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Abstract

In this dissertation we discuss several approaches to solve integer and mixed-
integer convex minimization problems. That is, we try to minimize a convex
function over a convex set with the additional constraint that a small number
variables must be integral.

The thesis consists of four parts.

In the first part we apply the Mirror-Descent Method from continuous convex
optimization to the mixed-integer setting. The main feature of this method
is that the number of iterations is independent of the dimension, however,
this method relies on a strong oracle, the so called improvement oracle. We
present an efficient realization of such an oracle for the case when only two
variables are required to be integral.

The second part contains two alternative, short, and geometrically motivated
proofs of the well known result that minimizing a convex function over the
integral points of a bounded convex set is polynomial in fixed dimension.
In particular, we present an oracle-polynomial algorithm that is based on a
mixed-integer linear optimization oracle.

Then, in the third part, we extend the Method of Centers of Gravity to the
integer and mixed-integer setting. The crucial step consists in replacing the
points of center of gravity by more general center-points, allowing us to use
measures other than the volume. We introduce the concepts of center-points
and approximate center-points. For special instances we prove properties of
the (approximate) center-points. In the integer setting and when the dimen-
sion is fixed, we present an algorithm to compute approximate center-points.
Furthermore, we establish optimality certificates for (mixed-) integer mini-
mization problems based on lattice free polyhedra and we present a algorithm
based on center-points that terminates with such an optimality certificate.

In the last part we consider a special class of, not necessarily convex, opti-
mization problems in variable dimension. We aim to optimize f(Wx) over a
set P ∩ Zn, where f is a non-linear function, P ⊂ Rn is a polyhedron and
W ∈ Zd×n. The dimension n may vary, however, we assume that the dimen-
sion d is fixed. We obtain an efficient transformation from the latter class
of problems to integer linear problems. The core result is a representation
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theorem, characterizing the set W (P ∩ Zn), which can be seen as Frobenius
type theorem for polyhedra.



Zusammenfassung

In der vorliegenden Dissertationsschrift betrachten wir ganzzahlige und ge-
mischt-ganzzahlige Minimierungsprobleme. Das sind Probleme, bei denen eine
konvexe Zielfunktion und eine konvexe Menge gegeben sind und versucht wird
die Zielfunktion über die konvexe Menge zu minimieren, wobei wir fordern,
dass eine, in unserem Fall kleine, Anzahl an Variablen ganzzahlig zu sein hat.
Wir diskutieren mehrere algorithmische Ansätze um dies zu lösen.

Die Arbeit besteht aus vier Teilen.

Im ersten Teil betrachten wir einen Algorithmus aus der kontinuierlichen Opti-
mierung, nämlich die Mirrow-Descent Method. Das Besondere dieser Methode
ist, dass die Anzahl der Iterationen unabhängig von der Dimension ist. Jedoch
beruht dieser Ansatz auf einem starken Orakel, einem sogenannten Verbesse-
rungsorakel. Unser Kernbeitrag in diesem Teil ist eine effiziente Realisierung
dieses Orakels für den Fall, dass höchstens zwei Variablen ganzzahlig sind.

Im zweiten Teil geben wir zwei alternative, kurze und geometrisch motivierte
Beweise, dass das Minimieren einer konvexen Funktion über den ganzzahligen
Punkten in einer konvexen Menge in polynomialer Zeit in der Eingabegröße
realisierbar ist, vorausgesetzt, dass die Dimension der konvexen Menge fix
ist. Speziell zeigen wir einen Orakel-polynomiellen Algorithmus der allein auf
einem gemischt-ganzzahligen linearen Optimierungsorakel basiert.

Dann, im dritten Teil, betrachten wir die Method of Centers of Gravity für
kontinuierliche konvexe Minimierung und adaptieren diese für den ganzzah-
ligen und gemischt-ganzzahligen Fall. Dazu ersetzen wir den Massenmittel-
punkt durch allgemeinere Mittelpunkte; dies erlaubt uns dann andere Maße
als das Volumen zu nutzen. Als erstes definieren wir Mittelpunkte und appro-
ximative Mittelpunkte, dann beweisen wir für spezielle Fälle einige ihrer Ei-
genschaften und wir zeigen wie approximative Mittelpunkte gefunden werden
können. Danach entwickeln wir Optimalitätskriterien die auf gitterpunktfrei-
en Polyedern beruhen. Zum Schluss präsentieren wir noch einen Algorithmus
der auf den zuvor genannten Mittelpunkten beruht und der mit den besagten
Optimalitätskriterien terminiert.

Im letzten Teil untersuchen wir eine spezielle Klasse von, nicht notwendiger-
weise konvexen, Optimierungsproblemen in variabler Dimension. Wir wollen
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f(Wx) über P ∩ Zn optimieren, wobei f eine nichtlineare Funktion, P ⊂ Rn

ein Polyeder und W eine Matrix aus Zd×n ist. Dabei nehmen wir an, dass
n variabel, d jedoch fix ist. Wir erhalten eine effiziente Transformation die
das zuvor genannte Problem auf ganzzahlige lineare Unterprobleme reduziert.
Das zentrale Resultat ist hierbei eine kompakte Charakterisierung der Menge
W (P ∩ Zn), dieses kann als eine Art von Frobenius-Theorem für Polyeder
gesehen werde.
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Chapter 1

Introduction

In this thesis we discuss ideas for solving general integer and mixed-integer
convex minimization problems. Let f : Rn+d 7→ R be convex function and let
g : Rn+d 7→ Rm be convex in each component g(x)i, i = 1, . . . ,m. Our goal
consists in solving problems of the following kind:

min f(x)
s.t. g(x) ≤ 0,

x ∈ Zn × Rd.
(1.1)

Throughout this thesis we always assume that n is a small constant, but dif-
ferent from zero. Under this assumption it turns out that Problem (1.1) can
be solved efficiently under mild assumptions about the underlying computa-
tional model. This was one of the landmark discoveries in the 1980’s. Indeed,
when f and all the gi’s are affine functions, Khachiyan proved in 1979 that, if
all variables are continuous, the problem is solvable in polynomial time in the
input size of the affine functions [Kha79]. The basic tool to prove this result is
the ellipsoid method that itself has been the outcome of inventions by several
famous mathematicians including Shor, Nemirovski and Yudin. Four years
later, Lenstra proved that, if the number of integral variables is fixed and f
and all the gi’s are affine functions, then the problem is still solvable in polyno-
mial time in the input size [Len83]. This result is an application of the famous
LLL-reduced bases theory [LLL82] in combination with the ellipsoid method.
Grötschel, Lovasz and Schrijver adapted Lenstra’s approach to solve general
convex integer optimization problems [GLS88, Theorem 6.7.4]. In later years
many researchers aimed at improving the running time of Lenstra’s algorithm
as well as the extensions to convex integer problems. This topic is not the fo-
cus of this thesis and hence, not further discussed here. Important references
about this topic are [Kan87, KP00, Eis03, Hei05, EL05, HK12, Dad12].

We assume that a reader is familiar with linear, convex, and integer optimiza-
tion. For detailed introductions to we refer to [Sch86], [NN94, Nes04, BV04b]
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and [Sch86, GLS88] respectively. Further, we assume that the reader is fa-
miliar with the basic notations and concepts of convex and discrete geometry.
Basic references on the latter topic are [Lek69, GL87, Gru07].

The following chapters are organized as followed:

Chapter 2 Let us consider the problem of minimizing a convex function f
over a convex set, with the extra constraint that only some variables
must be integer. We study an algorithmic approach to this problem,
that is the Mirror-Descent Method, postponing its hardness to the re-
alization of an oracle. If this oracle can be realized in polynomial time,
then the problem can be solved in polynomial time as well. For problems
with two integer variables, we show with a novel geometric construction
how to implement the oracle efficiently, that is, in O(ln(B)) approxi-
mate minimizations of f over the continuous variables, where B is a
known bound on the absolute value of the integer variables. Our algo-
rithm can be adapted to find the second best point of a purely integer
convex optimization problem in two dimensions, and more generally its
k-th best point. This observation allows us to formulate a finite-time
algorithm for mixed-integer convex optimization.

Chapter 3 We provide an alternative, short, and geometrically motivated
proof of the result that minimizing a convex function over the inte-
gral points of a bounded convex set is polynomial in fixed dimension
[GLS88, Theorem 6.7.4]. In particular, we present an oracle-polynomial
algorithm that only utilizes a mixed integer linear optimization oracle.

Chapter 4 In this chapter we revisit the Method of Centers of Gravity
[Nes04, Section 3.2.6.]. We generalize this approach by replacing the
centers of gravity by general center-points. This allows us to utilize dif-
ferent measures, other than the volume, to analyze the progress of the
algorithms.

We introduce the new term of center-points and their approximation.
For several instances we prove properties of the center points and show
how to compute them. As a further result we establish optimality cer-
tificates for (mixed-) integer minimization problems based on lattice free
polyhedra. A natural algorithm based on center-points that terminates
with such an optimality certificate will be presented.

Chapter 5 We prove a representation theorem about projections of sets of
integer points by an integer matrix W . This can be seen as a polyhedral
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analogue of several classical and recent results related to the Frobenius
problem.

Our result is motivated by a large class of non-linear integer optimiza-
tion problems in variable dimension. Concretely, we aim to optimize
f(Wx) over a set F = P ∩Zn, where f is a non-linear function, P ⊂ Rn

is a polyhedron and W ∈ Zd×n. As a consequence of our representation
theorem, we obtain a general efficient transformation from the latter
class of problems to integer linear programming. Our bounds depend
polynomially on various important parameters of the input data lead-
ing, among others, to first polynomial time algorithms for several classes
of non-linear optimization problems.

1.1 The computational model, boundedness and
hardness

In this section we first introduce the used notation and we introduce defini-
tions that appear in all our models. Then we discuss one assumption about
the tractability of Problem (1.1). It will turn out that the problem must be
bounded, in order to be polynomial time solvable. Further, we give a lower
bound on the complexity of integer, and therefore mixed-integer, convex min-
imization. Among other consequences it will show that the Problem (1.1) is
in general NP-hard.

