8356 CPU). This is reduced to 1 hour
using the preconditioned multigrid with two level coarsening. The results also show that
the preconditioning has similar performance in terms of convergence acceleration in con-
nection with both the characteristic and simplified boundary conditions that are described
in section 5.1.3.

The predicted speed-ups along lines A-A, AA-AA compared to experiment are shown in Fig-
ures 9.13 and 9.14. The speed-up (∆S) is defined based on the undisturbed velocity up-
stream of the hill at the reference station using Eq. 6.4.

speed-up = u(z)−ur e f (z)

ur e f (z)
(6.4)
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Figure 6.6: Computational grid superimposed on the digital elevation map of Askervein hill.
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Figure 6.7: Convergence history for flow over Askervein Hill using different type of boundary condition
and acceleration methods.

The predictions along line A-A and AA-AA with the basic scheme underestimate the speed-
up at hill top by 14% and 6% along both lines. The results are generally in good agreement
with experiment. The agreement is slightly improved at hilltop using the preconditioned
solver and the error is 8% and 1% respectively. However along line A-A, the wind speeds are
overestimated at the leeward slop of the hill using preconditioned solver. It is also observed

63



Atmospheric Flow over Hilly Terrain

Distance from HT along line A-A [m]

Sp
ee
d-
up

 [m
]

E
le

va
ti

on
 [m

]

-1000 -500 0 500 1000
-1.5

-1

-0.5

0

0.5

1

1.5

0

100

200

300

400

500
Unpreconditioned
Preconditioned, Characteristic BC
Preconditioned, Simplified BC
Preconditioned multigrid
Elevation [m]
Exp.

Figure 6.8: Predictions over Askervein Hill compared to experiment along line A-A. Good agreement
is obtained at hilltop using preconditioning.
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Figure 6.9: Predictions over Askervein Hill compared to experiment along line AA-AA. Preconditioning
improves the convergence behavior and the accuracy of the solver.

that simplifying the characteristic boundary condition affects the results neither up- nor
downstream of the hill. It must be noted however, the absolute value of wind is slightly dif-
ferent at the reference station at 10 m above ground (9.4 m/s with characteristic boundary
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condition compared to 9.24 m/s using the simplified formula).
Similar to the current results, the majority of models tend to under predict the speed-up
at hilltop at 10 m AGL. Different explanations are suggested for this discrepancy. The non-
uniform surface roughness seems to be the most important reason addressed in the litera-
ture. Flow separation is also observed in some of the flow models but not all. It is evident
that higher grid resolution, variable roughness definition and transient solutions improves
the accuracy in capturing the separation zone. However this is not captured in current
study. Transient simulations performed over Askervein Hill using ANSYS CFX considering
the above-mentioned criteria did not show any evidence of a separation zone or unsteadi-
ness [145]. This suggests that inclusion of the downstream hills and topography alters the
details of the flow in the deceleration zone which might be lost in the simulations of an iso-
lated hill, but several authors such as Castro et al. [29] only focus on the isolated hill.

Distance from HT along line A-A [m]

k/
u r

ef2  [-
]

E
le

va
ti

on
 [m

]

-1000 -500 0 500 1000
-0.02

0

0.02

0.04

0.06

0.08

0.1

0

100

200

300

400

500
Unpreconditioned
Preconditioned, Characteristic BC
Preconditioned, Simplified BC
Preconditioned multigrid
Elevation [m]
Exp.

Figure 6.10: Predictions of turbulent kinetic energy at 10 m above ground level over Askervein Hill
along line A-A compared to measurements.

The predictions of turbulence kinetic energy is also compared with the measurement in
Figure 6.10 and 6.11. The turbulent kinetic energy is slightly over estimated at the upstream
of the hill which [to the author’s knowledge] is also observed in most of the RANS simula-
tions over Askervein Hill. However, the agreement at hilltop is very good with 7% and 8%
error at location x=200 m and x=390 m respectively. The difference in prediction of k using
preconditioned and unpreconditioned solvers are mainly due to the change in scaling of
artificial viscosity which can have significant effect on the shear and turbulent production
terms in the vicinity of the wall and within the wake downstream of the hill.
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Figure 6.11: Predictions of turbulent kinetic energy at 10 m above ground level over Askervein Hill
along line AA-AA compared to measurements.

Distance from HT along line B-B [m]

Sp
ee
d-
up

 [-
]

E
le

va
ti

on
 [m

]

-500 0 500 1000 1500
-0.5

0

0.5

1

1.5

0

100

200

300

400

500
Unpreconditioned
Preconditioned, Characteristic BC
Preconditioned, Simplified BC
Preconditioned multigrid
Elevation [m]
Exp.

Figure 6.12: Predictions of wind speed at 10 m above ground level over Askervein Hill along line B-B
compared to measurements.

The effect of topography on the predicted and measured speed-up and turbulent kinetic
energy along line B-B is also shown in Figure 9.15 and 6.13. Unfortunately no data is avail-
able for turbulent parameters along this line however the quantitative agreement of speed-
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Figure 6.13: Predictions of turbulent kinetic energy at 10 m above ground level over Askervein Hill
along line B-B compared to measurements.

up with measurements is satisfactory.

6.5 Flow over Bolund Hill

Finally simulation results are compared for atmospheric flow over the complex terrain test
case Bolund Hill. Bolund is a 12 m high, 130 m long and a 75 m wide coastal hill located
at Roskilde Fjord Denmark. The geometrical shape of the hill which is shown in Figure
6.14, includes a vertical escarpment which makes the flow prediction challenging due to
the presence of the turbulent shear flows, separation zones and flow detachment. Addi-
tionally, sharp changes in surface roughness and the wind passing from water to grass well
represent the typical characteristics of a complex terrain. The site and layout of Bolund
provides well-defined boundary conditions, in particular for the inlet flow that is always a
challenge in field experiments. The measurements were performed during a three month
period in 2007 and 2008. Nine masts collected the mean flow and turbulent measurements
upstream and over the hill. Measurements from instrumentation at Bolund that include
sonic, cup anemometers and LIDAR are described in [18].

The simulations are performed for wind directions of 270o and 239o . The Figure 6.15 shows
the computational grid superimposed on the digital elevation map of the terrain. The inlet
boundary conditions are imposed at the inlet plane using a friction velocity of 0.4 based on
the measurements at the reference station. The variable roughness map shown in Figure
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Line B (270o) 

Line A (239o) 
Z [m] Z0 [m] 

Figure 6.14: Elevation (left) and roughness (right) maps for Bolund Hill.

Figure 6.15: Computational grid superimposed on digital elevation map of Bolund Hill.

6.14 is used for the simulations.
Figure 6.16 shows the convergence history for the flow over Bolund Hill for wind direction

of 270o using unpreconditioned solver using both the characteristic and simplified bound-
ary conditions. The simulations with the preconditioning technique are shown in the same
figure. The Bolund Hill is a challenging test case for preconditioning due to presence of a
stagnation point at the leading edge of the hill and also a separation region downstream of
the hill. The simulations are all performed using CFL=2.0 and a smoothing coefficient of
0.003. The convergence behavior with preconditioned solver is much improved. It is also
observed that simplifying the inlet and outlet characteristic boundary conditions does not
influence the convergence behavior significantly.
Figure 6.17 and 6.18 show the normalized wind speed along line B-B shown in Figure 6.14

at 2 and 5 m above ground level. The wind speeds are normalized using the velocity pre-
dicted at mast M0 which is located upstream of the hill and records the undisturbed wind
for direction 270o . It is observed that at 2 m above ground level the difference in normalized
wind for the two type of boundary conditions is negligible. Unlike the two previous cases,
it seems that preconditioned solver does not result in an improved agreement with mea-
surement at 2 m above ground level. The unpreconditioned solver predicts the speed-up
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Figure 6.16: Computational history over Bolund Hill. The use of simplified boundary condition does
not affect the convergence behavior or the results. The preconditioning accelerates the convergence
significantly.
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Figure 6.17: Normalized wind speed over Bolund Hill at 2 m AGL.

at x=-75 quite accurately. In general the size of separation region has reduced using pre-
conditioning. The effect is also visible at 5 m above ground level. At the downstream of the
hill however at 2 and 5 m above ground level both unpreconditioned and preconditioned
formulations yield similar results.
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Figure 6.18: Normalized wind speed over Bolund hill at 5 m AGL.

The predictions of turbulent kinetic energy are also compared to measurements along line

Distance along line B-B [m]

(k
-k

re
f)/
u r

ef2

E
le

va
ti

on
 [m

]

-150 -100 -50 0 50 100 150
-0.05

0

0.05

0.1

0.15

0.2

0.25

0

20

40

60

80

100Unpreconditioned, characteristic BC 
Unpreconditioned, simplified BC 
Preconditioned multigrid
Elevation [m]
Exp.

2 m AGL

Figure 6.19: Normalized turbulent kinetic energy over Bolund Hill at 2 m AGL.

B-B at 2 and 5 m above ground level in Figure 6.19 and 6.19. In this case, due to the reduced
size of the predicted separation zone, the peak of the turbulent kinetic energy at x=-75 m is
underestimated using the preconditioned solver. This could be due to the effect of artificial
dissipation on the production of turbulent kinetic energy. The effect of artificial dissipa-
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Figure 6.20: Normalized turbulent kinetic energy over Bolund hill at 5 m AGL.

tion on the turbulent flow prediction can be profound [15] especially near the wall using
wall functions in connection with coarse grids [109] [75]. Numerical experimentation on
flat plate shows that the value of the turbulent kinetic energy could be over estimated at the
first node above ground by 20−40%. In addition, in the wake flow the effect of excessive
artificial dissipation and coupling between mean flow and turbulent quantities can result
in an underestimation of the production or decay of the turbulent kinetic energy. There-
fore even though the agreement at 2 m above ground with measurement is better predicted
with the unpreconditioned scheme, that could be due to error compensation and coupling
of the numerical errors of the basic scheme with the modeling errors of the turbulence clo-
sure. At 5 m above ground level, the agreement between measurements and simulations is
much improved both at the center of the hill and also downstream.
Figure 6.21 and 6.22 show the turbulent length scale at 2 and 5 m above ground level for
wind direction 270o with rather similar trends to the wind speed variations. The values for
freestream turbulent length scale is estimated as 0.35 m using the unpreconditioned code
compared to 0.5 m of the preconditioned Runge-Kutta at 2 m above ground level.
Simulations are also performed for the direction of 239o when wind passes across the steep

slopes upstream and downstream of the hill along line A-A. Similar to the case 270o the wind
blows from sea to land and therefore the incoming profile is estimated using the friction ve-
locity of 0.4m/s and roughness height of 0.0003 m. The wind speed-up along line A-A is
shown in Figures 6.23 and 6.24 using the preconditioned code. The average error between
the measurements and simulations at all points is 16% and 9% at 2 and 5 m above ground
level respectively.
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Figure 6.21: Normalized turbulent length scale over Bolund Hill at 2 m AGL.
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Figure 6.22: Normalized turbulent length scale over Bolund hill at 5 m AGL.

6.6 Summary

The performance of the preconditioned multistage method was assessed for the flow over
Kettles Hill, Askervein Hill and Bolund Hill. In general, the robustness and accuracy of the
method was demonstrated for the high Reynolds number low Mach number atmospheric
flow with stagnation points and separated flow regions. The use of preconditioned multi-
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Figure 6.23: Normalized wind speed over Bolund Hill at 2 m AGL for wind direction 239o .
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Figure 6.24: Normalized wind speed over Bolund Hill at 2 m AGL for wind direction 239o .

grid resulted in 9-12x speed-up to decrease the residual to 10−7. The performance of the
simplified inlet/outlet boundary conditions was also assessed against the characteristic
boundary conditions used in connection with compressible solvers. No difference was ob-
served in the results, neither in terms of convergence nor in terms of accuracy by replac-
ing the preconditioned boundary conditioned by the simplified formulations and inlet and
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outlet of the domain.
The accuracy of the prediction of speed-up with measurements was good compared to
measurements over the three hills. The average error between measurements and simula-
tions at all points in prediction of speed-up was 5% and 40% over Kettles Hill and Askervein
Hill at 10 m above ground level and 8.5% over Bolund Hill at 5 m above ground level. In
all cases the use of preconditioning resulted in an improvement in accuracy of predictions
except for velocity and turbulent kinetic energy predictions over Bolund Hill at 2 m above
ground level.
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CHAPTER

7
Immersed Wind Turbine Model

In this chapter the formulation of a newly developed immersed wind turbine model which
stems from previous works in the modeling of film cooling jets in turbomachinery, is dis-
cussed and the detailed implementation in connection with preconditioned multigrid is
described. The immersed wind turbine model was developed in order to reduce the grid
requirements for wind turbine wake flow simulations using a RANS solver. This facilitate
the path for use of Computational Fluid Dynamics in micrositing.