Let f : Rn 7→ R be a not necessarily differentiable, convex function. We define
the domain of f as dom(f) := {x ∈ Rn | f(x) < ∞}. Then, for every point
x ∈ int dom(f) we define the subdifferential of f at x as

∂f(x) := {h ∈ Rn | f(y) ≥ f(x) + hT(y − x) for all y ∈ Rn},

i.e. the subdifferential is the set of all subgradients of f at a point x.

In our model we will assume that we have access to functions through evalua-
tion oracles only. An analytic description of the functions describing Problem
(1.1) is not requested in all our algorithms. Instead, we assume that the defin-
ing functions are given by first-order evaluation oracles.

Definition 1.1.1 (first-order evaluation oracle). Let f : Rn → R be a convex
function presented by a first-order evaluation oracle. Then, queried on a point
x̄ ∈ Rn the oracle returns f̄ ∈ R and h̄ ∈ Rn such that

f̄ = f(x̄) and h̄ ∈ ∂f(x̄).
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Hence, we can evaluate function at a point x with a single operation. Com-
pared to a zero-order evaluation oracle, we assume that we have, next to
the function value, the additional information about the subgradient. On
the other hand, for a twice differentiable function, a second-order evaluation
oracle would deliver in addition the Hessian matrix.

In order to make integer convex minimization problems tractable one needs
to assume that the problem is bounded, that is the optimal solution lies, say,
in a box [−B,B]n where B ∈ N. B is then considered to be part of the input
explicitly or implicitly. Let us assume otherwise. Then, we can construct a
family of 1-dimensional functions which cannot be distinguished if we only
evaluate them on a fixed region [−B,B]. For α ∈ R we define fα : R 7→ R as

fα(x) := max{x, α− x}.

For each α, the function fα is minimized in the point α
2 and the minimal

function value is f(α2 ) = α
2 . We assume that we have access to the functions

fα through a first-order evaluation oracle. Hence, we assume that we do
not have direct access to the function, but can only evaluate the function
pointwise. In particular, we do not know the value α.

We aim in solving

min f(x)
s.t. x ∈ R,

where f ∈ {fα | α ∈ R}. Suppose in the course of an algorithm we have eval-
uated the function on points x1, . . . , xl, we can not recognize and distinguish
the functions fα with |α| ≥ 2 max{|x1|, . . . , |xl|}. Further, since α is not part
of the input, but on the other side influences the optimal solution, it is, in
general, not possible to output neither the optimal solution nor the optimal
value in polynomial time, let alone find it.

Hence, in order to make general minimization problems tractable, we must
either know a bound B explicitly or implicitly or content ourselves with the
more restricted problem where we add additional bounding constraints.

In the next part we discuss the hardness of integer convex minimization.
Already the case where f and all the gi’s are affine functions is well known
to be NP complete [GJ79, Problem MP1]. We give a lower bound on the
complexity of Problem (1.1): at least 2n calls to the first-order evaluation
oracle are requested to solve Problem (1.1).

We will define a class of convex functions with unique minimizers and such
that they are hard to distinguish from the other functions. Let F denote this



1.2. LENSTRA TYPE ALGORITHMS 5

class. We next consider the problem

min f(x)
s.t. x ∈ {−1, 1}n,

where f ∈ F . Again, we assume that we have access to the function only
through a first-order evaluation oracle.

For our construction of F , let P := conv(±e1, . . . ,±en) be the standard cross-
polytope, where ei denotes the i-th unit-vector i = 1, . . . , n. We can describe
P as follows

P = {x ∈ Rn | aTx ≤ 1 for all a ∈ {−1, 1}n}.

Let ε > 0. For every b ∈ {−1, 1}n we define

Pb := {x ∈ Rn | aTx ≤ 1 for all a ∈ {−1, 1}n \ b
bTx ≤ 1 + ε}.

Then, we define for every b ∈ {−1, 1}n the gauge-function fb : Rn 7→ R by

fb(x) := min{λ ≥ 0 | x ∈ λPb}.

Given l < 2n points x1, . . . , xl ∈ Rn there always exist two distinct functions
fb and fb̄ in F such that fb(xi) = fb̄(xi) and h ∈ ∂fb(xi) ∩ ∂fb̄(xi). Hence
these two functions are not distinguishable. Let F := {fb | b ∈ {−1, 1}n}.
Then the minimum of Problem (1.1) is always n

1+ε and it is attained in the
point b corresponding to the function fb. Note, however, that b is not part of
the input. It follows that in general at least 2n first-order evaluations oracle
calls are necessary and sufficient to distinguish the functions and therefore to
determine the optimum.

Many researchers believe that O(2n) first-order evaluations oracle calls are
also sufficient to solve (1.1). This conjecture and weakening of it are the
content of several studies [KP00, Hei05, HK12, Dad12].

1.2 Lenstra Type Algorithms

In this section we consider the setting, where in Problem (1.1) we only have
integral variables, i.e.

min f(x)
s.t. g(x) ≤ 0

x ∈ Zn.
(1.2)
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We assume that the problem is bounded, i.e. the optimal solution of (1.2)
lies in [−B,B]n for some B ∈ N. Moreover, n is assumed to be a constant.
Several algorithms have been proposed in recent years to tackle the problem
in time that is polynomial in the input size [Len83, GLS88, Kan87, KP00,
Hei05, HK12, Dad12]. Although the analysis of the different algorithms is
quite different, it turns out that they have a common scheme that goes back
to Lenstra. In the following presentation we focus on these key ideas. We
try to keep our exposition as simple as possible, omitting technical details
whenever it is possible.

We start introducing tools and notation used. Let K ⊂ Rn be a centrally
symmetric1 and convex body. We denote with ‖ · ‖K the norm induced by K.
For x ∈ Rn we define

‖x‖K := min{λ ≥ 0 | x ∈ λK}.

Let B ∈ Rn×n be a non singular matrix and let Λ = BZn be a lattice. We
call B the basis of Λ and we denote with det(Λ) = |det(B)| the determinant
of Λ. The basis assigned to a lattice Λ is not unique, any matrix B′ = BU ,
where U is a unimodular matrix2, is also a basis of Λ. However, there are
ways to define a ”nice” basis of Λ, so called reduced basis.

For that we first define the Gram-Schmidt orthogonalization, e.g. [Gru07,
Section 28.1]. Let b1, . . . , bn denote the columns of B. Then the Gram-
Schmidt orthogonalized basis is defined recursively as follows

b̄i := bi −
i−1∑
j=1

µi,j b̄j

where

µi,j =
bTi b̄j
b̄Tj b̄j

, 1 ≤ i ≤ n, 1 ≤ j < i.

The most famous reduced basis is the LLL-reduced basis [LLL82]. Let Λ be a
lattice with basis B. Let b1, . . . , bn denote the columns of B and let b̄1, . . . , b̄n
denote its Gram-Schmidt orthogonalized basis. Then B is called LLL-reduced
if

‖b̄i+1 + µi+1,ib̄i‖2 ≥
3

4
‖b̄i‖2, 1 ≤ i ≤ n− 1

1A set K ⊂ Rn is centrally symmetric if K = −K.
2U is a unimodular matrix if U ∈ Zn×n and det(U) = ±1.
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and

|µi,j | ≤
1

2
, 1 ≤ j < i ≤ n.

The geometric interpretation of a LLL-reduced basis is that the vectors have
a small norm and that they are nearly orthogonal to each other. This is also
synthesized in the following property of a LLL-reduced basis, that is

‖b1‖ · . . . · ‖bn‖ ≤ 2n(n−1)/4 det(Λ). (1.3)

For details on the existence of LLL-reduced basis, their computation and their
properties we refer to [LLL82] and [Gru07, Chapter 28]. Another well known
reduced basis that we will use occasionally is the Korkine-Zolotareff-reduced
basis [KZ73]. This basis has slightly stronger properties, however it is harder
to compute. For further details we refer to [KZ73, LLS90].

Let Λ ⊂ Rn be a lattice and and let x ∈ Rn, Then, the closest-lattice-point-
problem is defined as

argmin
z∈Λ

‖x− z‖2.

Let B be a reduced basis of Λ. Then we can solve the latter problem ap-
proximately. Let λ = U−1x and let λ̄ = bλe (i.e. component wise − 1

2 <
λi − λ̄i ≤ 1

2 ). Then Uλ̄ solves the problem approximately, where the approx-
imation only depends on n (and the choice of the reduced basis). Note that
the closest-lattice-point-problem is equivalent to minz∈Zn ‖x − z‖E , where
E := {x ∈ Rn | xTB−TB−1x ≤ 1}.

Next, let K ⊂ Rn be a compact convex set. Let Λ be a lattice. With Λ? we
denote the polar lattice of Λ, i.e. Λ? = {x ∈ Rn | xTz ∈ Z for all z ∈ Λ}.
Note that if B is a basis of Λ then B−T is a basis of Λ?. Let v ∈ Rn \ {0}.
We define the width of K with respect to v by

ω(K, v) := max{vTx | x ∈ K} −min{vTx | x ∈ K}

and the lattice width of K by

ωΛ(K) := min{ω(K, v) | v ∈ Λ? \ {0}}.

If Λ = Zn then we sometimes omit the subscript and write ω(K) instead
of ωZn(K). A vector v ∈ Λ \ {0} with ωΛ(K) = ω(K, v) is called flatness
direction for K. We say that a vector v ∈ Λ? \ {0} is an approximate flatness
direction for K if ω(K, v) is bounded by c ωΛ(K), where c is a constant that is
only dependent on n. In fixed dimension, a flatness direction can be computed
efficiently, whereas this problem is hard in variable dimension.
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An approximate flatness direction in variable dimension can be recovered from
an appropriate LLL-reduced basis. This task can be performed in polynomial
time, even in variable dimension. Assume that we have an ellipsoidal approx-
imation of K, that is we have an ellipsoid E = {x ∈ Rn | xTD−TD−1x ≤ 1},
where D ∈ Rn×n is a non singular matrix, and a center e ∈ Rn such that

e+ E ⊂ K ⊂ e+ nE.