7.1 Review of Wake Models

Wind turbines operating in the wakes of upwind wind turbines may have 30−40% power
losses compared to the upwind turbines and fatigue loads up to 80% larger than the up-
stream turbines [124]. The power loss reduces the expected revenue of the wind farm and
the increased loads reduce the expected life span of the downwind wind turbines. Hence, in
recent decades there has been a significant effort to develop models to simulate wind tur-
bine wakes. The simplest models use empirical or quasi-analytical expressions, to estimate
the downstream evolution of the wake. The first attempt to model the flow behind wind
turbine was reported by Lissaman [87] where he tried to assess the array efficiency within
arrays of turbines. Several analytical and empirical models have since been developed to
assess the velocity, extent of the wake [63] [88] [39] [93] [95] [77] and turbulence intensity
behind a single or cluster of turbines [50] [63] [41] [40] [82] . Some studies tried to extend
the models to account for environmental parameters such as ground effect or atmospheric
stability [94]. Analytical and empirical models are still widely used by industry for predic-
tion of the wake losses in an initial estimation of the energy yield of a wind farm that is
under development. However, due to the inherent simplifying assumptions, the estimates
often have high uncertainties.
The second group of widely used wake models are kinematic models which are based on
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self-similar velocity profiles that are obtained from experimental or theoretical work on co-
flowing jets. Kinematic models usually neglect the expansion region of the wake immedi-
ately downstream of the rotor and provide different formulations describing the wake flow
in near, transitional and far wake region [43]. Different kinds of profiles are used for estima-
tion of the velocity in each region. The two most commonly used profiles are top-hat and
Gaussian profiles [77] [155]. Kinematic models despite their simplicity, often provide ac-
ceptable accuracy when used in connection with properly chosen parameters [48] [4] [154].
However, taking into account the effect of ground and topography is not quite feasible us-
ing such models. More detailed reviews of analytical and kinematic models can be found
in [43].
The last and most complex type of wake models, developed and used in recent decades, are
called field models. Field models are typically three-dimensional models that calculate the
magnitude of the flow at every point of the flow field. Field models require larger compu-
tational resources, but provide a more detailed description of the processes governing the
evolution of the wake. The simplest models solve the linearized momentum equations in
the main flow direction using a constant eddy viscosity [129]. The first numerical model
for solving the turbine operating in atmospheric boundary layer using more sophisticated
turbulent closure schemes was developed by Taylor [139]. Since then several field models
using k − ε turbulence closure have been developed and used for single or multiple wake
simulations [3] [157] [42].
The necessity for use of field models rises when more complex inflow or ground features are
present [43]. It is evident from the prior literature that the interaction of topography with
the wake and wind flow has not been treated satisfactorily [153]. With the increase in avail-
able computational resources and further developments in microscale wind predictions,
there has been an increased interest in using three-dimensional field models, which solve
the Reynolds-Averaged Navier Stokes (RANS) equations in connection with a turbulence
model. This approach enables the wind flow and turbine wake to be simulated simulta-
neously and allows one to (i) account for the change in inflow wind due to terrain effects,
(ii) assess the effect of the elevated turbulence on the wake evolution and (iii) investigate
the interaction of the wake with the adverse or favorable pressure gradients caused by the
local terrain. As the microscale wind pattern over a specific topography is affected by both
the long extent of the wake and the blockage effect of the wind turbines, the placement of
turbines based only on a simulated microscale wind field may not result in an optimised
micrositing of wind turbines in a wind farm.
Several wind farms in complex terrain have been studied such as Castello Ranch in Alta-
mont Pass [131], Alta Mesa [113] and in Greece on the Samos Island [61] and farm in com-
plex terrain reported in [116]. In these studies the focus has been on loads, structure, near
wake regions, far wake and the array loss estimation. The simulation of wind turbine wakes
located in complex terrain is also reported by several authors [6] [30] [115] [14] [116]. In
these studies, the turbines have been modeled using either an actuator disk or an actuator
line approach. In both approaches, the turbine is modeled by imposing the aerodynamics
loads on the computational grids either over a disk representing the rotor in the actuator
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disk approach or along lines representing the blades in the actuator line approach [134].
The load distributions are often obtained using Blade Element Momentum theory. How-
ever, in order to achieve accurate simulations of the flow field, a correction of the load dis-
tributions is often required. Using the actuator line approach, unsteady simulations must
be performed which results in higher computational cost. The application of actuator line
model in connection with Large Eddy simulations reported by several authors [165] [146]
[91] [32] provides very unique insight to the flow and turbulent field in wind farms. How-
ever, due to the large computational cost, their application for micrositing purposes is not
yet feasible. However application of actuator disk model in connection with RANS for pre-
diction of wakes in complex terrain shows promising results [116].
In the current study, the simulations of single and multiple wind turbine wakes is per-
formed using a computationally efficient immersed turbine model which is designed to
combine the approaches of kinematic and field models. The model provides an alternative
to actuator disk model. The representation of wind turbines using an immersed body was
inspired by the similar works for modeling of film cooling in turbomachinery [25] [26] [27]
[28]. This new wind turbine model can be embedded in a RANS solver with grid require-
ments comparable to those used in microscale wind flow simulations. The model allows for
the simulation of multiple wake interactions and the effect of topography on the evolution
of the far wake. Furthermore, using the immersed turbine model, a single computational
grid can be used to evaluate different arrangements of turbines within a wind farm. The
current approach facilitates the path to routinely using CFD to study wake interactions and
the optimized micrositing of wind turbines within wind farms.
In this chapter, first the immersed wind turbine model is described. Then the model is
evaluated against several test cases of stand-alone turbines in wind tunnel and field ex-
periments and multiple turbines in wind farms and the results are compared to available
measurements.

7.2 Model Formulation

The immersed turbine model is developed and incorporated into the in-house RANS solver
with the k −ω turbulence model. The unsteady wind flow past a wind turbine produces a
broad range of flow structures downstream of the turbine. The nature of these structures
depends on the characteristics of the inflow wind, the turbine geometry and the design and
operating conditions. In this work, the modeling approach is to anchor the near-wake re-
gion using analytical models, full CFD simulations and available experimental data. This
is achieved by introducing an immersed body around the wind turbine in the main RANS
computational domain [25]. Burdet and Abhari [25] reported the successful use of the same
approach for modeling of film cooling in turbomachinery application. In this study, in or-
der to avid resolving small scale flow structures of the film cooling jet near the hole, the jet
flow was represented by an immersed body (Figure 7.1 ). Similar approach is adopted here
for modeling of wind turbines. The immersed body represents both the blockage and the
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momentum extraction of the turbine without requiring a detailed solution of the boundary
layers of the blades and the rotor plane. Furthermore, unlike models which operate based
on the introduction of the body forces at rotor plane and therefore require a grid refine-
ment at the location of rotor, introducing the immersed body, eliminates the need for such
refinement at the rotor plane to some degree as discussed later in detail. The shape of the
immersed body is specified as an axisymmetric streamtube around the rotor. Figure 7.1
shows a schematic of such a streamtube superposed on the Cartesian grid.

Figure 7.1: Schematics of near-hole macroflow features where the coolant jet boundary surface is
immersed in the computational mesh [25].

Velocity specified  

- Conserve mass 

Plane of injection: Upstream plane: 
Flow exits without 
disturbance and reflection 

- Flow gradients set to       
zero 

Side boundaries: 
No mass transfer: stream tube 

Figure 7.2: Schematic of the immersed wind turbine model superposed on the Cartesian grid. The
immersed body is a streamtube around the rotor plane of a wind turbine. The predicted near-wake
velocity field is mapped at the outlet plane (Plane O) onto the RANS computational domain. The far
wake region is resolved on the computational grid by the RANS solver.

The inlet boundary of the immersed body (plane I) is located upstream, where the undis-
turbed flow approaches the rotor plane. The boundary condition at this plane is defined
such that wind flow enters the body without disturbance. The side boundaries of the im-
mersed body are specified to be a streamtube, and thus there is no mass transfer across
them. The outlet boundary (plane O) is located downstream of the turbine at the end of the
inviscid expansion of the wake.
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The geometry of the immersed body is dictated by the turbine dimensions and the operat-
ing point. The radiuses of the inlet and outlet planes are defined using the rotor diameter
and are related to the power or thrust coefficient (Cp or CT ) using Blade Element Momen-
tum Theory. First the induction factor is determined using the thrust coefficient (Eq. 7.1 )
The velocity field at plane O is defined using Eq. 7.2 as:

CT =
{

4a (1−a) if a < 0.4

0.89− 0.20−(a−0.143)2

0.643 if a ≥ 0.4
(7.1)

u
(
y , z

)= uave

(
1− Vd

uave

(
y , z

))
(7.2)

where uave is the average velocity at the inlet plane and Vd represents the velocity deficit
distribution (Eq. 7.3).

Vd
(
y , z

)=Vdmax exp

[
−

((
y − y0

)2

2σy
+ (z − z0)2

2σz

)]
(7.3)

The Gaussian profile is used to specify the deficit since it best represents the velocity field at
the end of the near wake [126] [21]. The value of Vdmax , the maximum deficit, is calculated
based on mass conservation between the inlet and outlet planes at each iteration during
the computation. The values of constants in Eq. 7.3 are specified as y0

D = 0, z0
D =−0.08,σy =

σz = 0.8. These values are specified since they best fit the typical wake flow structure ob-
served in various experimental data and full CFD simulations of sub- and full-scale wake
measurements. The value of z0 defines the downward shift of the velocity center line ob-
served in measurements and simulations [136] [137] [42]. The value of these coefficients
remains unchanged for the range of validation cases and require no further tuning or case
specific adjustment. The turbulence intensity and eddy frequency at the outlet plane are
defined as a function of freestream turbulence and the turbine operating condition follow-
ing the approach first proposed by Ainslie [3] for the eddy viscosity. The turbulence quanti-
ties are defined based on Prandtl’s free shear model and formulations suggested by Crespo
and Hernandez’s for the turbulence parameters in wake [41]. Turbulent kinetic energy , k is
defined based on the local velocity imposed at the outlet plane field as:

k = k∞+∆k ∆k = 1

2
(u∞−ulocal ) (ulocal −umi n) (7.4)

where umi n is the minimum velocity in the profile and ulocal is the velocity at each position
in the outlet plane calculated at each point using Eq. 7.2. The formulations for ω following
Crespo and Hernandez’s approach is defined as:

∆ω= a
u∞

zhub

(
∆k

u2∞

)b

(7.5)

where a is calculated as 0.21 using the relation between ω, ε, k and taking into account
the modification to the turbulent coefficients for atmospheric flow. However, obtaining a
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unique value for a which works for all kind of full-scale and wind tunnel wake flows proved
to be difficult. This is partially due to the fact that there is a large variability in the mea-
sured turbulence length scale within the wake of a wind turbine [153], especially in field
measurements. This could be partially due to variability in incoming atmospheric turbu-
lence as well as the atmospheric stability. In full scale measurements, the effect of wake
meandering also influences the overall mixing process. Overall a value between 0.58-5.8 is
chosen for the coefficient a. In the case of wind tunnel measurements and flow predictions
in Sexbierum wind farm discussed later the upper value of 5.8 is chosen, whereas for the full
scale wind farms and assessment of array loss presented in the next chapter, a value of 0.58
is used for all cases. These formulation for k andωwith both range of coefficients results in
turbulence length scale in the wake being smaller than those in freestream as it is observed
in measurements [144] [64] [155]. All model boundary conditions are implemented on the
Cartesian grid using an implicit immersed boundary method. This approach simplifies the
flow field around the wind turbine to a level that is resolved in RANS computations with
a comparable grid size to what is required for microscale wind simulations. The details of
model implementation are described in the next section.

7.3 Numerical Implementation

As described in the previous section, the approach in this thesis for the simulation of the
wake flow was to model the near wake region via introducing an immersed boundary method
and to resolve the far wake on the computational grid. The inclusion of the immersed
body in the computational domain must be performed in a computationally efficient man-
ner such that it does not require substantially higher grid resolution or time-intensive grid
generation process. There are several approaches available in the realm of Computational
Fluid Dynamics for the inclusion of three-dimensional bodies within a given computational
mesh such as global grid reshaping or overlapping grid approach. In this work, the im-
mersed boundary method approach [12] is used since it allows one to accurately to handle
any kind of complex geometry on the Cartesian grid with relatively high computational
efficiency and acceptable accuracy [24]. Using the immersed boundary method, no modi-
fication to the existing Cartesian grid is necessary and different boundary conditions of the
immersed body are imposed by introducing a source term also called forcing function. This
is achieved in this work using the definition of ghost and physical nodes in the computa-
tional domain. In this approach, similar to a ghost cell definition in cell-based algorithm for
implementation of e.g. wall boundary conditions, ghost nodes lying within the immersed
turbine are used to impose the desired Dirichlet or Neumann boundary condition at the lo-
cation of the boundary. A detailed overview of the immersed boundary method and formu-
lation of the method for wall modeling is presented in chapter 9. Here the global procedure
of imposing model boundaries are discussed.
In the implementation process, first the shape of the immersed body is defined using the
prescribed operating condition and the induction factor. Using Eq. 7.1, first the diameter
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of inlet and outlet planes are defined (Eq. 7.6) and then a fifth-order polynomial is fitted to
define the side boundaries of the immersed surface. In Eq. 7.8 G is the function describing
the shape of the streamtube. The values for the polynomial coefficients are obtained using
the inlet and outlet diameters and assuming zero gradients of the body at the edges. The
model extends from one diameter upstream where the flow is not yet affected by the poten-
tial field of the turbine to one diameter downstream where the time dependent signature of
turbine blades as well as the inviscid expansion of the wake start to vanish (see Figure 7.3).

D1 =
p

1−2aD b = 1−2a D2 =
p

1/bD1 (7.6)

G
(
x, y , z

)= (
y − yh

)2 + (z − zh)2 −R (x)2 (7.7)

R (x) = ax5 +bx4 + cx3 +d x2 +ex + f (7.8)

In the next step, different zones near the immersed body are detected and the nodes located
in the boundary are labeled as ghost nodes (Figure 7.5). Then the location of the mirror and
surface points are prescribed and the flow field at those locations are determined using a
first or second order interpolation. At the location of inlet plane, the gradients of the flow
quantities are set to zero satisfying boundary condition expressed in Eq. 7.9. The boundary
at the outlet plane are defined similarly using Eq. 7.10. The definition of different normal
and directions to the immersed surface are shown in Figure 7.4.

W Inl et pl ane
I B M =



∂ρ
∂s
∂u
∂s
∂v
∂s
∂w
∂s
∂p
∂s

=


0
0
0
0
0

 (7.9)

W Outlet pl ane
I B M =



∂ρ
∂s
u
v
w
∂p
∂s

=


0

uoutlet

0
0
0

 (7.10)

At the side boundaries a slip boundary condition is imposed. For this purpose, the velocity
is decomposed into the normal Vn and tangential components Vb and Vt to the streamtube
defining the side surface, and then the slip boundary condition is imposed using Eq. 7.11.

W Si de pl ane
I B M =



∂ρ
∂n
Vn
∂Vb
∂n
∂Vt
∂n
∂p
∂n

=


0
0
0
0
0

 (7.11)
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Figure 7.3: The three-dimensional shape on the model and side boundaries. The figure illustrates how
induction factor affects the shape of the immersed turbine.

s
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Figure 7.4: The three-dimensional shape on the model. Vectors s, n, b and t illustrate the normal and
tangential vectors used in Eq. 7.9, 7.10 and 7.11.