Then ω(E, v) ≤ ω(K, v) ≤ ω(nE, v) = nω(K, v) for any v ∈ Rn\{0}. This im-
plies that any approximate lattice width of E induces an approximate lattice
width for K. Hence it suffices to compute an approximate flatness direction
for E. For that we define φ : Rn 7→ Rn by φ(x) := D−1x, i.e. φ maps E to
the unit ball. Let Λ := φ(Zn), then it holds that ω(E) = ωΛ(φ(E)). Let B
denote the LLL-reduced basis of Λ. With b1, . . . , bn we denote the columns
of B and with b̄1, . . . , b̄n its Gram-Schmidt orthogonalized basis. Note that
the distance between bn and lin(b1, . . . , bn−1) is precisely ‖b̄n‖ and

φ(E) ∩ Λ ⊂
k⋃

i=−k

i · b̄n + lin(b1, . . . , bn−1),

where k :=
⌊

1
‖b̄n‖

⌋
. The vector v := b̄n

bTnb̄n
is in Λ?, hence ωΛ(φ(K)) ≤

ω(φ(K), v) = 2
‖b̄n‖

. Since 1
ω(E)φ(E) ∩ Λ = {0}, it follows ‖bn‖ > 1

ω(E) . From

(1.3) and the two properties, ‖b̄i‖ ≤ ‖bi‖ for i = 1, . . . , n and det(Λ) =
‖b̄1‖ · . . . · ‖b̄n‖, it follows that

‖b̄n‖ >
1

ω(E)2n(n−1)/4
.

Hence ω(E, v) ≤ 2n(n−1)/4ω(E).

Now we are ready to present a Lenstra type algorithm.

The idea is to construct a sequence of ellipsoids E0, E1, . . . with decreasing
volume and which fulfill the invariant that each ellipsoid Ei contains the
optimal solution(s). The algorithm starts with an initial ellipsoid E0 := {x ∈
Rn | (x−a0)TA0(x−a0) ≤

√
nB}, where A0 is the identity matrix and a0 = 0.

It holds that E0 ⊃ [−B,B]n which in turn implies that, by our assumption
of boundedness, E0 contains the optimal solution.

Then, using the LLL-reduced basis, the closest vector problem is solved ap-
proximately to compute an integral point x0 close to a0 with respect to the
norm induced by E0 − E0. If gi(x0) > 0 for some i, then let h0 be a sub-
gradient of the subdifferential of gi at x0. Otherwise let h0 be a subgra-
dient of the subdifferential of f at x0. Now h0 and x0 define a half-space
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H0 := {x ∈ Rn | hT0x ≤ hT0x0}. By the definition of the subgradient, the com-
plement of H0 either only contains infeasible points or points with objective
value greater than or equal to f(x0). Hence, the optimal solution(s) of (1.2)
must lie in E0∩H0 We compute a new ellipsoid E1 containing E0∩H0. Then,
clearly, also E1 contains the optimal solution(s) of (1.2).

Let Ω ∈ (0, 1
n ) be arbitrary but fixed. Let λ0 := ‖x0 − a0‖E0 . It turns out

that, if λ0 < Ω, one can compute an ellipsoid E1 with

vol(E1) ≤ e−(1−nΩ)2/(5n) vol(E0)

(see [GLS88, Theorem 3.3.9] and the lemmata within). This guarantees that
the volume of the new ellipsoid is reduced by a factor that only depends on
n. This procedure is repeated until, for some k, we obtain λk ≥ Ω. This
implies that Ek is flat, ensuring the existence of a lattice width less than or
equal to a constant only depending on Ω and n. This enables us to reduce the
original problem to a small number of lower dimensional subproblems. For
that we compute an approximate flatness direction v ∈ Zn \ {0} such that
ω(Ek, v) ≤ c(Ω, n), where c(Ω, n) is again a constant only depending on Ω
and n.

This allows us to enumerate bω(Ek, v)c subproblems of lower dimension. For
i = dminx∈Ek v

Txe, . . . , bmaxx∈Ek v
Txc we solve the subproblems

min f(x)
s.t. g(x) ≤ 0

vTx = i
x ∈ Zn.

Finally, among all feasible solutions of the subproblems, if they exist, one
determines the solution with smallest objective value. Since n is fixed, also the
depth of this recursion is fixed. Hence, this procedure results in a polynomial
time algorithm.
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Chapter 2

Mirror-Descent Methods in Mixed-
Integer Convex Optimization

This chapter is based on joint work with Michel Baes, Christian Wagner and
Robert Weismantel [BOWW13]. We consider the Mirror-Descent Method
and apply it to the Mixed-Integer setting. That is, we address the problem of
minimizing a convex function f over a convex set, with the extra constraint
that some variables must be integer. As we already mentioned in the first
chapter, it is well known that if all variables are integer and if their total
number is fixed that then this problem is polynomially solvable in the size
of the input. This was first proven by Grötschel, Lovasz and Schrijver (see
Theorem 6.7.10 in [GLS88]) and clearly this is also best possible, even when f
is a piecewise linear function, as this problem is NP-hard (see [GJ79, Problem
MP1]).

We will present a new approach, using the Mirror-Descent Method [NY79],
which was first introduced by Nemirovski and Yudin. The most notable fea-
ture of the framework of the Mirror-Descent Method is that the dimension
does not enter the number of iterations (see [NY83, Chapter 3]). This comes
of course at a certain cost. The algorithm will rely on an improvement oracle,
specified later, hiding many difficulties. The hardness will then lie within the
realization of this oracle. However, if this oracle can be realized in polynomial
time, then the problem can be solved in polynomial time as well.

We postpone the realization of the improvement oracle to later sections. In
the first section we will introduce the general Mirror-Descent Method and give
its analysis of the corresponding running-time. The (small) novelty will be
here that we allow different errors in every iteration. The following sections
will then deal with the realization of the oracle. In particular, for problems
with two integer variables, we show with a novel geometric construction how
to implement the oracle efficiently, that is, in O(ln(B)) approximate mini-
mizations of f over the continuous variables, where B is a known bound on
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the absolute value of the integer variables. Then we show how to adapt our
algorithm to find the second best point of a purely integer convex optimiza-
tion problem in two dimensions, and more generally its k-th best point. This
observation allows us to formulate a finite-time algorithm for mixed-integer
convex optimization.

The main distinction between results presented here and the result from
[GLS88, Theorem 6.7.10] is the way in which the statements are proven.
Proofs of similar results as in [GLS88] basically use a combination of the el-
lipsoid algorithm [Kha79] and a Lenstra-type algorithm [Len83]. Our proof
techniques do not rely on these methods.

Another novelty for mixed integer optimization is that, on a high level, opti-
mizing over the integral and continuous variables are not separated, i.e. our
iteration involves integral and continuous variables at the same time (for a
counter-example see Chapter 3). Further, we try to do pure continuous steps
if possible, avoiding time expensive operations on the integral components.

Let us now make precise our assumptions. We study a general mixed-integer
convex optimization problem of the kind

min{f(z, y) : (z, y) ∈ S ∩ (Zn × Rd)}, (2.1)

where the function f : Rn+d → R+ ∪ {+∞} is a nonnegative proper convex
function, i.e., there is a point x ∈ Rn+d with f(x) < +∞. Moreover, S ⊆ Rn+d

is a convex set that is defined by a finite number of convex functional con-
straints, i.e., S := {(x, y) ∈ Rn+d : gi(x, y) ≤ 0 for 1 ≤ i ≤ m}. We denote by
〈·, ·〉 a scalar product. The functions gi : Rn+d → R are differentiable convex
functions and encoded by a first-order function oracles. See Definition 1.1.1.

In this general setting, very few algorithmic frameworks exist. The most
commonly used one is “outer approximation”, originally proposed in [DG86]
and later on refined in [VG90, FL94, BBC+08]. This scheme is known to be
finitely converging, yet there is no analysis regarding the number of iterations
it takes to solve problem (2.1) up to a certain given accuracy.

In this chapter we present oracle-polynomial algorithmic schemes that are (i)
amenable to an analysis and (ii) finite for any mixed-integer convex optimiza-
tion problem. Our schemes also give rise to the fastest algorithm to date
for solving mixed-integer convex optimization problems in variable dimension
with at most two integer variables.
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2.1 An algorithm based on an “improvement
oracle”

We study in this chapter an algorithmic approach to solve (2.1), postponing
its hardness to the realization of an improvement oracle defined below. If this
oracle can be realized in polynomial time, then the problem can be solved
in polynomial time as well. An oracle of this type has already been used in
a number of algorithms in other contexts, such as in [AK07] for semidefinite
problems.

Definition 2.1.1 (Improvement Oracle). Let α, δ ≥ 0. For every x ∈ S, the
oracle

a. returns x′ ∈ S ∩ (Zn × Rd) such that f(x′) ≤ (1 + α)f(x) + δ, and/or

b. asserts correctly that there is no point x′ ∈ S ∩ (Zn × Rd) for which
f(x′) ≤ f(x).

We denote the query to this oracle at x by Oα,δ(x).

As stressed in the above definition, the oracle might content itself with a
feasible point x′ satisfying the inequality in a without addressing the problem
in b. However, we do not exclude the possibility of having an oracle that can
occasionally report both facts. In that case, the point x′ that it outputs for
the input point x ∈ S must satisfy:

f(x′)− f? ≤ αf(x) + δ + (f(x)− f?) ≤ αf(x) + δ ≤ αf? + δ,

where f? is the optimal objective value of (2.1). Thus f(x′) ≤ (1+α)f(x)+δ,
and it is not possible to hope for a better point of S from the oracle. We can
therefore interrupt the computations and output x′ as the final result of our
method.

In the case where f? > 0 and δ = 0, the improvement oracle might be realized
by a relaxation of the problem of finding a suitable x′: in numerous cases,
these relaxations come with a guaranteed value of α. In general, the realiza-
tion of this oracle might need to solve a problem as difficult as the original
mixed-integer convex instance, especially when α = δ = 0. Nevertheless, we
will point out several situations where this oracle can actually be realized
quite efficiently, even with α = 0.

The domain of f , denoted by dom f , is the set of all the points x ∈ Rn+d

with f(x) < +∞. For all x ∈ dom f , we denote by f ′(x) an element of the
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subdifferential ∂f(x) of f . We represent by x? = (z?, y?) a minimizer of (2.1),
and set f? := f(x?).Further, we use a prime (· ′) to emphasise vectors that
have their n first components integral by definition or by construction.

Let us describe an elementary method for solving Lipschitz continuous convex
problems on S approximately. Lipschitz continuity of f on S, an assumption
we make from now on, entails that, given a norm || · || on Rn+d, there exists
a constant L > 0 for which:

|f(x1)− f(x2)| ≤ L||x1 − x2||

for every x1, x2 ∈ S. Equivalently, if || · ||∗ is the dual norm of || · ||, we have
||f ′(x)||∗ ≤ L for every f ′(x) ∈ ∂f(x) and every x ∈ dom f .

Our first algorithm is a variant of the well-known Mirror-Descent Method
(see Chapter 3 of [NY83]). It requires a termination procedure, which used
alone constitutes our second algorithm as a minimization algorithm on its
own. However, the second algorithm requires as input an information that
is a priori not obvious to get: a point x ∈ S for which f(x) is a (strictly)
positive lower bound of f?.

Let V : Rn+d → R+ be a differentiable σ-strongly convex function with respect
to the norm || · ||, i.e., there exists a σ > 0 for which, for every x1, x2 ∈ Rn+d,
we have:

V (x2)− V (x1)− 〈V ′(x1), x2 − x1〉 ≥
σ

2
||x2 − x1||2.

We also use the conjugate V∗ of V defined by V∗(s) := sup{〈s, x〉 − V (x) :
x ∈ Rn+d} for every s ∈ Rn+d. We fix x0 ∈ S as the starting point of our
algorithm and denote by M an upper bound of V (x?). We assume that the
solution of the problem sup{〈s, x〉 − V (x) : x ∈ Rn+d} exists and can be
computed easily, as well as the function ρ(w) := min{||w − x|| : x ∈ S} for
every w ∈ Rn+d, its subgradient, and the minimizer π(w). In an alternative
version of the algorithm we are about to describe, we can merely assume that
the problem max{〈s, x〉 − V (x) : x ∈ S} can be solved efficiently.

A possible building block for constructing an algorithm to solve (2.1) is the
continuous optimum of the problem, that is, the minimizer of (2.1) without
the integrality constraints. The following algorithm is essentially a standard
procedure meant to compute an approximation of this continuous minimizer,
lined with our oracle that constructs simultaneously a sequence of mixed-
integer feasible points following the decrease of f . Except in the rare case
when we produce a provably suitable solution to our problem, this algorithm
provides a point x ∈ S such that f(x) is a lower bound of f?. Would this
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lower bound be readily available, we can jump immediately to the termination
procedure (see Algorithm 2).

Data: x0 ∈ S.
Set x′0 := x0, w0 := x0, s0 := 0, and f0 := f(x0).
Select sequences {hk}k≥0, {αk}k≥0, {δk}k≥0.
for k = 0, . . . , N do

Compute f ′(xk) ∈ ∂f(xk) and ρ′(wk) ∈ ∂ρ(wk).
Set sk+1 := sk − hkf ′(xk)− hk||f ′(xk)||∗ρ′(wk).

Set wk+1 := arg max{〈sk+1, z〉 − V (x) : x ∈ Rn+d}.
Set xk+1 := arg min{||wk+1 − x|| : x ∈ S}.
Compute f(xk+1).
if f(xk+1) ≥ fk then x′k+1 := x′k, fk+1 := fk.

else
Run Oαk+1,δk+1

(xk+1).
if the oracle reports a and b then

Terminate the algorithm and return the oracle output from a.
else if the oracle reports a but not b then

Set x′k+1 as the oracle output and fk+1 := min{f(x′k+1), fk}.
else

Run the termination procedure with x0 := xk+1, x′0 := x′k+1,

return its output, and terminate the algorithm.

end

end

end
Algorithm 1: Mirror-Descent Method.

The following proposition is an extension of the standard proof of convergence
of Mirror-Descent Methods. We include it here for the sake of completeness.

Proposition 2.1.2. Suppose that the oracle reports a for k = 0, . . . , N in
Algorithm 1, that is, it delivers an output x′k for every iteration k = 0, . . . , N .
Then:

1∑N
k=0 hk

N∑
k=0

hkf(x′k)

1 + αk
− f(x?)

≤ M∑N
k=0 hk

+
2L2

σ
·
∑N
k=0 h

2
k∑N

k=0 hk
+

1∑N
k=0 hk

N∑
k=0

hkδk
1 + αk

.

Proof. Since V is σ-strongly convex with respect to the norm || · ||, its conju-
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Data: x0 ∈ S with f(x0) ≤ f?, x′0 ∈ S ∩ (Zn × Rd).
Set l0 := f(x0), u0 := f(x′0).
Choose α, δ ≥ 0. Choose a subproblem accuracy ε′ > 0.
for k ≥ 0 do

Compute using a bisection method a point xk+1 = λxk + (1− λ)x′k
for 0 ≤ λ ≤ 1, for which f(xk+1)− (lk(α+ 1) + uk)/(α+ 2) ∈ [−ε′, ε′].
Run Oα,δ(xk+1).
if the oracle reports a and b then

Terminate the algorithm and return the oracle output from a.
else if the oracle reports a but not b then

Set x′k+1 as the oracle output, lk+1 := lk, uk+1 := min{f(x′k+1), uk}.
else

Set x′k+1 := x′k, lk+1 := f(xk+1), uk+1 := uk.

end

end
Algorithm 2: Termination procedure.

gate V∗ is differentiable and has a Lipschitz continuous gradient of constant
1/σ for the norm || · ||∗, i.e., V∗(y) − V∗(x) ≤ 〈V ′∗(x), y − x〉 + 1

2σ‖y − x‖
2
∗

(see [HUL93, Chapter X]). Also wk = V ′∗(sk), in view of [Roc81, Theo-
rem 23.5]. Finally, for every z ∈ S, we can write ρ(wk) + 〈ρ′(wk), z − wk〉 ≤
ρ(z) = 0. Thus:

〈ρ′(wk), wk − ẑ∗〉 ≥ ρ(wk) = ||π(wk)− wk|| = ||zk − wk||. (2.2)

Also, ||ρ′(wk)||∗ ≤ 1, because for every z ∈ Rn+d:

〈ρ′(wk), z − wk〉 ≤ ρ(z)− ρ(wk) = ||z − π(z)|| − ||wk − π(wk)||
≤ ||z − π(wk)|| − ||wk − π(wk)|| ≤ ||z − wk||. (2.3)

By setting φk := V∗(sk)− 〈sk, x?〉, we can write successively for all k ≥ 0:

φk+1 =V∗(sk+1)− 〈sk+1, x
?〉

≤V∗(sk) + 〈V ′∗(sk), sk+1 − sk〉+
1

2σ
‖sk+1 − sk‖2∗ − 〈sk+1, x

?〉.

= (V∗(sk)− 〈sk, x?〉) + 〈V ′∗(sk)− x?, sk+1 − sk〉+
1

2σ
‖sk+1 − sk‖2∗

=φk − hk 〈wk − xk, f ′(xk)〉+ hk 〈x? − xk, f ′(xk)〉
− hk||f ′(xk)||∗ 〈wk − x?, ρ′(wk)〉

+
h2
k‖f ′(xk)‖2∗

2σ

∥∥∥∥ f ′(xk)

‖f ′(xk)‖∗
+ ρ′(wk)

∥∥∥∥2

∗
,
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where the inequality follows from the Lipschitz continuity of the gradient
of V∗, and the last equality from the identities V ′∗(sk) = wk, sk+1 − sk =
−hkf ′(xk)−hk‖f ′(xk)‖∗ρ′(wk), and V∗(sk)−〈sk, x?〉 = φk. By the definition
of the dual norm, it holds −hk〈wk − xk, f

′(xk)〉 ≤ hk‖f ′(xk)‖∗‖wk − xk‖.
Moreover, convexity of f implies hk〈x? − xk, f ′(xk)〉 ≤ f(x?)− f(xk). Using
this in the above expression we get:

φk+1 ≤ φk + hk||f ′(xk)||∗ (||wk − xk|| − 〈wk − x?, ρ′(wk)〉)

+hk(f(x?)− f(xk)) +
h2
k||f ′(xk)||2∗

2σ

(∥∥∥∥ f ′(xk)

||f ′(xk)||∗

∥∥∥∥
∗

+ ‖ρ′(wk)‖∗

)2

≤ φk + hk(f(x?)− f(xk)) +
2h2

k||f ′(xk)||2∗
σ

≤ φk + hk

(
f(x?)− f(x′k)− δk

1 + αk

)
+

2h2
k||f ′(xk)||2∗

σ
,

where the second inequality follows from (2.2) and ‖ρ′(wk)‖∗ ≤ 1, and the
third inequality from the fact that the oracle reports a. Summing up the
above inequalities from k := 0 to k := N and rearranging, it follows:

1∑N
k=0 hk

N∑
k=0

hk(f(x′k)− δk)

1 + αk
− f(x?) ≤ φ0 − φN+1∑N

k=0 hk
+

2
∑N
k=0 h

2
k||f ′(xk)||2∗

σ
∑N
k=0 hk

.

Note that ||f ′(xk)||∗ ≤ L, φ0 = sup{−V (z) : z ∈ Rn+d} ≤ 0, and φN+1 ≥
−V (x?) ≥ −M , yielding the desired result.

In the special case when αk = α and δk = δ for every k ≥ 0, we can signifi-
cantly simplify the above results. According to the previous proposition, we
know that:(

N∑
k=0

hk

)(
fN − δ
1 + α

− x?
)

=

(
N∑
k=0

hk

)(
min1≤i≤N f(x′i)− δ

1 + α
− f?

)

≤
N∑
k=0

hk(f(x′k)− δ)
1 + α

−

(
N∑
k=0

hk

)
f? ≤M +

2L2

σ

N∑
k=0

h2
k. (2.4)

We can divide both sides of the above inequality by
∑N
k=0 hk, then determine

the step-sizes {hk : 0 ≤ k ≤ N} for which the right-hand side is minimized.
However, with this strategy, h0 would depend on N , which is a priori unknown
at the first iteration. Instead, as in [Nes04], we use a step-size of the form
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hk = c/
√
k + 1 for an appropriate constant c > 0, independent of N . Note

that:
N∑
k=0

1

k + 1
=

N+1∑
k=1

1

k
≤
∫ N+1

1

dt

t
+ 1 = ln(N + 1) + 1.