Figure 7.5: Schematic graph depicting ghost, mirror and surface points. Boundary conditions of the
model are imposed are the Cartesian grid using an immersed boundary method.

The categorization of the nodes at the boundary of turbines is performed once at the be-
ginning of the computations. As the solution evolves at every iteration, the boundary con-
ditions of the immersed turbine are updated using the calculated velocity and turbulent
field in the physical domain upstream of the turbine. Therefore, any modifications of the
velocity or turbulent quantities upstream of the turbine related to terrain or upstream wake
are taken into account automatically in the calculated model output at the outlet plane. At
each iteration, the maximum velocity deficit at outlet plane is defined based on the incom-
ing mass flow to the immersed turbine (Figure 7.6)

In the implementation of the model, the rate of the change of flow properties inside the
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Figure 7.6: The mass flow definition at the outlet plane using the mass conservation within the im-
mersed body.

bodies are set to zero as the internal nodes have no influence on the global flow field and
can be treated as dead cells. Therefore no special treatment is required in connection with
preconditioning. It must be noted that however, the scaling of the preconditioning param-
eter ε discussed in section 5.2.1 is very crucial to the successful and robust use of precon-
ditioning for wake flow simulations, where reduced velocity and large values of computed
viscosity makes it a difficult case for preconditioning solver. However, special treatments
are required in connection with the other convergence acceleration method, multigrid.
Since the immersed wind turbine model, imposes extra boundary conditions on the main
physical domain, they must be addressed in the multigrid cycle when corrections and resid-
uals are transferred between levels. Unlike the other boundary conditions, such as at wall
or inlet which are imposed on all levels, the conditions at the boundaries of the immersed
wind turbines could not be updated at all levels due to insufficient grid resolution on coarse
levels in the representation of the shape of the immersed body (Figure 7.7). The alterna-
tive approach is to freeze the solution at the boundaries of the immersed turbine at the
coarse levels. This is crucial in successful application of multigrid in connection with the
immersed wind turbine model implementation. Figure 7.8 shows how such a modification
affects the convergence for a single wake simulation in connection with multigrid.

7.4 Single and Multiple Wake Simulations

For validation, predictions using the immersed turbine model are compared with measure-
ments performed in the wind tunnel of Marchwood Engineering Laboratory [126] [58]. In
the experiment, single wake measurements are performed in the wake of a model turbine
operating in a simulated atmospheric boundary layer. The rotor diameter and the hub
height of the turbine are 0.27 and 0.3 m respectively. Velocity and turbulence measure-
ments are performed at three different tip speed ratios λ = 2.9, 4.0 and 5.1 which corre-
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level H level 2H Level 4H 

level H: Wboundaries=Wmodel level 2H: Residualghost node =0 level 4H: Residualghost node =0 

Figure 7.7: Ghost nodes within the immersed body on different grid levels.

Figure 7.8: Residual drop for a single wake simulations using the immersed wind turbine model in
connection with preconditioning and multigrid.

spond to measured axial force coefficients of CDax = 0.62, 0.79 and 0.85. These coefficients
are used in the model to prescribe the geometry of the immersed body. The incoming ve-
locity profile in the simulations is specified based on Eq. 6.1 with values of z0 = 7.56×10−6m
and uτ = 0.16m/s to reproduce the free stream velocity measured in the wind tunnel.

The extents of the computational domain are 67D, 22D and 20D in the x, y and z direc-
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Figure 7.9: The model output for the velocity and turbulent quantities to be mapped at one diameter
downstream for three different operating condition. As expected the velocity deficit and generated
turbulence by the rotor increases as the thrust coefficient increases.

tions respectively. The grid is locally clustered around the immersed body and in the wake
with a resolution of 0.12D in the x direction and 0.06D in the y and z directions. The effect
of reducing the resolution by a factor of two in all directions was also studied. There was
less than 2% difference in the velocity profiles, and therefore the results on the above grid
are considered grid independent.
Figure 7.9 shows the model output for velocity and turbulent quantities at three different
operating conditions at 1D downstream at the outlet plane. As expected, the value for ve-
locity deficit and turbulent kinetic energy increases as the loading on turbine increases.
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Figure 7.10: Predicted velocity profiles downstream of single turbine compared to measurements in
wind tunnel for operating condition of TSR=2.9 compared to measurements [58] and simulations
[126].

Predictions of wind speed compared with measurements at three downstream locations
for tip speed ration of 2.9 are shown in Figure 7.10. The wind speeds are normalized with
respect to the reference wind speeds. Overall good agreement is observed between the pre-
dictions of velocity deficit and wake recovery and the experimental measurements. The
results are also compared with numerical solution obtained ECN’s wake model [126]. The
velocity deficit predictions are also compared at two other operating conditions in Figure
7.11. The error in the predicted velocity deficit at the wake centreline is 4%, 17% and 36%
for TSR of 2.9, 4.0 and 5.1. As expected, in both the simulations and the experiment the
deficit increases when the tip speed ratio and the axial thrust coefficient are increased from
trip speed ratio of 2.9 to 4.1. The trend continues for tip speed ratio of 5.1 at one diameter
distance, however due to higher generated turbulence and mixing, the deficit diminishes at
2.5D distance in the simulations. The largest difference is observed for tip speed ratio of 5.1
where the turbine is heavily loaded. The evolution of the profiles is predicted well however
for all three cases. At 7.5D downstream of the turbine the difference between the measured
and predicted profiles is less than 0.13 at all heights.
In order to further assess the performance of the immersed turbine model, the profiles of
turbulent kinetic energy are also compared with measurements in Figure 7.12 and 7.13 for
tip speed ratio of 2.9, 4.0 and 5.1 respectively. The turbulence intensity is calculated based
on the hub height velocity upstream of the turbine. As shown in Figure 7.12, two peaks
appear in the profiles of turbulence intensity, corresponding to the blade wake below and
above the height of the nacelle. In the current formulation of turbulent kinetic energy, these
peaks do exist primarily at the profile of turbulent kinetic energy that are introduced using
Prandtl’s equation (Eq. 7.4). The peak in the upper half is larger due to the higher wind
shear. The turbulence intensity downstream of the turbine increases in both measurements
and simulations when the drag force on the rotor increases, going from a tip speed ratio of
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Figure 7.11: Predicted velocity profiles downstream of a single turbine compared to measurements in
a wind tunnel for three operating conditions TSR=4.0 and TSR=5.1.

2.9 to 5.1. However this increases is largely overestimated in the simulations. The turbu-
lent kinetic energy and turbulence intensity at 2.5D downstream are over-predicted by the
model. The agreement between the predictions and the experiment is not satisfactory for
tip speed ratio of 5.1 where the errors are the largest.

The performance of the immersed model is next assessed with regard to predictions of ve-
locity deficit, wake interactions, recovery of the wake and profiles of turbulent properties
of full-scale wind turbines. The measurements of single and double wakes from the Sex-
bierum wind farm are chosen for this purpose [33] [34]. This Dutch experimental wind
farm is located in the north of the Netherlands approximately 4 km distance from the sea.
The layout of the wind farm is shown in Figure 7.14. The wind farm is located in flat homo-
geneous terrain covered by grass. The location and topography of the wind farm makes it
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Figure 7.12: Predicted turbulence intensity profiles downstream of a single turbine compared to mea-
surements in a wind tunnel for tip speed ratio of 2.9 compared to measurements [58] and simulations
[126]

possible to reduce the uncertainties in defining the inflow boundary conditions. The rotor
diameter of all turbines in the farm is 30.1 m and the hub height is 35 m. The turbines have
300 kW rated power. In order to obtain maximum efficiency, the tip speed ratio of the tur-
bines is kept constant up to a wind speed of 10 m/s. Therefore the thrust coefficient of the
turbines is relatively constant (CT = 0.75) for wind speeds of 6-10 m/s.
Single wake measurements are performed at different up- and downstream positions of the
turbines using mobile masts instrumented with 3-component propeller and cup anemome-
ters. The free stream hub height velocity is 10 m/s and turbulence intensity is 10%.
The extents of the computational domain are 94D, 46D and 24D in x, y and z directions.
A Cartesian grid with local clustering around the turbine and in the wake is used for the
simulations. The grid resolution is 0.04D in all directions. Simulations were also performed
with a coarser grid with 0.08D resolution to investigate the effect of grid in prediction of
wake recovery. Both grids are also clustered close to the ground in the z direction in order
to capture the large gradients close to the rough terrain (Figure 7.15). The black body in
Figure 7.15 denotes the immersed wind turbine model.

Figure 7.16, 7.17 and 7.18 show the predicted velocity downstream of the turbine compared
to measurements. The results obtained using two different grids are shown in Figure 7.16.
Coarsening the grid has no effect in prediction of the wake recovery. In Figure 7.17 and 7.18
results obtained using the current model are compared with predictions where the turbines
are modeled using an actuator disk model [120]. The results show that the velocity deficit is
underestimated in predictions using both models. The centreline velocity is predicted with
a 4% error using IWTM. However, the lateral extent of the wake is captured quite accurately
using the newly developed model. This has significant importance for studying the wake
effects in wind farms. Under or overestimation of the wake extent may lead to inaccurate
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Figure 7.13: Predicted turbulence intensity profiles downstream of a single turbine compared to mea-
surements in a wind tunnel for three operating conditions TSR=4.0 and TSR=5.1.

loss prediction in an array of turbines.
The predictions are also compared to measurements at downstream distance of 8D, where
the predictions are even more relevant in the context of micrositing. The measurements
of both velocity deficit and turbulent intensity show a nonaxisymmetric profiles which are
not captured in the simulations. At 8D downstream, the velocity deficit at wake centerline is
predicted as 0.15 compared to measured value of 0.25. The turbulence intensity predictions
are also compared with measurements at 2.5 and 8D downstream of the turbine (Figure 7.19
and 7.20). Similar to the velocity profiles, the turbulence intensity is predicted well at the
outer edges of the wake, but the local minima of the profile at the centreline is not present
in the simulations. The agreement of the turbulent kinetic energy at 8D is less good where
the measurements do not show a coherent symmetrical distribution inside the wake. This
could be due to wake meandering or small changes in the upstream wind direction during
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Figure 7.14: Layout of the Sexbierum wind farm located in the north of the Netherlands.

2D=60 m x z 

Figure 7.15: The view of the computational grid with local clustering in the z direction and around
the immersed turbine used for the single wake simulations at the Sexbierum wind farm.

the measurements, which are not accounted for in the simulations. However, the level of
turbulence intensity seems to be captured well by all models at around 8−10%.

Figure 7.21 shows a side view of the contours of wind speed and turbulent kinetic energy
downstream of turbine modeled with IWTM. It can be seen that the atmospheric boundary
layer and far wake region are resolved on the computational grid. The downwind shift of
the minimum velocity from the rotor axis as well as the wake expansion could be observed
in the results. It is also seen that the point of maximum turbulent intensity also moves up-
ward from the turbine axis as expected.
Next the wake interaction is studied using the immersed model. The simulations are done
based on double wake measurements undertaken at the Sexbierum wind farm. The data
are from turbines T36, T37 and T38, see Figure 7.14, for a southerly wind direction, when
turbine 37 operates in the wake of T38 and turbine 36 is in the wake of both upstream tur-
bines. The turbines are separated by a distance of 5D. The simulations are done for seven
different wind directions, −15o , −10o , −5o , 0o , 5o , 10o and 15o , where 0o indicates the di-
rection parallel to the turbines T36, T37 and T38. The simulations are performed for a wind
speed of 10 m/s and the same computational grid is used for all directions.
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Figure 7.16: Predictions of the velocity profiles at 2.5D and 8D downstream of the turbine using two
different grid resolutions.
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Figure 7.17: Predictions of the velocity profiles at 2.5D downstream of a full-scale wind turbine com-
pared to measurements and simulations performed using actuator disk mode [120]

Figure 7.22 shows a plane view of the contour plots of velocity at hub height for the 5o and
15o wind directions when the turbines are partially immersed in the wake of the upstream
turbine. The prediction of the power loss for T37 and T36 versus wind direction is com-
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Figure 7.18: Predictions of the velocity profiles at 8D downstream with measurements [33] and simu-
lations [120]
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Figure 7.19: Predictions of turbulence intensity at 2.5D downstream of a full-scale wind turbine com-
pared to measurements and simulations performed using actuator disk mode [120]

pared with measurements in Figure 7.23. Since the power and thrust coefficients of the
turbines are reported as constant for a wind speed below 10 m/s, the power ratio of the
turbines in the simulations is calculated as the ratio of the velocity cubed. The average ve-
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Figure 7.20: Predictions of turbulence intensity profiles at 8D downstream with measurements [33]
and simulations [120]

Figure 7.21: Side view of contour plots of wind speed and turbulent kinetic energy downstream of the
turbine in operation in an atmospheric boundary layer simulated using IWTM.

locity over the inlet plane in the IWTM is used as the reference velocity at the hub height of
the turbines. Results show that for the 0o wind direction, where the downstream turbines
are fully immersed in the wake, the power loss of T36 is predicted well by the model with
less than 7% error, whereas the power deficit of T37 is overestimated by 13%. In general,
it is observed in both simulations and experiments that the largest drop in power output
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Figure 7.22: Plane view of contour plots of wind speed showing the wake interactions for two different
wind directions.
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Figure 7.23: Power versus wind direction compared to measurements for two downstream turbines,
T37 and T36 at the Sexbierum wind farm.
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Summary

occurs between the first row and the second row whereas the power loss between the sec-
ond row and third row is much less reduced. The power from second to third row in the
simulations decreases by 10% where as this reduction is only 3% in the measurements. The
small change in the power loss in subsequent rows in cluster of turbines occurs because
the recovery in the wind speed between T37 and T36 is approximately equal to the velocity
drop across the rotor plane of turbine T37. The same trend is observed in measurements
performed in several operating wind farms [73] [44]. Even though the power loss for both
turbines is overestimated by the model for directions between 5 and 15 degrees, the wake
extent is captured quite well. In both measurements and simulations, when the angle be-
tween the turbine axis and wind is larger than 15 degrees, the downstream turbines are out
of the wake’s shadow effect and the turbines see the undisturbed wind.