If we choose c :=
√

σM
2L2 , the right-hand side of (2.4) can be upper-bounded

by M ln(N + 1) + 2M . Finally, since

1

c

N∑
k=0

hk =

N∑
k=0

1√
k + 1

=

N+1∑
k=1

1√
k
≥
∫ N+2

1

dt√
t

= 2
√
N + 2− 2,

we can thereby conclude that:

fN − (1 + α)f? − δ
1 + α

≤ L
√
M

2σ
· ln(N + 1) + 2√

N + 2− 1
. (2.5)

As the right-hand side converges to 0 when N goes to infinity, Algorithm 1
converges to an acceptable approximate solution or calls the termination pro-
cedure.

Remark 2.1.3. Note that the Mirror-Decent Method is a generalization of
the Gradient-Decent Method. For that consider the case that we have no
constraints on our problem. (Except of course that the optimal solution is
attained within a certain radius) Then, if we choose our norm to be the
Euclidian, sk = Wk = xk. Hence, in each iteration we do a step in the
direction of the gradient.

Let us now turn our attention to the termination procedure. We assume here
that the oracle achieves a constant quality, that is, that there exists α, δ ≥ 0
for which αk = α and δk = δ for every k ≥ 0.

Proposition 2.1.4. Assume that f(x′0) ≥ f(x0) > 0, and that there is no
point x′ ∈ S ∩ (Zn × Rd) for which f(x0) > f(x′).

(a) The termination procedure cannot guarantee any x′ ∈ S ∩ (Zn × Rd) an
accuracy better than:

f(x′) ≤ f? + (2 + α) (αf? + (1 + α)ε′ + δ) . (2.6)

(b) For every ε > 0, the termination procedure finds a point x′ ∈ S∩(Zn×Rd)
satisfying:

f(x′)− f? ≤ εf? + (2 + α) (αf? + (1 + α)ε′ + δ)
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within

max

{⌈
ln

(
f(x′0)− f(x0)

f(x0)ε

)/
ln

(
2 + α

1 + α

)⌉
, 0

}
iterations.

Proof. Part (a). At every iteration k, there is by construction no x′ ∈ S ∩
(Zn × Rd) for which lk > f(x′). Also, f(x′k) ≥ uk ≥ f̂?. For convenience, we
denote (1 + α)/(2 + α) by λ in this proof, and we set ∆k := uk − lk for every
k ≥ 0.

Suppose first that the oracle finds a new point x′k+1 ∈ S ∩ (Zn × Rd) at
iteration k. Then:

f(x′k+1) ≤ (1 + α)f(xk+1) + δ ≤ (1 + α) (λlk + (1− λ)uk + ε′) + δ,

where the first inequality is due to the definition of our oracle and the second
one comes from the accuracy by which our bisection procedure computes
xk+1. Observe that the oracle might return a point x′k such that f(x′k) is
smaller than the above right-hand side. In this case, no progress is done. As
uk ≤ f(x′k), this implies:

(λ+ λα)lk + (1 + α)ε′ + δ ≥ (λ+ λα− α)f(x′k). (2.7)

Using that f? ≥ lk we get an upper bound of the left-hand side. Rearranging
the terms and replacing λ by its value, we get:

f? + (2 + α)(αf? + (1 + α)ε′ + δ) ≥ f(x′k).

Since all the inequalities in the above derivation can be tight, a better accuracy
cannot be guaranteed with our strategy. Thus, we can output x′k.

Part (b). Note that we can assume
f(x′0)−f(x0)

f(x0)ε > 1, for otherwise the point

x′0 already satisfies our stopping criterion.

In order to assess the progress of the algorithm, we can assume that the
stopping criterion (2.7) is not satisfied. As lk+1 = lk in our case where the
oracle gives an output, we get:

∆k+1 = uk+1 − lk ≤ f(x′k+1)− lk
≤ (1 + α) (λlk + (1− λ)uk + ε′) + δ − lk

=
α2 + α− 1

2 + α
lk +

1 + α

2 + α
uk + (1 + α)ε′ + δ

=
1 + α

2 + α
(uk − lk) + αlk + (1 + α)ε′ + δ

≤ 1 + α

2 + α
∆k + αf? + (1 + α)ε′ + δ.
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Suppose now that the oracle informs us that there is no mixed-integral point
with a value smaller than f(xk+1) ≥ λlk + (1 − λ)uk − ε′. Then x′k+1 = x′k
and uk+1 = uk. We have:

∆k+1 = uk+1 − lk+1 = f(x′k)− f(xk+1)

≤ uk − (λlk + (1− λ)uk − ε′) = λ∆k + ε′

≤ 1 + α

2 + α
∆k + αf? + (1 + α)ε′ + δ.

The above inequality is valid for every k that does not comply with the
stopping criterion, whatever the oracle detects. Therefore, we get:

∆N ≤
(

1 + α

2 + α

)N
∆0 + (2 + α) (αf? + (1 + α)ε′ + δ) ,

and the proposition is proved because f(x′N )− f? ≤ ∆N .

In the remainder of this chapter, we elaborate on possible realizations of our
hard oracle.

We proceed as follows. In Section 2.2, we focus on the special case when
n = 2 and d = 0. We present a geometric construction that enables us to
implement the improvement oracle in polynomial time. With the help of this
oracle we then solve the problem (2.1) with n = 2 and d = 0 and obtain a
“best point”, i.e., an optimal point. An adaptation of this construction can
also be used to determine a second and, more generally, a “k-th best point”.
These results will be extended in Section 2.3 to the mixed-integer case with
two integer variables and d continuous variables. The latter extensions are
then used as a subroutine to solve the general problem (2.1) with arbitrary n
and d in finite time.

2.2 Two-dimensional integer convex optimiza-
tion

If n = 1 and d = 0, an improvement oracle can be trivially realized for α = δ =
0. Queried on a point x ∈ R the oracle returns x′ := arg min{f(bxc), f(dxe)}
if one of these numbers is smaller or equal to f(x), or returns b otherwise.
The first non-trivial case arises when n = 2 and d = 0. This is the topic of
this section.
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2.2.1 Minimizing a convex function in two integer vari-
ables

In this section we discuss a new geometric construction that enables us to
implement efficiently the oracle Oα,δ with α = δ = 0, provided that the
feasible set is contained in a known finite box [−B,B]2.

Theorem 2.2.1. Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m be
convex functions. Let B ∈ N and let x ∈ [−B,B]2 such that gi(x) ≤ 0 for all
i = 1, . . . ,m. Then, in a number of evaluations of f and g1, . . . , gm that is
polynomial in ln(B), one can either

(a) find an z ∈ [−B,B]2 ∩ Z2 with f(z) ≤ f(x) and gi(z) ≤ 0 for all i =
1, . . . ,m or

(b) show that there is no such point.

Note that we do not allow for the function f to take infinite values, in order
to ensure that we can minimize f over the integers of any segment of [−B,B]2

in O(ln(B)) evaluations of f using a bisection method. Indeed, if a convex
function takes infinite values, it can cost up to O(B) evaluations of f to
minimize it on a segment containing O(B) integer points, as there could be
only one of those points on its domain.

The algorithm that achieves the performance claimed in Theorem 2.2.1 is
described in the proof of the theorem. That proof requires two lemmata.

Lemma 2.2.2. Let K ⊂ R2 be a polytope with vol(K) < 1
2 . Then

dim(conv(K ∩ Z2)) ≤ 1.

Proof. For the purpose of deriving a contradiction, assume that there ex-
ist three affinely independent points x, y, z ∈ K ∩ Z2. Then vol(K) ≥
vol(conv({x, y, z})) = 1

2 |det(x− z, y − z)| ≥ 1
2 .

Lemma 2.2.3. Let u, v, w ∈ R2 be affinely independent. If(
conv{u, u+ v, u+ v + w} \ (conv{u+ v, u+ v + w} ∪ {u})

)
∩ Z2 = ∅,

then the lattice points conv{u, u+v, u+v−w}∩Z2 lie on at most three lines.
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Proof. We partition conv{u, u + v, u + v − w} into three regions. Then we
show that in each region the integer points must lie on a single line using a
lattice covering argument.

We define the parallelogram P := conv{0, 1
2v,

1
2w,

1
2v + 1

2w}. Further, we set

A1 := u− 1

2
w+ P, A2 := u+

1

2
v−w+ P, and A3 := u+

1

2
v− 1

2
w+ P.

Note that conv{u, u + v, u + v − w} ⊂ A1 ∪ A2 ∪ A3 (see Fig. 2.1). Our
assumption implies that the set u+ 1

2v+P does not contain any integer point
except possibly on the segment u+v+conv{0, w}. Therefore, for a sufficiently
small ε > 0, the set (u+ 1

2v − ε(v + w) + P ) ∩ Z2 is empty.

Assume now that one of the three regions, say A1, contains three affinely
independent integer points x, y, z. We show below that A1 + Z2 = R2, i.e.,
that P defines a lattice covering, or equivalently that the set t + P contains
at least one integer point for every t ∈ R2. This fact will contradict that
(u+ 1

2v − ε(v + w) + P ) ∩ Z2 = ∅ and thereby prove the lemma.

u

u+ v − w
u+ v

u+ v + w

A1

A3A2

Figure 2.1: Partitioning the triangle in regions.

Clearly, the parallelogram Q := conv{x, y, z, x− y + z} defines a lattice cov-
ering, as it is full-dimensional and its vertices are integral. We transform Q
into a set Q′ ⊆ A1 for which a ∈ Q′ if and only if there exists b ∈ Q such that
a − b ∈ Z2. Specifically, we define a mapping T such that Q′ = T (Q) ⊂ A1

and T (Q) + Z2 = R2. Let v⊥ := (−v2, v1)> and w⊥ := (−w2, w1)>, i.e., vec-
tors orthogonal to v and w. Without loss of generality (up to a permutation
of the names x, y, z), we can assume that 〈x,w⊥〉 ≤ 〈y, w⊥〉 ≤ 〈z, w⊥〉. If
x− y + z ∈ A1 there is nothing to show, so we suppose that x− y + z /∈ A1.