7.5 Summary

The formulations and implementation of immersed wind turbine model is verified and val-
idated for single and double wake interaction compared to wind tunnel test and full-scale
wake measurements. The results show that the model is capable in reproducing the mean
and turbulent field behind the wind turbines. The performance of the model for different
operating conditions was tested compared to wind tunnel measurements. The increase of
velocity deficit and turbulent kinetic energy is obtained downstream of the turbine as thrust
coefficient increases as expected based on the model formulations. The trend is visible at
2.5D downstream for tip speed ratio of 2.9 and 4.1, corresponding to axial drag coefficients
of 0.62 and 0.79. At tip speed ratio of 5.1 however, the excessive generated turbulence re-
sults in faster recovery of centerline velocity than measured. The dissipation of turbulent
kinetic energy is also poorly predicted for tip speed ratio of 5.1. The average turbulence in-
tensity at rotor plane decreases from 12% at 2.5D to 10% at 7.5D in measurements whereas
this decrease is 18% in the predictions. The model is also tested for single and double wake
measurement in Sexbierum wind farm. Overall 5% and 30% error is observed in predic-
tions at 2.5D and 8D downstream of the turbine. The extent of the wake is predicted well
by the model, with predicted 100% recovery at 28o at 2.5D. The average values of turbulent
intensity are also predicted well by the model. The reduction of turbulent intensity in the
nacelle wake is captured by the model even though the reduction in the measurements is
more pronounced. The Power loss in the row of three turbines are also estimated using the
model and compared to measurements. The predicted power loss in the first and second
downstream turbine is predicted as 67% and 60% compared to measured 72% and 69%.
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CHAPTER

8
Estimation of Array Loss in Wind
Farms

In this chapter, the wake interaction in wind farms is studied using the immersed wind
turbine model and the array loss estimations are compared with SCADA data. The simula-
tions are performed based on double and multiple wake measurements undertaken at the
Lillgrund offshore wind farm [44], Spanish wind farm located in complex terrain [116] and
Mont Crosin wind farms located in Switzerland.

8.1 Lillgrund Wind Farm

First the performance of wind turbine in an offshore Lillgrund wind farm is studied. The
Lillgrund wind farm is located in the Öresund, a body of water between Copenhagen Den-
mark, and Malmo Sweden. The farm consists of 48 Siemens SWT-2.3-93 turbines with a
rated power of 2.3 MW, rotor diameter of 93 m and a rotor hub height of 65 m. Figure 8.1
shows a plane view of the turbines in the wind farm. The farm has a relatively dense tur-
bine configuration and therefore of great interest is an investigation of how wakes affect the
production of the farm.

The numerical simulations are performed including over two first rows of the farm for dif-
ferent wind directions. The dependency of the power of the turbines to wind direction and
the prediction of the wake extent are compared to the measurements. The performance of
turbine 22 (C07) for different wind directions is simulated. Six turbines in the first and sec-
ond row of the farm are included in the simulations. The simulations are performed over
the wind direction range of 195o−245o with 5 degrees interval. The influence of power level
on relative power is reported in [44]. The insensitivity of the relative power to power level
implies that turbines are operating efficiently with a constant thrust coefficient. A thrust
coefficient of 0.79 is used in the simulations based on the manufacturer’s power curve. The
extents of the computational grid are 95D, 80D and 17D in x, y and z directions respec-
tively. The computational grid used for the wind farm simulations are shown in Figure 8.2.
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Figure 8.1: Layout of Lillgrund wins farm [44].

Figure 8.2: Same Cartesian grid used for simulations of all wind directions.

The black symbols denote the immersed wind turbines. As mentioned before using the
immersed wind turbine model all direction can be modeled using a single grid. A surface
roughness of 0.1 mm, hub height velocity of 9 m/s and turbulent intensity of 6% are used in
the simulations [32].

The normalized power of turbine 22 (C07) versus wind direction is shown in Figure 8.3. The
power of turbine C07 is normalized by the upstream turbine 23 (C08). The variations of the
power are captured very well by the model with average error of 8% except for 230o and
235o wind directions where turbine 23 is still partially immersed in the wake of upstream
turbine (C08) whereas based on measured data it operates in undisturbed wind flow.
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Figure 8.3: Predicted effect of wake on power of turbine C07 (shown with circle) versus wind direction.

8.2 Wind Farm in Complex Terrain

As discussed in chapter 6, the local wind flow and turbulence are greatly influenced by the
underlying topography in onshore wind farms. Steep hills often cause large wind speed-
ups, flow turning, changes in wind sheer and flow separation. In the previous sections, we
have also shown that how the interaction of wind turbine with upstream wake flow greatly
impacts the performance of the wind turbine. In order to assess the effect of topography
and wake flow simultaneously, simulations of wind turbine over complex topography is at-
tempted in this thesis. The first wind farm which is studies is a medium sized wind farm
with 43 turbines with moderately complex topography located in Spain. Figure 8.4 shows
the layout of the turbine. The performance of this turbine was reported within the Up-
wind Integrated Project [116]. Politis et al. performed simulations of this wind farm using
two different solvers in connection with a actuator disk model and compared the array loss
predictions with results from more established tools such as WAsP. In this work, the simula-
tions are performed using the immersed wind turbine model. The bin for wind direction in
experimental data reduction and WAsP analysis is 327o ±5o and therefore simulations are
performed for three different wind directions of 322o , 327o and 332o . The arrow in Figure
8.4 shows the wind direction of 327o where the array losses are most significant for the lay-
out of this farm.
The extent of the computational domain is 15×13×1.8km in x,y and z directions. The inlet

plane is located 6 km upstream to resolve the effect of topography on the incoming wind
flow. The outlet boundary condition is located downstream of the last row and periodic
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Figure 8.4: Layout of the wind farm located in complex terrain superimposed on the digital elevation
map of the area. The measurement data and simulations are reported for wind direction of 327o

where the turbine are operate in maximum wake coverage of upstream rows.

boundary condition are located 6 km away of the edge of the wind farm. A Cartesian grid is
generated with clustering around the turbines. The grid resolution is 0.08D in all directions
in the clustered region. The mesh is additionally clustered close to the ground with the first
point being 2 m above the ground level. These resulted in overall total of 8-9 million grid
points. The thrust coefficients of the turbines are specified based on provided data. The
inlet boundary conditions are defined using Eq. 6.1 for flow and turbulent quantities. The
roughness is assumed constant over the topography as 0.01 m. The velocity at hub height
is specified as 8.4 m/s.
The simulations are also performed for an identical wind farm with similar layout located
on flat terrain in order to evaluate the possible effects of terrain on the array loss and wake
interaction in the wind farm. These simulations are performed using same computational
grid and boundary conditions to isolate the effect of local topography on the predictions.

Figure 8.5 shows the array loss predictions in rows 1-4 in the wind farm. The power of
individual turbines are normalized using the average power of first 7 turbines in the first
row. Figures shows the results from three directions using immersed wind turbine model.
The numerical results from CFDWake [116] using the actuator disk model are also shown in
the same figure. The RMS error of prediction of normalized power in all rows is compared
with two other CFD solvers and WAsP in Table 8.1 for wind direction of 327o . The RMS error
in predictions is better than predictions obtained by WAsP in all rows. The highest error is
observed in row # 3 where losses in turbines 5-8 is poorly predicted. As is observed in the
contour plot, last three turbines operate almost out of the wake region (Figure 8.7). Figure
8.5 also shows the sensitivity of the power loss to wind direction in this wind farm. The sen-
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Figure 8.5: Normalized power for turbines in 4 rows compared to SCADA data. The results show the
predictions for three directions 322o , 327o and 332o . The numerical results obtained using CFDWake
solver and actuator disk model are also presented in the figure [116]

sitivity is rather large especially for wind direction of 332o . In addition to the change in the
wake extent and orientation, for the farms located in complex terrain, the change in wind
direction also alters the upstream topography and therefore undisturbed wind as well as
the wake evolution. Hence, in complex terrain, there is even larger sensitivity of array loss
to change in wind direction. Based on current results, averaging band of 10o for assessing
array loss proves to be too large even in moderately complex topography.

In order to investigate the effect of topography on wake evolution in more detail, power loss
predictions for two directions, 322o and 327o , are also compared to a similar farm located
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Figure 8.6: Normalized power for two wind direction in the wind farm located over moderately com-
plex topography and a similar farm located over flat terrain.

on flat terrain. Results are compared in Figure 8.6. As expected, the sensitivity of power
to wind direction is eliminated for the case of flat terrain in the first row. The small fluc-
tuations of power between seven turbines are due to the change in the hub height of the
turbines which results in different computed averaged velocities at the inlet plane of the
model. The maximum average difference between two cases in observed in row # 3 for tur-
bines 5-8 where the predictions have the largest uncertainty. The difference between two
cases shows that the over prediction of the power in this series of turbines is terrain-related.
In general, the array loss is larger for the case of flat terrain in all rows which confirms a more
rapid mixing and recovery of the wind turbine wake in interaction with topography.
Next the aerodynamics and performance of another wind farm that is located in complex
terrain is examined.This second wind farm studied is the 23.7MW Mont Crosin wind farm
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Figure 8.7: Velocity contours in wind farm located in complex terrain.

Table 8.1: Comparison of mean RMS error of different models for each row. The results obtained using
immersed wind turbine model is compared with model results obtained by [116]

Model Row #1 Row #2 Row #3 Row #4
IWTM 0.038 0.215 0.293 0.165

CFDWake 0.049 0.23 0.294 0.119
CRES-flowNS (a) 0.062 0.300 0.369 0.120
CRES-flowNS (b) 0.090 0.427 0492 0.192

WAsP 0.095 0.329 0.405 0.265

that is comprised of 16 turbines and located in western Switzerland. The terrain and the po-
sitions of the turbines are shown in Figure 8.8. To analyze the wake effects, 9 closely placed
turbines on the centre of the hill are included in the simulations. Turbines 1-4 are small tur-
bines (Vestas V44 and Vestas V47) with hub height of 45 m and turbines 10-14 (Vestas V90)
have hub height of 95 m. The terrain is moderately complex and there is an approximately
500 m change in elevation in less than 3 km distance towards south from the location of the
turbines.
The analysis of 18 months of SCADA data using our in-house Blade Element Momentum

Code [81] shows that the thrust coefficient is 0.8 for the relevant wind speed of 5-9 m/s. The
land is mainly covered by short grass and the roughness height of 0.03 m is used in the sim-
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270o 

Figure 8.8: Digital elevation map of the terrain where Mont Crosin wind farm is located. Turbines are
shown as black circles.
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Figure 8.9: Distribution of wind direction on the site.

ulations. The turbulence intensity is specified based on ETH Zurich measurements using a
nacelle mounted probe over a span of a year at this wind farm [98].
Figure 8.9 shows the distribution of wind direction obtained based on SCADA data from
turbine 10. The wind rose obtained from mesoscale simulations, which are performed over
Switzerland using Weather Research Forecast Model (WRF) are also shown [69]. It can be
observed that the dominant wind direction is from the southwest quadrant. Thus wake ef-
fects are quite significant for this site due to the turbine arrangement. Based on the wind
rose, the wind directions between 180o and 270o are simulated. The extent of the computa-
tional domain is 20 km x 14 km x 4 km in x, y and z directions. The grid with local clustering
around the turbines is used. The horizontal resolution of the grid is 10 m.

Simulations are performed for 6 directions of 170o , 195o , 205o , 225o , 250o and 260o . A quan-
titative comparison of the effect of wind direction on the output power of turbine 14 relative
to power output of turbine 13 to measurements is shown in Figure 8.10.
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Figure 8.10: Effect of wake shadow for different wind directions, on power ratio of turbine 14 with
respect to turbine 13.

8.3 Summary

The performance of immersed wind turbine model in estimation of array loss was pre-
sented and assessed in this chapter. The performance of offshore wind farm Lillgrund is
first analyzed. Tow first rows of the wind farm were simulated and dependency of the power
of downstream turbine to variations in wind direction was estimated. The results were com-
pared to SCADA data collected from the operating farm. Overall, the average RMS error
between simulations and measurements is 0.13. The minimum power of the turbine fully
immersed in the upstream wake is predicted as 0.31 compared to measured value of 0.35.
Next the performance of wind farm located in complex terrain is investigated and array loss
estimations are compared to SCADA data. The entire wind farm consisting of 43 turbines
with mixed hub heights is simulated using the preconditioned solver and immersed wind
turbine model. The predictions are also compared with other RANS solvers and WAsP en-
gineering tool. Overall, the predictions of power loss are improved compared to WAsP at all
row in the farm located in moderately complex terrain. The relative error in power predic-
tions by immersed wind turbine model is 5.9 %, 21.5 %, 40.1 % and 16 % in row number 1
to 4 respectively.The array loss estimations in this farm are also compared to a similar farm
located on flat terrain and the effect of wake-terrain interaction on power performance in
onshore wind farms is quantified. Last, the dependency of power output to wind direction
in Mont Crosin wind farm located in complex terrain is evaluated for a pair of turbines. The
mean RMS error between simulations and measurements is 0.11. The predictions are in
good agreement with measurements except for the case of full immersion in the upstream
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wake where the power loss is largely over estimated.
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CHAPTER

9
Immersed Boundary Method for
Terrain Modeling

The capability of RANS models has been demonstrated for atmospheric and wake flows in
the previous chapters. It was also discussed that in order to achieve sufficient accuracy in
wind prediction, further improvements are required in several areas including turbulence
modeling, surface roughness, boundary conditions and grid generation. This penultimate
chapter focuses on the grid generation problem, and demonstrates alternative modeling
approaches for the simulation of flow over complex terrain that avoid the difficulties related
to grid generation for complex geometries and simulation of multiple wind directions.
Most flow solvers used for atmospheric flow modeling employ structured or unstructured
body-fitted grids over the specified topography. Since most of the solvers use finite differ-
ence or finite-volume methods with relatively low (that is first or second-order) accuracy,
fine meshes are required to obtain good results. Moreover, in highly complex terrain, it is
necessary to use fine meshes irrespective of the order of the discretisation scheme; other-
wise the poor representation of the terrain results in reduced accuracy of the predictions.
Apart from the fact that some solvers are not capable of handling complex geometries, the
grid generation process often requires significant computational time to achieve a satisfac-
tory balance between the desired grid size and the skewness of the elements. The latter is
more problematic over steep landscapes. Moreover, most algorithms use a terrain follow-
ing coordinate transformation, which introduces additional numerical error in the solver
when used over very steep terrain.
In addition to the above considerations, in wind resource assessment for the micrositing of
wind turbines, multiple wind directions must be investigated. In order to cover the wind
rose of interest using conventional rectangular domains, often grids must be generated for
each wind direction. This is a lengthy and tiresome procedure. On the other hand, the use
of one circular computational domain amplifies the uncertainties in the definition of inflow
boundary conditions. To overcome these problems, in this study, an immersed boundary
method has been used in a our RANS solver in order to model the flow over any arbitrary
topography using a single Cartesian grid. The method does not incur significant additional
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costs. Furthermore, changes in surface geometry simply require modification of the orien-
tation of the topography without any further modification of the code or the grid.
The immersed boundary method (IBM) was first introduced by Peskin for low Reynolds
number biological flows [114]. However, later its application was successfully extended to
simulate the flow over arbitrary complex geometries using RANS solvers, large eddy or di-
rect numerical simulations [96] [12] [76]. In the IBM, the presence of the surface is modeled
by an external body force acting on the grid nodes in the vicinity of the surface. Peskin
[114] modeled the force acting on the flow by moving solid boundaries with a spring sys-
tem. Later, several authors extended the method by using feedback forcing in the momen-
tum equation to set the desired boundary condition [54]. However, in this approach, the
computational cost is significantly increased for transient flows [121]. To overcome this
problem, the direct forcing approach was introduced. In this method the forcing function
due to the immersed surface is included in the equations being solved through the use of
ghost nodes [47]. This approach is used here. In addition to higher stability, the advantage
of this method is that the main part of the solution algorithm is calculated only once for a
specific simulation and remains unchanged during the remainder of the computation. This
significantly decreases the computational overhead.
As discussed above, the immersed boundary method has become very popular in the CFD
community and is used extensively in Direct Numerical and Large Eddy Simulation meth-
ods. The application of the method in connection with RANS however is not very well es-
tablished. One reason for the lack of widespread use is extreme grid requirement in the
boundary layer, normal to the wall, in RANS methods (y+ < 1). The implementation of the
IBM in a RANS solver was first presented by Majumdar [96]. Several authors later used IBM
in connection with RANS but the application was still limited to relatively low and moderate
Reynolds flows [111] [74]. While the immersed boundary method has been applied to wind
predictions using LES [89], in this study the implementation of the method with a RANS
solver and its application to wind flow complex terrains is presented for the first time.
Furthermore to facilitate the efficient application of IBM for atmospheric wind simulations
using RANS with Cartesian grids, following Tullio [147] wall functions are used to relax the
stringent near wall grid resolution requirements. In the following section, the numerical
method including the details on the solver and implementation of IBM and wall functions
are presented. In a next section, the implementation for basic solver is validated for lami-
nar separating flow over cylinder. Then, the wind flow simulations using IBM over a two-
dimensional hill are compared with simulations using a grid-aligned with geometry. The
immersed boundary method is finally applied to simulations for the moderately complex
terrain and complex terrain test cases, Askervein Hill and Bolund Hill described in chapter
6.
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9.1 Numerical Method

The immersed boundary method is implemented into our solver in connection with dif-
ferent discretisation than Runge-Kutta. The method uses a central discretisation in space
similar to the Runge-Kutta scheme described in section 3.1, but the space discretisation is
based on Ni’s Lax-Wendroff [110]. Ni described an explicit time marching staggered grid
technique to solve the Euler and Navier-Stokes equations. In contrast to the standard Lax-
Wendroff method, second order time derivatives are replaced by expressions of second or-
der spatial derivatives. The method of Ni was applied by Saxer in a 3D turbomachinery
Euler flow [125], who used non-reflecting boundary conditions and relative systems for
rotating blade rows. Burdet extended the solver to the Reynolds Averaged Navier-Stokes
equations [24] and added the turbulence models of Baldwin and Lomax and Spalart and
Allmaras. Later Basol [15] extended the solver to include the turbulence model of Wilcox
[162].
In the scope of this work, a multiple-grid algorithm was added to the solver in order to fur-
ther accelerate the convergence of the scheme. In the next sections, a brief description of
the scheme will first be presented and then the details of multiple grid algorithm will be
discussed.

9.1.1 Finite Volume Lax-Wendroff Method

Ni’s Lax-Wendroff is a cell-vertex finite volume integration technique of governing Navier-
Stokes equations. The method consists of a Lax-Wendroff time integration procedure and
a cell-vertex formulation of the inviscid terms and cell-center formulation of viscous terms
over control volumes. The formulation of the method starts with a Taylor series expansion
of the variable vector W :

W n+1 =W n +∆t

(
∂W

∂t

)n

+ ∆t 2

2

(
∂2W

∂2t

)
(9.1)

(
∂W
∂t

)n
can be replaced by the sum of the derivations of the viscous and inviscid fluxes at

time step n. If we call the δW =W n+1 −W n residual, one can obtain:

δW =∆t

(
∂F
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(9.2)

In the above formulation, the rate of change of fluxes could be also linearized and expressed
based on space derivatives. After replacement and linearization of the flux calculation, the
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node based- residual is given as:

δW =∆W n
i −∆t

(
∂

∂x
(∆F n)+ ∂)

∂y
(∆Gn)+ ∂

∂z
(∆H n)

)
−

(
∆W n

v − ∆t

2

(
∂

∂x
(∆F n)+ ∂)

∂y
(∆Gn)+ ∂

∂z
(∆H n)

))
(9.3)

where ∆W n
i and ∆W n

v are the first order change of the inviscid and viscous fluxes. The rate
of change in Eq. 9.10 is calculated on the cell center and needs to be distributed to the
nodes in a cell vertex algorithm. The detailed derivation and formulation of the scheme on
a general curvelinear grid can be found in [143] and will not be discussed here. However, to
describe the multiple grid algorithm, the formulation of Ni’s Lax-Wendroff is given in detail
for 1D Euler equation [110]. The Taylor series expansion for the 1D flow is written as:

δWi =
(
∂W

∂t

)n

∆t (9.4)

where index i refers to the node number. By defining:

∆WI =
(
F n

i−1 −F n
i

) ∆t

∆x
(9.5)

∆WI I =
(
F n

i 1 −F n
i+1

) ∆t

∆x
(9.6)

∆F =
(
∂F

∂W

)
∆W (9.7)

we can now write:

δWi = 1

2

(
∆WI + ∆t

∆x
∆FI

)
+ 1

2

(
∆WI I + ∆t

∆x
∆FI I

)
(9.8)

where I and I I refer to the cells surrounding node i (Figure 9.1). The Eq. 9.8 can be in-
terpreted as a formulation that describes how the cell-based residuals ∆WI and ∆WI I are
distributed to the cell vertices. Therefore, the rate of change in the flow vector W in node i
has contribution of both cells I and I I :

δWi = (δWi )I + (δWi )I I (9.9)

The simplified equations above provide a sufficient basis for describing the multiple grid
algorithm used in connection with Ni’s Lax-Wendroff for convergence acceleration.

i i+1 i-1 

I II 

Figure 9.1: Control volumes used for one-dimensional model
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9.1.2 Multiple Grid Algorithm

Following a rather similar approach of classical multigrid method described for hybrid Runge-
Kutta in chapter 4, the multiple grid method tries to combine the fast convergence rate
of coarse grids with the high accuracy of fine grids. Similar to Runge-Kutta, in Ni’s Lax-
Wendroff coarse grids are used to propagate the fine grid corrections more rapidly in the
computational domain and accelerate the convergence to steady-state. However the de-
tails of the algorithm and implementation differ.
In the multiple grid approach, once the coarse grid levels are constructed, the multigrid cy-
cle starts with a complete iteration and update of the basic scheme on the fine level. The
cell based residuals ∆W are calculated on the fine grid and distributed to the nodes using
the "distribution" formula (Eq. 9.8) to the surounding nodes. The fine level solution is up-
dated using the computed node based residual. In the next step, both the flow variables and
residuals are restricted to the coarse level. The restriction of the flow variables is performed
using a simple injection. Unlike the Runge-Kutta scheme, the restriction of the residuals
are also performed using a simple injection. In Ni’s Lax-Wendroff the node based residuals
are restricted to the coarse level shaping the cell-based residual at the center of the super
cell (Eq. 9.10).

∆W 2H
I = δW H

i (9.10)

Once the cell-based residual on the coarse grid is formed, the distribution formula similar
to the one used on fine grid is applied using the larger time step computed on the coarse
grid. The final node based residuals are prolonged to the fine grid using a linear interpola-
tion described in section 4.3 and added to the solution on the fine grid level.

In the presence of multiple coarse grid levels, the residual is transferred to the coarsest
level and distribution is not performed until the coarsest level is reached. As mentioned
before, in the multiple grid algorithm, the coarse grids are used to distribute the correc-
tion of the fine grid to larger distances and therefore greatly accelerate the convergence to
steady state. Since the inviscid part of Navier-Stokes equations dominate the wave propa-
gation in the computational domain, only the distribution of inviscid fluxes is performed
on the coarse levels and viscous and dissipation fluxes are only computed on the finest grid.
The boundary conditions are also only updated on the fine grid. Therefore in general, the
computational overhead due to multigrid method is smaller (25% per iteration) compared
to the Runge-Kutta scheme where all flux calculations and boundary conditions are up-
dated at all grid levels.
Figure 9.2 shows the convergence history for the flow over a two-dimensional hill using the
multiple grid algorithm with different grid levels in connection with Baldwin-Lomax turbu-
lence model. Using 3 levels of grid, results in 4.5x speed-up in convergence.
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Figure 9.2: Convergence history for flow over two-dimensional hill using multiple grid algorithm.

9.2 Immersed Boundary Method

As mentioned before, in this study, the direct forcing approach is used to simulate the
no-slip boundary condition at solid boundaries of the computational domain. In this ap-
proach, the solid surface divides the whole computational domain into three regions, (i )
physical cells, (i i ) interfacial cells and (i i i ) ghost cells (Fig. 9.3). Ghost cells are dead

Figure 9.3: Schematic diagram of the computational stencil used for the implicit IBM. The immersed
surface (shown as a black line) divides the domain into physical, interfacial and ghost cells. Illus-
tration of the implicit boundary condition at the point Xs which is on the immersed boundary. The
computed flow at the mirror point Xm is used to specify the flow at the ghost point Xg such that the
boundary condition is implicitly fulfilled on the immersed surface
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Interfacial cell Physical 
 cell 

Ghost cell 

Figure 9.4: Schematic diagram depicting physical, interfacial and ghost cells separated by the im-
mersed boundary

cells within the computational domain (Fig. 9.4). These cells do not carry any meaning-
ful physical values. Instead, the grid nodes in the vicinity of the surface (ghost nodes) are
used to impose the desired boundary condition at the surface. With the known location of
ghost nodes, each ghost node is linked to the immersed surface through a surface point, Xs .
The surface point is the point on the virtual surface that is closest to the ghost node. The
normal line connecting the ghost nodes and surface points also specifies the mirror points
(Xm) that are located within the physical domain (see Eq. 9.11). Note that λ= 1 for a linear
implementation.

Xm = (1+λ) Xs −Xg

λ
(9.11)

The overall idea of the immersed boundary method is to impose the proper flow field on Xg

based on the flow vector on Xm , so that the desired boundary condition on the immersed
surface, Xs , is fulfilled. Since the mirror points are not necessarily located at computational
nodes, the full immersion of the boundary condition necessitates the interpolation of the
flow field to corresponding points within the physical domain. Here a weighted average
interpolation based on inverse distance is used for this purpose. The boundary condition
is imposed for the flow variable, which is either density, velocity components or pressure.
After determining the flow variable at a mirror point, Qm , the flow variable at the ghost node
Qg is specified to set the required no-slip condition of Qs at the surface. If the immersed
boundary condition is of a Dirichlet type, the specified flow field is set at the ghost nodes
accordingly. For a no-slip boundary condition with linear interpolation, Eq. 9.12 gives the
flow variable at the ghost node:

Qg = (1+λ)QI BCDi r i chlet −λQm (9.12)

where QI BC is the desired boundary condition for a specific variable at the immersed sur-
face. For the velocity, QI BC is set to zero. Furthermore, a Neumann boundary condition
may be required to specify the gradients at the wall. This boundary condition is given as
following:

QI BCNeuman = ∂Q

∂n
=⇒Qg =λQm − (1+λ)QI BCNeuman (9.13)
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which can be reduced to Eq. 9.14 for the pressure at the no-slip wall.

Qg =Qm (9.14)

In order to initiate a search for ghost nodes in the vicinity of the immersed surface, it is
necessary to define the entire immersed surface. The topographical data is read as discrete
points from a Digital Elevation Map model. Bicubic interpolation is used to specify the en-
tire terrain. The search for mirror and surface nodes is undertaken once at the beginning
of the computation. A gradient descending algorithm is used to find the surface points
that have the minimum distance to the ghost node (see Fig. 9.3). Depending on the initial
guess, as few as 10 iterations are required. In general, the computational time required for
the geometric calculations is less than 0.01% of the overall computational time. Similar to
classic boundary conditions, interpolation of the flow field at mirror points and specifying
the desired boundary condition at ghost nodes is undertaken at every iteration. The imple-
mentation of the wall function in connection with turbulence models for atmospheric flow
simulations is discussed in the following section.