Note that 〈x,w⊥〉 ≤ 〈x − y + z, w⊥〉 ≤ 〈z, w⊥〉. Assume first that 〈x − y +
z, v⊥〉 < 〈z, v⊥〉 ≤ 〈x, v⊥〉, 〈y, v⊥〉 — the strict inequality resulting from the
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x

z

y

x− y + z

A1

w⊥

v⊥

x

z

y

A1

w⊥

v⊥

Figure 2.2: Mapping T .

fact that x− y + z /∈ A1. We define the mapping T : Q→ A1 as follows,

T (l) =


l + y − z, if 〈l, v⊥〉 < 〈z, v⊥〉 and 〈l, w⊥〉 > 〈x− y + z, w⊥〉,
l − x+ y, if 〈l, v⊥〉 < 〈z, v⊥〉 and 〈l, w⊥〉 ≤ 〈x− y + z, w⊥〉,
l, otherwise

(see Fig. 2.2). It is straightforward to show that T (Q) ⊂ A1 and T (Q)+Z2 =
R2. A similar construction can easily be defined for any possible ordering of
〈x− y + z, v⊥〉, 〈z, v⊥〉, 〈x, v⊥〉, and 〈y, v⊥〉.

Remark 2.2.4. In each region Ai, the line containing Ai ∩Z2, if it exists, can
be computed by the minimization of an arbitrary linear function x 7→ 〈c, x〉
over Ai∩Z2, with c 6= 0, and the maximization of the same function with the
fast algorithm described in [EL05]. If these problems are feasible and yield
two distinct solutions, the line we are looking for is the one joining these two
solutions. If the two solutions coincide, that line is the one orthogonal to c
passing through that point.

The algorithm in [EL05] is applicable to integer linear programs with two
variables and m constraints. The data of the problem should be integral.
This algorithm runs in O(m + φ), where φ is the binary encoding length of
the data.

Proof of Theorem 2.2.1. As described at the beginning of this section, a one-
dimensional integer minimization problem can be solved polynomially with
respect to the logarithm of the length of the segment that the function is
optimized over. In the following we explain how to reduce the implemen-
tation of the two-dimensional oracle to the task of solving one-dimensional
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integer minimization problems. For notational convenience, we define g(y) :=
maxi=1...m gi(y) for y ∈ R2 which is again a convex function.

Let F1, . . . , F4 be the facets of [−B,B]2. Then [−B,B]2 =
⋃4
j=1 conv{x, Fj}.

The procedure we are about to describe has to be applied to every facet
F1, . . . , F4 successively, until a suitable point x′ is found. Let us only consider
one facet F . We define the triangle T0 := conv{x, F}, whose area is smaller
than 2B2.

To find an improving point within T0, we construct a sequence T0 ⊃ T1 ⊃
T2 ⊃ . . . of triangles that all have x as vertex, with vol(Tk+1) ≤ 2

3 vol(Tk),
and such that f(z) > f(x) or g(z) > 0 for all z ∈ (T0 \ Tk)∩Z2. We stop our
search if we have found an x′ ∈ [−B,B]2 ∩ Z2 such that f(x′) ≤ f(x) and
g(x′) ≤ 0, or if the volume of one of the triangles Tk is smaller than 1

2 . The
latter happens after at most k = dln(4B2)/ ln( 3

2 )e steps. Then, Lemma 2.2.2
ensures that the integral points of Tk are on a line, and we need at most
O(ln(B)) iterations to solve the resulting one-dimensional problem.

The iterative construction is as follows. Let Tk = conv{x, v0, v1} be given.
We write vλ := (1− λ)v0 + λv1 for λ ∈ R and we define the auxiliary triangle
T̄k := conv{x, v1/3, v2/3}. Consider the integer linear program

min{〈h, z〉 : z ∈ T̄k ∩ Z2} (2.8)

where h is the normal vector to conv{v0, v1} such that 〈h, x〉 < 〈h, y〉 for every
y ∈ F . We distinguish two cases.

Case 1. The integer linear program (2.8) is infeasible. Then T̄k ∩ Z2 = ∅. It
remains to check for an improving point within (Tk\T̄k)∩Z2. By construction,
we can apply Lemma 2.2.3 twice (with (u, u + v − w, u + v + w) equal to
(x, v0, v2/3) and (x, v1/3, v1), respectively) to determine whether there exists
an x′ ∈ (Tk \ T̄k)∩Z2 such that f(x′) ≤ f(x) and g(x′) ≤ 0. This requires to
solve at most six one-dimensional subproblems.

Case 2. The integer linear program (2.8) has an optimal solution z. If
f(z) ≤ f(x) and g(z) ≤ 0, we return x′ = z and are done. So we assume
that f(z) > f(x) or g(z) > 0. Define H := {y ∈ R2 | 〈h, y〉 = 〈h, z〉}, that is,
the line containing z that is parallel to conv{v0, v1}, and denote by H+ the
closed half-space with boundary H that contains x. By definition of z, there
is no integer point in T̄k ∩ intH+. Further, let L := aff{x, z}.

Due to the convexity of the set {y ∈ R2 | f(y) ≤ f(x), g(y) ≤ 0} and the fact
that f(z) > f(x) or g(z) > 0, there exists a half-space L+ with boundary L
such that the possibly empty segment {y ∈ H | f(y) ≤ f(x), g(y) ≤ 0} lies
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x

v0

v1/3 v2/3

v1

z1/3 z1z

Tk T̄k

L+

H+

Figure 2.3: Illustration of Case 2.

in L+ (see Fig. 2.3). By convexity of f and g, the set ((Tk \H+) \ L+) (the
lightgray region in Fig. 2.3) contains no point y for which f(y) ≤ f(x) and
g(y) ≤ 0. It remains to check for an improving point within ((Tk∩H+)\L+)∩
Z2. For that we apply again Lemma 2.2.3 on the triangle conv{z1/3, z1, x}
(the darkgray region in Fig. 2.3), with z1/3 = H ∩ aff{x, v1/3} and z1 =
H ∩ aff{x, v1}. If none of the corresponding subproblems returns a suitable
point x′ ∈ Z2, we know that Tk \ L+ contains no improving integer point.
Defining Tk+1 := Tk ∩ L+, we have by construction f(z) > f(x) or g(z) > 0
for all z ∈ (Tk \ Tk+1) ∩ Z2 and vol(Tk+1) ≤ 2

3 vol(Tk).

It remains to determine the half-space L+. If g(z) > 0 we just need to find
a point y ∈ H such that g(y) < g(z), or if f(z) > f(x), it suffices to find a
point y ∈ H such that f(y) < f(z). Finally, if we cannot find such a point
y in either case, convexity implies that there is no suitable point in Tk \H+;
another application of Lemma 2.2.3 then suffices to determine whether there
is a suitable x′ in Tk ∩H+ ∩ Z2.

The algorithm presented in the proof of Theorem 2.2.1 can be adapted to
output a minimizer x? of f over S ∩ [−B,B]2 ∩ Z2, provided that we know
in advance that the input point x satisfies f(x) ≤ f?: it suffices to store and
update the best value of f on integer points found so far. In this case the
termination procedure is not necessary.

Corollary 2.2.5. Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m
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be convex functions. Let B ∈ N and let x ∈ [−B,B]2 such that gi(x) ≤ 0
for all i = 1, . . . ,m. If f(x) ≤ f?, then, in a number of evaluations of f and
g1, . . . , gm that is polynomial in ln(B), one can either

(a) find an x? ∈ [−B,B]2 ∩ Z2 with f(x?) = f̂∗ and gi(x
?) ≤ 0 for all

i = 1, . . . ,m or

(b) show that there is no such point.

Note that line 30 in Algorithm 3 requires the application of Lemma 2.2.2.
Lines 11, 20 and 24 require the application of Lemma 2.2.3.

Remark 2.2.6 (Complexity). The following subroutines are used in Algo-
rithm 3.

Line 9 and applications of Lemma 2.2.3. A two-dimensional integer lin-
ear program solver for problems having at most four constraints, such
as the one described in [EL05]. The size of the data describing each of
these constraints is in the order of the representation of the vector x as
a rational number, which, in its standard truncated decimal represen-
tation, is in O(ln(B)).

Line 30 and applications of Lemma 2.2.3. A solver for one-dimensional
integer convex optimization problems. At every iteration, we need to
perform at most seven of them, for a cost of O(ln(B)) at each time.

Lines 18 and 19. Given a segment [a, b] and one of its points z, we need a
device to determine which of the two regions [a, z] or [z, b] intersects a
level set defined by f and g that does not contain z. This procedure
has a complexity of O(ln(B)) and only occurs in Case 2 above.

2.2.2 Finding the k-th best point

In this section we want to show how to find the k-th best point, provided
that the k − 1 best points are known. A slight variant of this problem will
be used in Section 2.3.3 as a subroutine for the general mixed-integer convex
problem. In the following, we describe the necessary extensions of the previous
Algorithm 3. Let x?1 := x? and define for k ≥ 2:

x?k := arg min
{
f(z) | z ∈ (S ∩ [−B,B]2 ∩ Z2) \ {x?1, . . . , x?k−1}

}
to be the k-th best point. Observe that, due to the convexity of the functions
f and g1, . . . , gm, we can always assume that conv{x?1, . . . , x?k−1} ∩ Z2 =
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Data: x ∈ [−B,B]2 with f(x) ≤ f? and gi(x) ≤ 0 for all i = 1, . . . ,m.
1 Let F1, . . . , F4 be the facets of [−B,B]2.
2 Set x? := 0 and f? := +∞.
3 for t = 1, . . . , 4 do
4 Set F := Ft and define v0, v1 ∈ Rn such that F := conv{v0, v1}.
5 Write h for the vector normal to F pointing outwards [−B,B]2.
6 Set T0 := conv{x, F} and k := 0.

7 while vol(Tk) ≥ 1
2 do

8 Set T̄k := conv{x, v1/3, v2/3}, with vλ := (1− λ)v0 + λv1.
9 Solve (P) : min{〈h, z〉 : z ∈ T̄k ∩ Z2}.

10 if (Case 1) (P) is infeasible, then
11 Determine x′ := arg min{f(z) | z ∈ (Tk \ T̄k) ∩ Z2 with g(z) ≤ 0}.
12 if x′ exists and f(x′) < f? then Set x? := x′ and f? := f(x′).