9.2.1 Turbulence Boundary Condition

9.2.1.1 Low-Reynolds Turbulence Model

The immersed boundary method developed in the present work can be used with either
Baldwin-Lomax or k −ω turbulence models. More complete details of these models can be
found in [13] and [163] respectively, but salient features of the models with regard to the
implementation of IBM are given below.
In the two-layer algebraic Baldwin-Lomax turbulence model, the turbulent eddy viscosity
is given by:

µT =
{
µi nner if y ≤ ym

µouter if y > ym
(9.15)

where y is the normal distance from the wall and ym is the distance at which the inner and
outer eddy viscosity are equal. Inner layer eddy viscosity is calculated from Prandtl’s mixing
length theory and depends on the absolute value of the vorticity and the mixing length. The
characteristic mixing length is defined as below as:

lmi x = 0.4y[1−e

(
− y+

26

)
] (9.16)

where the non-dimensionalized distance y+ is given by Eq. 3.56.
In computations using body-fitted grids, y is defined as the minimum distance between a
grid point and the closest point on the terrain (no-slip surface). On the other hand, in the
IBM implementation, the minimum distance to the immersed surface must be used. The
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minimum distance is determined either as the distance between the node within the do-
main and all surface points or using the minimum of distance function, the algorithm used
for the calculation of the surface points. The wall shear is estimated using the computed
velocities at the mirror points (Eq. 9.17).

uτ =
√

µ (Um −Us)

ρs (Xm −Xs)
(9.17)

In the k −ω turbulence model, transport equations are used to solve the turbulent kinetic
energy, k and the specific dissipation rate, ω. The eddy viscosity is then obtained using Eq.
2.20. The boundary condition for k is:

kw all = 0 (9.18)

and is applied at a grid point located on the wall for the classical body-fitted grid and at
ghost nodes for the IBM implementation. For ω, the boundary condition follows [106],

ω= 60µ

ρβ1∆y0
2

(9.19)

where β1 = 0.075, ∆y0 is the distance of the first node above the wall for the classical body-
conformal grid and for the IBM implementation, either the distance between the mirror
and surface points, maximum value of the prescribed quantity or the grid spacing in the di-
rection normal to the immersed wall. The best results over several test cases were obtained
using the latter approach. µT is set to zero for all nodes below the immersed surface for
both turbulence models. It should be noted that the k and ω behavior close to the bound-
ary is strongly non-linear. Hence, the accuracy of the implemented boundary conditions is
strongly dependent on the grid resolution. This dependency can be substantially reduced
using wall functions. A detailed description of the wall function implementation in con-
nection with IBM is given in the next session.

9.2.1.2 High-Reynolds Turbulence Model

Wall functions are employed in connection with the immersed boundary method in or-
der to relax the stringent near-wall grid resolution requirements. Because of the strongly
nonlinear behavior of the turbulent kinetic energy, k, and the turbulent eddy frequency, ω,
close to the solid boundary, the application of the developed IBM for high Reynolds number
flows such as wind simulations over terrain will not be efficient since a huge number of cells
are required to resolve high Reynolds number wall bounded flows. Local grid refinements
alleviate such a difficulty, but are not fully satisfactory especially in three dimensions. To
improve both the accuracy and computational time, wall functions are required to provide
accurate and reliable solutions.
The use of wall functions in connection with turbulence models is very well suited for at-
mospheric flow simulations where resolving the viscous sub-layer is not of interest even for
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body-fitted grids. In addition, surface roughness can be modeled using empirical relations
developed for high Reynolds boundary conditions for turbulence models as discussed in
chapter 3. In high-Reynolds type boundary conditions for turbulence models, the approach
is to specify the variables at the first near-wall node based on the universal law of the wall
(Eq. 3.58) similar to body-fitted grid described in section 3.3
To implement wall functions into a Navier-Stokes code in connection with immersed bound-
ary method, the u-velocity component requires a condition that ensures the correct shear
at the wall. Similar to simulations with a grid-aligned with geometry, this can be done either
by adding a source term to the momentum equation or prescribing an artificial viscosity at
the wall. Turbulent kinetic energy and ω also need to be corrected.
In the immersed boundary method, the ghost nodes are used to impose the boundary con-
ditions at the wall for Navier-Stokes equations and low Reynolds number turbulence mod-
els, whereas the interfacial nodes are used to implement the wall function (Fig. 9.5). In the

interfacial node surface point 

Figure 9.5: interfacial nodes and corresponding surface points are used to implement wall function
in connection with immersed boundary method

current implementation the correct shear at the wall is first calculated. In the shear equa-
tion (Eq. 3.58 ), u at wall adjacent node is replaced by difference in velocities at the interface
node and the surface point. To apply the correction similar to body-fitted grid, an artificial
viscosity is prescribed at the interfacial cell to correct the shear to ensure that the wall shear
is correct. Since the current solver is a vertex-based method, to modify the averaged artifi-
cial viscosity at the cell center, the laminar viscosity at ghost node is modified. The shortest
distance between the interfacial node and immersed wall, y , is determined using the same
algorithm as used for locating mirror points.
As discussed before, surface roughness can significantly affect the predicted speed-up of
the wind flow over a topography. Therefore it is necessary to use modified wall functions
based an equivalent sand-grain roughness. Specifically instead of using Eq. 3.58, the wall
friction velocity is determined from Eq. 3.62.
The roughness height, z0, at the interfacial node, is determined from a two-dimensional
map of land cover. For a given land cover, the corresponding roughness height can be spec-
ified. Required surface distribution of roughness height determined by bilinear interpola-
tion.
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9.3 Validation and Results

In the next sections, the implementation of immersed boundary method is validated for
laminar flow over cylinder and low Reynolds number turbulent flow over two-dimensional
hill. Next, the method is applied for simulations of wind flow over Askervein Hill and Bolund
Hill and the performance for microscale wind simulations over complex terrain is assessed.

9.3.1 Separating Flow over Cylinder

The accuracy of the method for the laminar solver is examined for a low Reynolds number
laminar flow around a circular cylinder. Figure 3 shows the comparison between the sur-
face pressure coefficient calculated using the present approach and experimental measure-
ments [55]. Velocity streamlines are also shown in Figure 9.6. The agreement between the

Figure 9.6: Simulation of Reynolds number Re=40 flow over a circular cylinder. Upper plot: com-
parison of IBM solution to experimental results. Lower plot: streamlines superimposed on pressure
contours.

pressure coefficient predicted by IBM and the experimental data is quite good. The separa-
tion occurs atθ = 129.8o compared to a measured value from Coutanceau and Bouard [38]
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equal to 126.2o . The implementation of the IBM for the vertex base solver, separate from
turbulence modeling is validated through this case.

9.3.2 Flow over Two-Dimensional Hill

In the following the performance of the immersed boundary method is first examined in
the flow over a two-dimensional hill. Results from IBM are also compared with those from
a body-fitted grid to isolate the effect of wall boundary condition on the results. A three-
dimensional test case of flow over Askervein Hill is also examined. The 2D test case is the
sinusoidal hill defined by Kim and Lee [79], schematically shown in Figure 9.7 . The shape

Figure 9.7: Definition of the geometry for the 2D hill, L is the upwind half-length of the hill at the
one-half height of the hill.

of the hill is defined using Eq. 9.20 where H = 11.5 cm and L = 7 cm.

z(x) = H

2

(
1+ cos(

πx

2L
)
)

(9.20)

The chord length and the height of the curved hill are 0.46 meters and 0.07 meters respec-
tively. The unit Reynolds number based on the free stream velocity (U∞ = 7m/s) is 7.5×105

per meters. For simulations with a classical body-fitted grid, an H-grid with clustering in the
x and z directions is used (Fig. 9.8). Also shown in Figure 5 is the corresponding Cartesian
grid for the IBM simulations.

For the simulations the upstream boundary is 3C upstream of the windward foot of the
hill. The inflow streamwise velocity is a fully developed turbulent boundary layer with a
thickness of 0.25 m. The outflow boundary is located 5C downstream of the leeward foot of
the hill. A quantitative assessment of the immersed boundary method is given in Figures
9.9 . With the k −ω turbulence model, the predicted pressure coefficients with the im-
mersed boundary method and body-conformal grid are in excellent agreement with each
other, as well as with the experiment. However, the predictions of the Baldwin-Lomax tur-
bulence model are in poor agreement with the experiment at the leeward corner of the hill.
Numerical results show that there is a separated flow in this region, which results in an
over-prediction of the minimum pressure at the hillcrest. However, for the Baldwin-Lomax
turbulence model, a comparison of IBM and GA results shows the maximum difference ob-
served for the pressure coefficient is less than 0.03 and they are in fairly good agreement.
Profiles of the non-dimensionalized velocity speed-ups defined by Eq. 9.21 at the hilltop
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Figure 9.8: Typical H-grid (upper plot) and non-uniform Cartesian grid (lower plot) used for the grid-
aligned with flow and immersed boundary method simulations, respectively.

are presented in Figure 9.9.

σ= u(z)−ur e f (z)
H
L u∞

(9.21)

Good agreement is observed between the IBM and the body-fitted grid for both turbulence

Figure 9.9: Comparison of the pressure coefficient over the hill (left) and non-dimensionalized speed-
ups at the hilltop (right).

models in the outer region (z/L > 0.2) of the boundary layer. Small discrepancies are ob-
served closer to the wall; these discrepancies are attributed to differences between the grids
and the resolution of the boundary layer. Overall, it is seen that both the pressure and veloc-
ity speed-up are better predicted using the k −ω turbulence model. In general, the results
demonstrate that the immersed boundary technique is capable of resolving the flow field
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in high Reynolds number flows.

Figure 9.10: Comparison of pressure coefficient (upper plots) and axial velocity (lower plots) over the
two-dimensional hill in grid-aligned with geometry and immersed boundary method simulations.
Note, for the immersed boundary method the flow properties below the surface have no physical
meaning.

Figure 9.10 shows a comparison between the pressure coefficient and the non-dimensionalized
axial velocity over the hill with IBM and the body-fitted grid. The overall qualitative agree-
ment between the IBM and the solution obtained with the classical body-fitted grid is quite
satisfactory.

9.3.3 Flow over Askervein Hill

The flow over a three-dimensional hill is also investigated using the newly developed method.
The Askervein Hill test case described in chapter 6 is chosen for this purpose. As is shown in
the lower plot of Figure 9.11 the digital elevation map of the area, downstream of Askervein
Hill is a hill with a similar elevation. Another hill of slightly higher altitude is located to the
east. There are two maps available for Askervein Hill. Map A with 63 m resolution which
also includes the surrounding topography and map B covering only the isolated hill with 23
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m resolution. Other than the resolution, there are few differences between the map A and
B including the elevation of the hilltop, the elevation along line B-B and the topography
downstream of the hilltop. In the current study, simulations are done using both maps (Fig.
9.11).

For grid generation, as mentioned above, digital elevation maps of the terrain are used.

Figure 9.11: Digital elevation maps of Askervein Hill. Note that the z direction is stretched by a factor
10 compared to the x and y directions. Lower plot shows the actual map of Askervein Hill with its
surrounding topography (map A). Upper plot shows map B which omits the elevated topographic
features that are downwind of Askervein Hill

The maps are rotated by 60 degrees, so that the flow direction is collinear to the x-axis going
through the centre point (CP), (Fig. 9.12). The non-uniform Cartesian grid has a resolution
of 16 m in the x direction and 20 m in the y direction for the clustered region defined by an
area spanning 700 m by 500 m around the center between CP and HT. The size of the entire
domain is 8,000 m by 8,000 m in x and y directions for map A and 6,000 m by 6000 m for
map B; for both maps the domain is 1,000 m in the z direction and the cell height is 3.0m for
the entire hill. These dimensions result in a total of 0.6 million computational nodes. The
velocity and turbulent kinetic energy inflow profiles are specified following Kim et al. [80].
The roughness height is set to 0.03 m for the entire terrain. The available experimental data
include measurements of the speed-ups along the lines A-A, AA-AA, B-B and at the hilltop
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(HT) as shown in Figure 10.

Figure 9.12: Askervein Hill topography map superposed with the non-uniform Cartesian grid used
for the simulations (map B). The grid is clustered around the hilltop (HT) and the center point (CP)
of the computational domain. Also shown is the orientation of the lines (A-A, AA-AA and B-B) along
which measurements are available, are also shown.

The predicted speed-ups along lines A-A and AA-AA and B-B are compared to experiment
in Figures 9.13 and 9.14 and 9.15. Also shown in the lower portion of the figures is the ele-
vation change along the respective lines of measurements. The speed-up is defined based
on the undisturbed velocity upstream of the hill at the reference station. The results are
also compared to simulations of Walmsley and Taylor [159] and Undheim et al., [151]. The
prediction over line A-A is generally in good agreement with experiment. However, the
computed speed-up does not follow the steep decrease of ∆S on the lee side of the hill us-
ing either map A or B. At x=0, speed-up is 0.69 compared to the 0.86 of the experiment in
the simulations for the isolated hill. Including the downwind hills does not affect the flow
downstream but changes the maximum speed-up significantly. This difference is thought
to be due to limitations in turbulence and roughness modeling. Local minima are observed
at about x =-700, -350 and -200 m resulting from the changes in topography. The latter is
more pronounced in the current simulation, but has also been observed by Undheim et al.
[151]. The over-prediction of the low velocity in the wake, downstream of the hill, where
non-linear effects are dominant, can be due to turbulence modeling uncertainties in the
prediction of flow separation.

The predictions over line AA-AA, Figure 9.14 , match well with the experiment except at
x = 400 m and x = 600 m, where the speed-up is over predicted. The local minimum at
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Figure 9.13: Comparison of the predicted and measured non-dimensionalized speed-ups along line
A-A on Askervein Hill. The predictions are from simulations using the immersed boundary method.

Figure 9.14: Comparison of the predicted and measured non-dimensionalized speed-ups along line
AA-AA shown in Figure 10 on Askervein Hill.
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Figure 9.15: Comparison of the predicted and measured non-dimensionalized speed-ups along line
B-B on Askervein Hill (map A).

x = −500 m in the field measurements due to the change in topography (see the elevation
map) is captured correctly with the IBM method. The observed increase in velocity down-
stream of CP (x = 0 m) as well as the sharp change in velocity at x = 450 m are consistent
with the elevation change and are also observed in other simulations [80] [151].
The effect of topography on the predicted and measured speed-ups, along line B-B, are
compared in Figure 9.15. The predictions are obtained using map A, and show good quali-
tative agreement with the measured wind speed-up.