13 else
14 (Case 2) Let z be an optimal solution of (P).
15 Set H+ := {y ∈ R2 : 〈h, y〉 ≤ 〈h, z′〉} and H := ∂H+.
16 Define v := aff{x, z} ∩ F and zi = H ∩ conv{x, vi} for i = 0, 1.
17 Denote zλ := (1− λ)z0 + λz1 for λ ∈ (0, 1).
18 if g(z) ≤ 0 and there is a y ∈ conv{z0, ẑ} s.t. f(y) < f(z) or
19 g(z) > 0 and there is a y ∈ conv{z0, ẑ} s.t. g(y) < g(z) then
20 Determine

x′ := arg min{f(y) | y ∈ conv{x, z1/3, z1} ∩ Z2 with g(y) ≤ 0}.
21 if x′ exists and f(x′) < f? then Set x? := x′ and f? := f(x′).
22 Set v1 := v, Tk+1 := conv{x, v0, v}, and k := k + 1.

23 else
24 Determine

x′ := arg min{f(y) | y ∈ conv{x, z0, z2/3} ∩ Z2 with g(y) ≤ 0}.
25 if x′ exists and f(x′) < f? then Set x? := x′ and f? := f(x′).
26 Set v0 := v, Tk+1 := conv{x, v, v1}, and k := k + 1.

27 end

28 end

29 end
30 Determine x′ := arg min{f(y) | y ∈ Tk ∩ Z2 with g(y) ≤ 0}.
31 if x′ exists and f(x′) < f? then Set x? := x′ and f? := f(x′).

32 end
33 if f? < +∞ then Return x?.
34 else Return “the problem is unfeasible”.

Algorithm 3: Minimization algorithm for 2D problems.
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{x?1, . . . , x?k−1} for all k ≥ 2. Although this observation appears plausible it
is not completely trivial to achieve this algorithmically.

Lemma 2.2.7. Let Πj := {x?1, . . . , x?j} be the ordered j best points of our
problem and Pj be the convex hull of Πj. Suppose that, for a given k ≥ 2, we
have Pk−1 ∩ Z2 = Πk−1. Let z?k be a k-th best point.

(a) If f(z?k) > f?, we can replace the point z?k by a feasible k-th best point x?k
such that conv{Πk−1, x

?
k} ∩ Z2 = Πk−1 ∪ {x?k} in O(1) operations.

(b) If f(z?k) = f?, and if we have at our disposal the ν vertices of Pk−1

ordered counterclockwise, we can construct such a point x?k in O(ν ln(B))
operations.

Proof. Part (a). Suppose first that f(z?k) > f?, and assume that we cannot set

x?k := z?k, that is, that there exists z ∈ (Pk ∩Z2) \Πk. Then z =
∑k−1
i=1 λix

?
i +

λkz for some λi ≥ 0 that sum up to 1. Note that 0 < λk < 1, because
z /∈ Pk−1 ∪ {z?k} by assumption, and that f(z) ≥ f(z?k). We deduce:

0 ≤ f(z)− f(z?k) ≤
k−1∑
i=1

λi(f(x?i )− f(x?k)) ≤ 0.

Thus f(z) = f(z?k). Let I := {i : λi > 0} and QI := conv{z?k} ∪ {x?i : i ∈ I},
so that x̂ ∈ relint QI . Observe that |I| ≥ 2 and that f is constant on QI .
Necessarily, QI is a segment. Indeed, if it were a two-dimensional set, we could
consider the restriction of f on the line ` := aff{x?1, z}: it is constant on the
open interval `∩ intQI , but does not attain its minimum on it, contradicting
the convexity of f . Let us now construct the point x?k: it suffices to consider
the closest point to x?k in aff{QI}∩Pk−1, say x?j , and to take the integer point
x?k 6= x?j of conv{x?j , x?k} that is the closest to x?j (see Fig. 2.4).

x?j z?kx?kQI

Pk−1

Figure 2.4: Illustration of Part (a).

Part (b). Suppose now that f(x?i ) = f(z?k) = f? for every 1 ≤ i ≤ k − 1, and
define

{v0 ≡ vν , v1, . . . , vν−1} ⊆ Πk−1
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Data: z?k, v0, v1, . . . , vj .
Set i := 0 and z(0) := z?k.
while det(z(i)− vi, vi+1 − vi) ≥ 0 do

Set ∆i := conv{z(i), vi, vi+1} \ aff{vi, vi+1}.
Set hi a vector orthogonal to aff{vi, vi+1} such that 〈hi, z(i)− vi〉 > 0.
Set z(i+ 1) := arg min{〈hi, z〉 : z ∈ ∆i ∩ Z2}.
Set i := i+ 1.

end
Set x?k := z(i).

Algorithm 4: Constructing a point x?k with conv{Πk−1, x
?
k} ∩ Z2 = Πk−1 ∪

{x?k}.

as the vertices of Pk−1, labeled counterclockwise. It is well-known that de-
termining the convex hull of Pk−1 ∪ {z∗k} costs O(ln(ν)) operations. From
these vertices, we deduce the set {vi : i ∈ J} of those points that are in
the relative interior of that convex hull. Up to a renumbering of the vl’s, we
have J = {1, 2, . . . , j − 1}. We show below that Algorithm 4 constructs a
satisfactory point x?k.

We follow here the notation used in Algorithm 4. At every iteration i, the
algorithm constructs from an integer point z(i) an integer point z(i + 1),
possibly identical to z(i). When the algorithm stops, after at most j ≤ ν
iterations, the point x?k we are looking for is, as we will prove it below, the
last z(i) we have constructed.

Define Tl(i) := conv{z(i), vl, vl+1} \ Pk−1 for 0 ≤ l < j (see Fig. 2.5); the tri-
angle ∆i in Algorithm 4 corresponds to Ti(i). Also, the vector hi is orthogonal
to the side aff{vi, vi+1} of the triangle Ti(i).

At iteration i, the algorithm considers the triangle Ti(i) if its signed area

1

2
det(z(i)− vi, vi+1 − vi)

is nonnegative, and finds a point z(i+ 1) ∈ Ti(i) such that Ti(i+ 1) has only
z(i+ 1) as integer point.

We prove by induction on i ≥ 1 that Tl(i) contains only z(i) as integer
point whenever l < i. Consider the base case i = 1. By construction, the
triangle T0(1) contains only z(1) as integer point, for otherwise z(1) would
not minimize 〈h0, z〉 over T0(0) ∩ Z2.

Suppose now that the statement is true for i and let l ≤ i. Let us verify that
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z(i+ 1) is the only integer in Tl(i+ 1). We have:

z(i+ 1) ∈ Ti(i) ⊆ conv{z(i), v0, . . . , vi+1} \ Pk−1 = Ti(i) ∪
i−1⋃
l=0

Tl(i).

This last equality represents a triangulation of the possibly non-convex poly-
gon conv{z(i), v0, . . . , vi+1} \ Pk−1. From the above inclusion, we deduce:

K := conv{z(i+ 1), v0, . . . , vi+1} \ Pk−1 ⊆ conv{z(i), v0, . . . , vi+1} \ Pk−1.

As Tl(i+1) ⊆ K for all l ≤ i, the integers of Tl(i+1) are either in
⋃i−1
l=0 Tl(i)∩

Z2, which reduces to {z(i)} by induction hypothesis, or in Ti(i). Since z(i) ∈
Ti(i), all the integers in Tl(i+1) must be in Ti(i). But Tl(i+1)∩Ti(i)∩Z2 =
{z(i+ 1)} by construction of z(i+ 1). The induction step is proved.

It remains to take the largest value that i attains in the course of Algorithm 4
to finish the proof. We need to solve at most ν − 1 two-dimensional integer
linear problems over triangles to compute x?k. As the data of these problems
are integers bounded by B, the complexity of the minimization solver used to
compute z(i+1) at every step is bounded byO(ln(B)). The overall complexity
of Algorithm 4 is thus bounded by O(ν ln(B)).

By Lemma 2.2.7, the k-th best point x?k can be assumed to be contained
within [−B,B]2 \ conv{x?1, . . . , x?k−1}. This property allows us to design a
straightforward algorithm to compute this point. We first construct an in-
equality description of conv{x?1, . . . , x?k−1}, say 〈ai, x〉 ≤ bi for i ∈ I with
|I| < +∞. Then

[−B,B]2 \ conv{x?1, . . . , x?k−1} =
⋃
i∈I
{x ∈ [−B,B]2 | 〈ai, x〉 > bi}.

As the feasible set is described as a union of simple convex sets, we could
apply Algorithm 1 once for each of them. However, instead of choosing this
straightforward approach one can do better: one can avoid treating each
element of this disjunction separately by modifying Algorithm 3 appropriately.

Suppose first that k = 2. To find the second best point, we apply Algorithm 3
to the point x?1 with the following minor modification: in Line 9, we replace
(P) with the integer linear problem (P ′) : min{〈h, z〉 : z ∈ T̄k ∩ Z2, 〈h, z〉 ≥
〈h, x?1〉 + 1}, where h ∈ Z2 such that gcd(h1, h2) = 1. This prevents the
algorithm from returning x?1 again.

Let k ≥ 3. Let v0, . . . , vν−1, vν ≡ v0 denote the vertices of Pk−1, ordered
counterclockwise (they can be determined in O(k ln(k)) operations using the
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z(0)

v0

v1

v2
vj

Pk−1

T1(0)

T0(0)

T2(0)

Beginning of iteration i = 0

z(0) ≡ z(1)

v0

v1

v2
vj

Pk−1

T1(1)

T0(1)

T2(1)

Beginning of iteration i = 1

z(0) ≡ z(1)

z(2)

v0

v1

v2
vj

Pk−1

T1(2)

T0(2)

T2(2)

Beginning of iteration i = 2

Figure 2.5: Constructing Pk from Pk−1: first iterations of Algorithm 4. The point
z(1) is the same as z(0) because T0(0) has no other integer point than z(0). The
gray areas are, as the algorithm progresses, regions where we have established that
they do not contain any integer point.
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Graham Scan [Gra72]). Recall that the point we are looking for is not in
Pk−1.