The predicted speed-up at the hilltop is shown in Figure 9.16 and compared to the simula-
tions of Undheim et al. [151]. Except for region very close to the surface (z < 5m), the IBM
prediction matches well with Undheim’s simulations, as well as with the experimental data.
The difference close to the surface can be reduced by using finer grids or a higher order
interpolation close to the surface. More details of the accuracy of the method close to the
ground will be discussed in section 9.4.

The near surface velocity vectors, 5 m above the ground are also shown in Figure 9.17. In
Figure 9.17, the velocity vectors are superimposed on the contour plot of velocity field. Ac-
celerated and decelerated flow regions can be observed, as expected, at the hilltop and
downstream of the hill.
In general, the immersed boundary method is observed to perform well in flowfield pre-
dictions for full-scale scenarios. At potential hub heights, where the measured speed-up is
more than 60%, the predicted speed-up is within 1% of the measurement. Thus it is evident
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Figure 9.16: Comparison of the predicted and measured non-dimensionalized speed-up at hilltop.

Figure 9.17: Near surface velocity vectors superimposed on velocity contours over Askervein Hill. Note
that the z direction is stretched by a factor 5 compared to the x and y directions.

that the immersed boundary method that has been developed in the present work can pro-
vide desired accuracy that the wind industry requires for the optimum micrositing of wind
turbines.
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9.3.4 Flow over Bolund Hill

The immersed boundary method implemented in MULTI3 is applied to the complex terrain
test case, Bolund Hill described in chapter 6. The simulation is done for four wind direc-
tions, 90o , 239o , 270o and 301o . The extent of the computational domain is 1500, 750 and
300 meters in the x,y and z directions respectively where x is along the wind axis. u is the
velocity along x axis, and s is the measure of the wind speed. Cartesian non-uniform grids
with local clustering around the hill are used. Four grids with different resolution and grid
density, whose characteristics are detailed in Table 9.18, are used. Figure 9.19 shows a side
view of the first computational grid close to the vertical escarpment. The two-dimensional
map of surface roughness is used.

Figure 9.18: Summary of characteristics of the computational grids used in the simulations.

Figure 9.19: Side view of the computational grid A at the leading edge of the hill.

The simulations are carried out with Wilcox’s standard k−ω turbulence model without any
modifications of the constants. Since the upper boundary is located far enough, 300 m
above see level; it is treated as a slip wall. Locating the upper boundary further away, at
500 m did not change the results. The side boundary conditions are specified as periodic.
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As suggested in the comparison, the measured profile is specified at the inlet plane, even
though the reference station is located further away.

Figure 9.20: Non-uniform Cartesian grid superimposed on digital elevation map of Bolund Hill for
simulations with three wind directions, 239o , 270o and 301o . The same grid is used for all directions
and only the rotated digital elevation map is provided as an input to the solver

9.3.4.1 Wind Calculation for Various Directions

In wind applications, velocity speed-ups at hub height are of interest for the all wind di-
rections. To simulate the flow with different directions, one can use circular computational
domains. In this case, one grid can be used for the all computations. However, due to un-
certainties in defining the inflow conditions, rectangular grids-one for each are often used.
In this case, to cover the whole wind rose, several grids must be created. On the other hand,
using the immersed boundary method, depending on the geometry, as few as one rectan-
gular grid can be used for the whole wind. In other complex terrain cases more rectangular
grids may be required. This number of grids will nevertheless be substantially reduced. In
order to simulate altered wind directions using IBM, only the information of the rotated dig-
ital elevation map needs to be provided as an input to the solver. In some of the scenarios,
where the topography is surrounded by flat terrain, such as at Bolund Hill, even the initial
and boundary conditions, including those at the inlet remain unchanged (Figure 9.20).

To demonstrate this capability of using one grid for multiple wind directions, the flow with
three different wind directions are simulated for Bolund. Figure 9.20 shows the non-uniform
Cartesian grid superimposed on the digital elevation map for 239o , 270o and 301o . The
two-dimensional roughness map is also rotated accordingly. The grid A is used for all three
simulations. Figure 9.21 shows the speed-ups, 5 m above ground, along lines A, B and C
that are indicated in Figure 9.12. The simulations for 239o and 270o wind direction cases
are compared to the experimental data. The information of the surface elevation along the
lines A, B and C are also shown in the same figure, so that one can relate the distribution
of speed-up to the elevation change in the topography. The results show that on the single
Cartesian grid, wind variations are captured for all the three directions with acceptable ac-
curacy.
Wind flow simulations over Bolund Hill are also performed for the 90o wind direction. For
this wind direction, the digital elevation map of the terrain shown in Figure 9.27 is rotated
by 180o ( see Figure 9.22). A new grid with characteristics similar to grid A but with clus-
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Figure 9.21: Comparison of normalized wind speed (solid line) over the Bolund Hill for three different
wind directions, 239o , 270o and 301o , 5 m above ground. The elevation of the topography is shown as
a dashed-dotted line

tering reversed in x direction is used. The inlet boundary condition and surface roughness
map are also modified for this case since wind is blowing over the land covered with grass
at the inlet boundary.

Figure 9.23 shows the streamwise distribution of the normalized wind speed at 2 and 5 m
above the ground for 90o wind direction. The wind speed for this direction is normalized
using the undisturbed wind speed at mast 9. The predicted wind speeds at masts 8, 6 and
3 matches the experiment but the agreement at mast 7 for both heights is relatively poor.
This can be due to poor prediction of the separation region downstream of the hill. The

128



Validation and Results

Figure 9.22: Digital elevation of Bolund Hill superimposed on non-uniform Cartesian gird generated
for westerly wind directions.

Figure 9.23: Comparison of normalized wind speed over the Bolund Hill for 90o wind direction along
line B, 2 and 5 m above ground

separation zone, which can be observed at 2 m and not 5 m AGL, is under predicted in the
simulations. Uncertainties in turbulent modeling can be considered as the main reason for
the poor behavior. Moreover, the assumption of steady flow conditions used in RANS may
not be strictly valid in separation zones, because these regions are inherently unsteady.

To further analyze the performance of the immersed boundary method, a detailed com-
parison of the flow field with experimental data is performed. The 270o wind direction is
also used to study the grid dependency. Figure 9.24 shows the comparison of the speed-up
between the present results and the experimental data at 2 and 5 m above ground, on all
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Figure 9.24: Comparison of normalized wind speed for the 270o wind direction at 2 and 5 m above
the surface along line B.

Figure 9.25: Vertical profiles of wind speed at four mast locations. M3, M6, M7 and M8 are the mete-
orological masts along line B [17] for the 270o wind direction.

four grids. As is observed in Figure 9.24, coarsening the grid in z direction does not affect
the results significantly. On the otherhand, reducing the resolution in x-y direction destroys
the accuracy of the method in regions close to the solid boundary. However this error di-
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minishes 5 m away from the wall where all grids predict the speed-up fairly well. The largest
deviation from the measurement is observed for mast 7 at two meters above ground where
the simulations show small regions of separated flow. At this point the predicted speed-up
is 0.20 compared to measured 0.49.
Vertical profiles of normalized wind velocity obtained with the first grid at four mast sta-
tions are also compared in Figure 9.25. Flow separation occurs at the windward escarp-
ment, leeward slope and southern side of the hill. The difference between predictions and
experiment is the largest close to the surface. This difference may arise from several pos-
sible sources. Firstly, as mentioned before, there are uncertainties due to turbulence mod-
eling when flow separation occurs. Secondly, the modeling of surface roughness may be
another source of uncertainty. This is particularly the case when there is an abrupt change
in the roughness height. A third possible source of error is the use of immersed bound-
ary method and the interpolation scheme that is used to impose the boundary conditions
at the no-slip wall. A weighted-average interpolation based on an inverse distance is used
to specify the flow quantities of the ghost nodes. For the moderate Reynolds number flow
over the 2D hill, 9.7, the scheme yields satisfactory results. However for the higher Reynolds
numbers that are typical of atmospheric flows; the large gradients in the cell adjacent to the
terrain are not well resolved. This can explain the observed trend in the gradient of wind
speed in Figure 9.25 at the grid points close to the ground, which is opposite to the pre-
dictions that are made using classical body-fitted grids. A higher order interpolation may
reduce the differences seen near the surface. Nevertheless, the differences between exper-
iment and predictions are substantially reduced away from the ground at heights relevant
for wind energy applications.

Figure 9.26: Comparison of predicted non-dimensionalized turbulent kinetic energy to experiments
for the 270o wind direction case at 2 and 5 m above the surface along line B.
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Figure 9.27: Flowfield of velocity contours over Bolund Hill along line B for the 270o wind direction

The streamwise evolution of turbulent kinetic energy obtained using grid A is shown in Fig-
ure 9.26. The quantitative agreement between the predictions and measurements at 5 m
above ground level is generally good. At 5 m height, the predicted turbulent kinetic energy
matches well with the experiment, except at x=90 m where the prediction is 50% lower than
the measurement. However, the prediction of turbulent kinetic energy is not good close to
the ground (2m A.G.L.) both quantitatively and qualitatively. This further shows the rela-
tively weak performance of the method in near wall regions. Horizontal velocity contours
are also shown in Figure 9.27 in a vertical plane through the line B for 270o wind direction.

For wind direction 239o , vertical profiles of wind speed at four different mast locations
are shown in Figure 9.28. The predictions, similar to those of the 270o direction shown in
Figure 9.25, deviate from the experiment adjacent to the terrain. The vertical profile in the
deceleration zone (mast M4) is not well predicted. The profiles of turbulent kinetic energy
at mast 1 and 2 are also shown in Figure 9.29. The prediction at mast 2 matches well with
experiment at all heights, but at mast 1 the values are under predicted in the simulations.
This is also observed in other RANS simulations performed using classical body-fitted grids
[16].

For micrositing of wind turbines, other than wind speed and turbulent kinetic energy, lo-
cal variations of wind inclination and turning are of interest. This helps the developers to
assess the "quality" of the wind in addition to its availability. Wind inclination and turn-
ing angles are also calculated over Bolund Hill for the 239o wind direction and compared
to experiment. Figures 9.30 and 9.31 show the wind inclination and turning angles at four
mast location along line A. As can be seen in both figures, the quantitative and qualita-
tive agreements of both angles at mast 1 are predicted well in the simulations. At mast 2
where separation occurs, the variation of turning and inclination angles are not well pre-
dicted. Similarly poor agreement is observed in all of RANS results presented in the blind
comparison [16]. This further indicates the poor behavior of turbulence models in regions
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Figure 9.28: Vertical profiles of wind speed at four mast locations. M1, M2, M3 and M4 are the mete-
orological masts along line A for wind direction 239o .

Figure 9.29: Vertical profiles of non-dimensionalized turbulent kinetic energy at mast 1 and 2 for 239o

wind direction.
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Figure 9.30: Prediction of inclination angle at four mast locations, M1, M2, M3 and M4 compared to
measurement for wind direction 239o

of separated flow and shows that the coordinate of the center of the separation bubble is
not predicted correctly using RANS. At mast 3, the predictions and experiment show small
variations in wind angles. At mast 4, the wind inclination is predicted well at all heights.
The qualitative trend of the turning angle is also predicted well. However quantitatively,
the turning angles are largely over estimated close to the wall.
All computations are done on a high-performance Linux cluster. The computational time
per iteration per node is 2.11×10−6 seconds on four Opteron 8384 processors and approxi-
mately 20,000 iterations are required to reduce the residual to 10−6. Iteration per node with
the same set up omitting the immersed surface takes 2.07×10−6 seconds on the same plat-
form. Thus the IBM carries an insignificant penalty (2%) in computational time. However
it is well known that in IBM simulations, the grids are often not optimized in terms of dis-
tribution of grid points. Thus, approximately 30−50% of grid nodes are located below the
immersed surface and do not carry meaningful information. These non-optimal grids may
result in large computational time for the simulations. For the two-dimensional hill where
the turbulent boundary layer needs to be resolved using IBM, the Cartesian grid is approx-
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Figure 9.31: Prediction of turning angle at four mast locations, M1, M2, M3 and M4 compared to
measurement for wind direction 239o .

imately three times larger than the body-fitted grid. Therefore, the simulation time is cor-
respondingly larger. The use of optimized Cartesian grids would substantially reduce the
computational time. Nevertheless, results from the Bolund Hill simulations show that for
atmospheric flow simulations, accurate predictions can be obtained using relatively small
grid size. It must be emphasized that the overall assessment of the computational efficiency
of the immersed boundary method for atmospheric flow must also consider the required
time for grid generation.

9.4 Model Accuracy Close to Ground

As mentioned in previous sections, the implementation of immersed boundary method for
high Reynolds number atmospheric flow is rather challenging. The implementation of a
second order no-slip condition close to the ground using coarse grid typicall of wind sim-
ulations results in negative velocities at cells close to the ground which sometimes leads to

135



Immersed Boundary Method for Terrain Modeling

instabilities in the solver. The first order boundary conditions is easy to implement and rel-
atively robust. However, it results in inaccuracies close to ground depending on the location
of the immersed boundary with respect to the ghost node.

Immersed surface 
Vg 
Vi 

Figure 9.32: Immersed flat plate in a Cartesian grid.

The inaccuracy is further demonstrated using a case of immersed flat plate on a Carte-
sian grid (Figure 9.32). The thickness of the first node is chosen such that by moving the
immersed surface between two nodes the y+ value of the first node above virtual surface
varies between 50 and 100. Figure 9.33 and 9.34 show that how the velocity and turbulent
profiles deviate from the theoretical and fully resolved solution as the distance of the im-
mersed surface from the ghost node increases.
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Figure 9.33: Poor performance of immersed boundary method in prediction of velocity and eddy vis-
cosity in vicinity of the immersed wall as the distance between the virtual wall and ghost nodes in-
creases.

136



Model Accuracy Close to Ground

y+

k+

!
+

101 102 103 104 1050

5

10

15

10-4

10-3

10-2

10-1

100

y+ = 100
y+ = 75
y+=50
wall law

Figure 9.34: Prediction of k and ω over flat plate using immersed boundary method.
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Figure 9.35: Prediction of velocity and eddy viscousity in boundary layer using the corrections sug-
gested in Eq. 9.22 and 9.23 in connection with immersed boundary method

Improving the accuracy of immersed boundary method close to ground may not be of cru-
cial importance for the wind energy application, however from a numerical perspective,
it is desirable to overcome this problem and further improve the accuracy of the method.
Since the implementation of higher order schemes poses some other challenges such as
negative flow variables within interfacial cells, an alternative for improving the accuracy is
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Figure 9.36: Prediction of k and ω in boundary layer using the corrections suggested in Eq. 9.22 and
9.23.

investigated in this work.
The new methodology first suggested by Ackerman et al. [1] is focused on correcting the
velocity at the interfacial node rather than altering the velocity at ghost node. The use of
wall functions for atmospheric flow simulations, further facilitates this approach, since an
analytical solution for velocity in wall adjacent node is given (Eq. 9.22)

u2

u1
=

ln
(

z2
z0

)
ln

(
z1
z0

) (9.22)

In Eq. 9.22 z1 is the distance of the first node above the wall with velocity u1 and z2 is
the height of the second node above the immersed surface with velocity u2 and z0 is the
roughness height. This equation could be easily derived by applying the law of the wall
(Eq. 6.1) to the two first nodes above the wall. As shown in Figure 9.35 and 9.36 using
Eq. 9.22 at all distances above the immersed surface, excellent agreement is achieved. The
extension of this approach for three-dimensional flows with pressure variations must be
investigated further since the Eq. 9.22 is not valid anymore in presence of large streamwise
and perpendicular pressure gradient.
The second approach suggested by [109] is to account for the varying distance between the
first node and the immersed surface by scaling the effective viscosity introduced by the wall
function implementation using the ratio of cell’s volume to the non-immersed volume. The
modified effective viscosity defined at the interracial cell-center becomes:

µe f f I B M
= 1

8

8∑
node=1

Vi +Vg

Vg
µe f f (9.23)
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Summary

The scaling of the effective viscosity is justified considering the fact that only part of the
cell volume that must be considered in defining the wall shear must be the sector bounded
between the immersed body and the first vertices connecting the interracial nodes. Simi-
lar to the previous approach, the scaling of the effective viscosity proves to be effective in
correcting the results close to the ground over the flat plate (Figure 9.35 and 9.36) but the
application in 3D was not reported to be successful.
The above-mentioned alternative approaches could be further followed and investigated in
order to improve the accuracy of the immersed boundary method close to the wall bound-
ary once applied to high Reynolds number atmospheric flow which are often used with
coarse grids.

9.5 Summary

An immersed boundary method has been developed for high Reynolds number flows. The
method works in connection with zero-equation Baldwin-Lomax and two-equation k −ω
turbulence model. Using the immersed boundary method, a Cartesian grid is used to sim-
ulate the flow over any arbitrary topography. Hence a single grid can be used to cover the
whole wind rose. The wall functions are integrated to the method in order to decrease the
grid resolution requirements close to the surface as well as to allow the surface roughness to
be accounted for. The implementation of the model into laminar solver is validated for the
laminar flow over cylinder. The prediction of separation point is compared with measure-
ments. The capability of the model to simulate high Reynolds number flows is examined
for the flow over a two-dimensional hill. The results were then compared to the simula-
tions obtained using a body-fitted grid to isolate the effect of boundary conditions. Good
agreement with the experiment as well as with the results obtained with a body-fitted grid
demonstrates the capability of the immersed boundary method. To show the capability of
the model in handling full-scale scenarios, a three-dimensional flow was simulated over
Askervein Hill. In addition, the three-dimensional flow over complex terrain test case, Bol-
und Hill was simulated. The general agreement of the predicted speed-up over the hill was
good at 5 m above the ground. The fact that the wind speed predictions are satisfactory at
5 m above ground level for the 12 m height Bolund Hill gives evidence that the method can
also provide efficient predictions at hub height of a wind turbine in complex terrain. Fur-
thermore, results obtained with single grid for various wind direction also were compared
with experiment. This also demonstrates the relevance of the method to wind energy ap-
plication, since the same Cartesian grid, which is easily generated, can be used to produce
results for different wind directions of a wind rose. Furthermore, the immersed boundary
method enables the solver to handle highly complex geometries with large gradients and
sharp corners with higher stability and accuracy.

139





CHAPTER

10
Summary and Conclusion

In the context of this thesis, an explicit multistage time integration method primarily suit-
able for compressible flow simulations was developed. In order to have an all purpose
solver suitable for low Mach number flows as well as the high Mach number compressible
flows, the Weiss-Smith preconditioning algorithm was implemented into the hybrid Runge-
Kutta scheme, and its application was demonstrated for low Mach number high Reynolds
number atmospheric flow. The required modifications and improvements for successful
use of preconditioning for microscale wind simulations are also reported. To further accel-
erate the convergence and reduce the computational cost, a multigrid approach was imple-
mented into the preconditioned solver. The wall function formulation and implementation
which is necessary for wind flow simulations are also described in this thesis.
Next, the simulations are performed over several test cases including Kettles Hill, Askervein
Hill and Bolund Hill to evaluate the performance of the RANS solver in prediction of wind
flow over moderately and highly complex topography and address the shortcomings of the
method. The simulations were performed using k −ω turbulence model with modified co-
efficients tuned for atmospheric flow simulations. The predictions of wind flow speed-up
are in general good agreement with the measurement for all cases both at hilltop and down-
stream. Overall the average error in predicted speed-up at all points is 5%, 40% and 8.5%
for Kettles, Askervein and Bolund Hills respectively. Even though the overall uncertainty
of RANS modeling are expected to increase as the terrain complexity increases, but pre-
dictions show smaller errors over Bolund Hill compared to Askervein Hill. This is due to
the relatively large under estimation of speed-up upstream of the hill along line A-A. Ne-
glecting those points, the errors reduces to 14.5% over Askervein Hill. This could also be
partially due to more ideal and well-defined inflow and terrain conditions as well as the
lower uncertainties in the measurements. The turbulent kinetic energy is also compared
to measurements over Askervein and Bolund Hill. The average error at 10 m above ground
for Askervein Hill is 36% and over Bolund Hill is 25% for a wind direction of 270o using the
preconditioned solver.
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The flow predictions and the convergence behavior of the preconditioned solver and pre-
conditioned multigrid is discussed and compared to that of unpreconditioned scheme.
The results overall demonstrates the superior convergence and robustness of the precon-
ditioned solver. It was shown that preconditioning could result in 4-13x speed-up when
used for simulation of microscale wind flow over topography. The preconditioned solver
also shows a superior accuracy compared to unpreconditioned scheme except for the case
of Bolund Hill at 2 m above ground level. In this case preconditioning seems to suppress
the separation bubble at leading edge of the hill. This could be partially due to the coupling
of the error of turbulence modeling with the excessive dissipation that is present in the un-
preconditioned solver. However the exact reason is unclear.
In the next step, a novel model is developed for simulating the wake flow behind a wind
turbine. In the developed model, called immersed wind turbine model, the flow field close
to the rotor and near wake region are modeled. The resultant flow field is mapped at the
end of the near wake region and the remaining far wake is resolved on the computational
grid. The model is proposed as an alternative to the commonly used actuator disc model
in order to bring the gird requirements of the microscale wind simulations and wake flows
within wind farms closer to each other. Using such an approach, the simultaneous simula-
tions of wind and wake flow becomes feasible. The velocity deficit at the end of near wake
is introduced using a Gaussian profile. The value for the deficit is obtained using the mass
conservation within the body which shape represents the energy extraction and the block-
age introduced by the rotor. The boundary conditions of the model is implemented on the
Cartesian grid using the immersed boundary method. The formula for the added turbulent
kinetic energy by the rotor and the equation for ω is derived based on empirically driven
relations available in literature.
The performance of the model is first demonstrated for a case of single wake of a sub-scale
wind turbine operating in a wind tunnel and the single and double wakes measurements
of Sexbierum wind farm. The comparison of results with wind tunnel measurements at
different operating conditions shows a good agreement in prediction of velocity at 5 and 7
diameter downstream of the turbine. The value of turbulent intensity is over predicted by
the model at all operating points. The excessive turbulence results in higher mixing and
therefore a reduced velocity deficit at 2.5D downstream compared to measurements. The
qualitative shape of the profile and evolution of turbulence intensity however are captured.
The comparison of the model prediction for single wake simulations in Sexbierum wind
farm overall shows a good agreement in terms of both prediction of velocity deficit and tur-
bulent intensity at 2.5D and 8D distance.
The predictions of the model for double wake interactions are also examined. The simu-
lations show 10% power loss from second to third turbine for the fully merged condition
(0o wind direction). The difference reduces once the turbines are partially merged in the
upstream wake. The sensitivity of power loss to wind direction was also investigated for
Lillgrund wind farm. The simulations were performed for 11 different wind directions. In
two of the directions the power loss was greatly over-estimated by the model. However the
average relative error for remaining 9 directions was 9%.
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Last the performance of two wind farms located in complex terrain in Spain and Switzer-
land were studied and estimations of array loss was compared with SCADA data. The sim-
ulations are performed for 3 and 6 directions over two farms respectively. The first wind
farm located in Spain consists of 43 turbines located on moderately complex terrain. The
simulations overall show RMS error of 0.038, 0.215, 0.293, and 0.16 in four consecutive rows.
The results show 150 %, and 34 %, 27% and 38% improvements in rows 1 to 4 compared to
results obtained using WAsP reported in [116] which employs linear models. It must be also
noted that the terrain slope is at the limits of the WAsP accuracy. Additional more complex
test cases need to be investigated. The simulations are also performed for farm with similar
layout and boundary conditions located on flat terrain to investigate the effect of wake-
terrain interaction on the estimations. The results show up to 20% faster recovery and up to
40% increase in predicted power due to effects related to topography. Overall larger sensi-
tivity to wind direction is observed for the farm located in moderately complex topography
compared to the case with flat terrain. For the Mont Crosin wind farm located in Switzer-
land the relative power of two turbines in the farm is studied for southerly-westerly wind
directions when the underlying topography has steep slopes and both turbines go in the
wake shadow of upstream turbines. The average error between measurements and simula-
tions for all 6 directions is 14% . The error is the largest for wind direction of 230o when the
power deficit of downstream turbine is maximum. The maximum power deficit is predicted
as 88% compared to measured value of 71%.
In the final part of this thesis, the problem of grid generation for the wind flow simula-
tions was addressed. Since the immersed wind turbine model allows for the simulation of
different turbine arrangement using a single grid, the feasibility of simulation of multiple
wind directions using the same grid could further facilitate the use of Computational Fluid
Dynamics for site optimization purposes. The popular approach of immersed boundary
method for wall modeling used for simulation of low and medium Reynolds number flow,
was applied to very high Reynolds number microscale wind simulations. The method was
implemented in connection with Ni’s Lax-Wendroff finite volume scheme and k −ω turbu-
lence model. The performance and shortcomings of the model were then assessed for flow
over Askervein and Bolund Hill. Overall, even though the performance of the method was
satisfactory for prediction of wind speed-up at 10 m above ground level over Askervein Hill
and 5 m above ground level over Bolund Hill, The performance of the method proved to be
quite poor in closer distances to the ground. The capability of the method for flow simula-
tion of multiple wind direction using single Cartesian grid was demonstrated for the case of
Bolund Hill where wind directions of 239o , 270o and 301o were performed resulting in satis-
factory predictions at 5 m above ground level. While the accuracy of the method at heights
relevant to wind energy application were demonstrated, further suggestions are provided
for improvement of the accuracy of the method close to the ground. The extension of the
methodologies to three-dimensional flow requires further investigations.
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10.1 Future Work

The application of preconditioned multistage solver for atmospheric and wake flow sim-
ulations were demonstrated in this work, however additional investigation in some as-
pects could further reduce the computational time and improve the accuracy of the solver.
In terms of preconditioning formulations, even though the Weiss-Smith preconditioning
proved to be quite effective, different preconditioning formulations could be implemented
to assess the performance and robustness of different schemes for this particular applica-
tion. In addition, different possibly more effective multigrid cycles such as full-miltigrid
cycle could be used to further improve the convergence rate.
GPU acceleration currently underway could also provide considerable reduction in compu-
tational time compared to CPU parallelization. This could reduce the computational time
by a factor of 10-1000x making the RANS solver a competitive design tool. With the cur-
rent computational costs in the CPU version, it is still difficult to obtain grid independent
results over large wind farms such as Lillgrund or Horns Rev using RANS solver. Additional
accelerations could further facilitate the path for use of CFD for array loss estimations and
micrositing.
In regards to the immersed wind turbine model, further improvements could be accom-
plished by generalizing the ω boundary condition at the end of the near wake. New em-
pirical formulas could be developed to account for wake meandering as well as the effect
of averaging over different bands of wind direction in measurements. The accuracy of the
model must be further improved in order to justify the additional computational cost and
compete with already established and rather cheap engineering models used in the wind
industry. The utility of the model could be greatly increased by integrating the controller al-
gorithm to adjust the operating conditions as well as the nacelle direction of the turbine or
so called yaw-alignment. This could remove some of the uncertainties in power prediction
of wind farms due to local wind variations that result in the situations where some turbines
operate above rated power. The yaw adjustments, also ensures that the immersed body is
aligned with the local flow direction which could be different that the global wind direction
at inlet plane over a highly complex terrain.
In terms of predictions of wind farm performance, effect of topography and array loss,
steady models such as actuator disk model and the presented immersed wind turbine model
could be effective tools. They provide acceptable accuracy with reasonable computational
time for the lifetime of the turbine. As demonstrated in this thesis, they could also be used
in connection with mesoscale data via an "offline" coupling. However, it is also impor-
tant to understand and predict the unsteady dynamics of the flow due to measoscale wind
variations or unsteady interaction of wind flow with topography. As a complementary en-
gineering tool it is desirable to develop and utilize unsteady models (such as actuator line
model) in connection with a microscale simulation tool which operates with time-varying
wind flow and direction as boundary conditions provided by possibly an online coupling
with mesoscale model. This second class of coupled solvers may not be efficient in wind
farm performance prediction over the lifetime, but they can provide valuable insight to un-
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steady interaction of atmospheric boundary layer with wind turbine and wake flow as well
as the unsteady loading on wind turbine blades which could be useful in structural design
and optimization of wind turbines.
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