Let us call a triangle with a point vi as vertex and with a segment of the
boundary of [−B,B]2 as opposite side a search triangle (see Fig. 2.7: every
white triangle is a search triangle). The idea is to decompose [−B,B]2 \Pk−1

into search triangles, then to apply Algorithm 3 to these triangles instead of
(conv{x, Ft})4

t=1.

For each 0 ≤ i < ν, we define Hi := {y ∈ R2 : det(y − vi, vi+1 − vi) ≥ 0},
so that Hi ∩ Pk−1 = conv{vi, vi+1}. Consider the regions Ri := ([−B,B]2 ∩
Hi) \ intHi−1. Note that Ri contains only vi and vi+1 as vertices of Pk−1.
Also, at most four of the Ri’s are no search triangles. If Ri is such, we
triangulate it into (at least two) search triangles by inserting chords from vi
to the appropriate vertices of [−B,B]2.

Pk−1

v0

v1
v2

H1

R1

Figure 2.6: Triangulation step 1.

Pk−1

v0

v1
v2

Figure 2.7: Triangulation step 2.

Note that a search triangle can contain two or more integer points of Pk−1.
In order to prevent us from outputting one of those, we need to perturb
the search triangles slightly before using them in Algorithm 3. Let T =
conv{vi, b1, b2} be one of the search triangles, with b1, b2 being points of
the boundary of [−B,B]2. The triangle T might contain vi+1, say vi+1 ∈
conv{vi, b1}, a point we need to exclude from T . We modify b1 slightly by
replacing it with (1 − ε)b1 + εb2 for an appropriate positive ε > 0 whose
encoding length is O(ln(B)).

So, we apply Algorithm 3 with all these modified search triangles instead of
conv{x, F1}, . . . , conv{x, F4}. A simple modification of Line 9 allows us to
avoid the point vi for z: we just need to replace the linear integer problem
(P) with min{〈h, z〉 : z ∈ T̄k∩Z2, 〈h, z〉 ≥ 〈h, vi〉+1}, where h ∈ Z2 such that
gcd(h1, h2) = 1. Then, among the feasible integer points found, we return
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the point with smallest objective value.

Corollary 2.2.8. Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m be
convex functions. Let x?1, . . . , x

?
k−1 be the k− 1 best points for min{f(z) : z ∈

S ∩ [−B,B]2 ∩ Z2}. Then, in a number of evaluations of f and g1, . . . , gm
that is polynomial in ln(B) and in k, one can either find

(a) a k-th best point, x?k, or

(b) show that there is no such point.

2.3 Extensions and applications to the general
setting

In this section, we extend our algorithm for solving two-dimensional integer
convex optimization problems in order to solve more general mixed-integer
convex problems. The first extension concerns mixed-integer convex problems
with two integer variables and d continuous variables. For those, we first
need results about problems with only one integer variable. We derive these
results in Section 2.3.1 where we propose a variant of the well-known golden
search method that deals with convex functions whose value is only known
approximately. To the best of our knowledge, this variant is new.

In Section 2.3.2, we build an efficient method for solving mixed-integer con-
vex problems with two integer and d continuous variables and propose an
extension of Corollary 2.2.8. This result itself will be used as a subroutine to
design a finite-time algorithm for mixed-integer convex problems in n integer
and d continuous variables in Section 2.3.3.

In this section, the problem of interest is (2.1):

min{f(z, y) : gi(z, y) ≤ 0 for 1 ≤ i ≤ m, (z, y) ∈ Zn × Rd}

with a few mild simplifying assumptions. We define the function

g : Rn → R, x 7→ g(x) := min
y∈Rd

max
1≤i≤m

gi(x, y).

We assume that this minimization in y has a solution for every x ∈ Rn, so as to
make the function g convex. Let S := {(x, y) ∈ Rn+d : gi(x, y) ≤ 0 for 1 ≤ i ≤
m}. We assume that the function f has a finite spread max{f(x, y)−f(x′, y′) :
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(x, y), (x′, y′) ∈ S} on S and that we know an upper bound Vf on that
spread. Observe that, by Lipschitz continuity of f and the assumption that
we optimize over [−B,B]n, it follows Vf ≤ 2

√
nBL. Finally, we assume that

the partial minimization function:

φ : Rn → R ∪ {+∞}, x 7→ φ(x) := min{f(x, y) : (x, y) ∈ S}

is convex. As for the function g, this property can be achieved e.g. if for every
x ∈ Rn for which g(x) ≤ 0 there exists a point y such that (x, y) ∈ S and
φ(x) = f(x, y).

Our approach is based on the following well-known identity:

min{f(z, y) : (z, y) ∈ S ∩ (Zn × Rd)} = min{φ(z) : g(z) ≤ 0, z ∈ Zn}.

For instance, when n = 2, we can use the techniques developed in the previous
section on φ to implement the improvement oracle for f . However, we cannot
presume to know exactly the value of φ, as it results from a minimization
problem. We merely assume that, for a known accuracy γ > 0 and for every
x ∈ domφ we can determine a point yx such that (x, yx) ∈ S and f(x, yx)−γ ≤
φ(x) ≤ f(x, yx). Determining yx can be, on its own, a non-trivial optimization
problem. Nevertheless, it is a convex problem for which we can use the whole
machinery of standard Convex Programming (see e.g. [NN94, CGT00, Nes04]
and references therein.).

Since we do not have access to exact values of φ, we cannot hope for an exact
oracle for the function φ, let alone for f . The impact of the accuracy γ on
the accuracy of the oracle is analyzed in the next sections.

2.3.1 Mixed-integer convex problems with one integer
variable

The Algorithm 3 uses as indispensable tools the bisection method for solving
two types of problems: minimizing a convex function over the integers of an
interval, and finding, in a given interval, a point that belongs to a level set of a
convex function. In this section, we show how to adapt the bisection methods
for mixed-integer problems. It is well-known that the bisection method is
the fastest for minimizing univariate convex functions over a finite segment
([Nem94, Chapter 1]).

Let a, b ∈ R, a < b, and ϕ : [a, b] → R be a convex function to minimize on
[a, b] and/or on the integers of [a, b], such as the function φ in the preamble
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of this Section 2.3 when n = 1. Assume that, for every t ∈ [a, b], we know a
number ϕ̃(t) ∈ [ϕ(t), ϕ(t) + γ]. In order to simplify the notation, we scale the
problem so that [a, b] ≡ [0, 1]. The integers of aff{a, b} are scaled to a set of
points of the form t0 +τZ for a τ > 0. Of course, the spread of the function ϕ
does not change, but its Lipschitz constant does, and achieving the accuracy
γ in its evaluation must be reinterpreted accordingly.

In the sequel of this section, we fix 0 ≤ λ0 < λ1 ≤ 1.

Lemma 2.3.1. Under our assumptions, the following statements hold.

(a) If ϕ̃(λ0) ≤ ϕ̃(λ1)− γ, then ϕ(λ) ≥ ϕ̃(λ0) for all λ ∈ [λ1, 1].

(b) If ϕ̃(λ0) ≥ ϕ̃(λ1) + γ, then ϕ(λ) ≥ ϕ̃(λ1) for all λ ∈ [0, λ0].

Proof. We only prove Part (a) as the proof of Part (b) is symmetric. Thus,
let us assume that ϕ̃(λ0) ≤ ϕ̃(λ1)− γ. Then there exists 0 < µ ≤ 1 for which
λ1 = µλ+ (1− µ)λ0. Convexity of ϕ allows us to write:

ϕ̃(λ0) ≤ ϕ̃(λ1)− γ ≤ ϕ(λ1) ≤ µϕ(λ) + (1− µ)ϕ(λ0) ≤ µϕ(λ) + (1− µ)ϕ̃(λ0),

implying ϕ̃(λ0) ≤ ϕ(λ) as µ > 0. Fig. 2.8 illustrates the proof graphically.

0 1λ1λ0

ϕ̃(λ0)

ϕ̃(λ1) γ

Figure 2.8: Lemma 2.3.1: the bold line represents a lower bound on ϕ in Part (a).

If one of the conditions in Lemma 2.3.1 is satisfied, we can remove from
the interval [0, 1] either [0, λ0[ or ]λ1, 1]. To have a symmetric effect of the
algorithm in either case, we set λ1 := 1 − λ0, forcing λ0 to be smaller than
1
2 . In order to recycle our work from iteration to iteration, we choose λ1 :=
1
2 (
√

5 − 1), as in the golden search method: if we can eliminate, say, the
interval ]λ1, 1] from [0, 1], we will have to compute in the next iteration step
an approximate value of the objective function at λ0λ1 and λ2

1. The latter
happens to equal λ0 when λ1 = 1

2 (
√

5− 1).

It remains to define a strategy when neither of the conditions in Lemma 2.3.1
is satisfied. In the lemma below, we use the values for λ0, λ1 chosen above.
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Lemma 2.3.2. Assume that ϕ̃(λ1)− γ < ϕ̃(λ0) < ϕ̃(λ1) + γ. We define:

λ0+ := (1− λ0) · λ0 + λ0 · λ1 = 2λ0λ1,

λ1+ := (1− λ1) · λ0 + λ1 · λ1 = 1− 2λ0λ1.

If min{ϕ̃(λ0+), ϕ̃(λ1+)} ≤ min{ϕ̃(λ0)−γ, ϕ̃(λ1)−γ}, then ϕ(t) ≥ min{ϕ̃(λ0+),
ϕ̃(λ1+)} for all t ∈ [0, 1]\[λ0, λ1]. Otherwise, it holds that min{ϕ̃(λ0), ϕ̃(λ1)} ≤
min{ϕ(t) : t ∈ [0, 1]}+ (κ− 1)γ, where κ := 2

λ0
≈ 5.236.

Proof. The first conclusion follows immediately from Lemma 2.3.1. The sec-
ond situation involves a tedious enumeration, summarized in Fig. 2.9. We
assume, without loss of generality, that ϕ̃(λ0) ≤ ϕ̃(λ1). The bold lines in
Fig. 2.9 represent a lower bound on the value of the function ϕ. We show
below how this lower bound is constructed and determine its lowest point. In
fact, this lower bound results from six applications of a simple generic inequal-
ity (2.9) that we establish below, before showing how we can particularize it
to different segments of the interval [0, 1].

0 1λ1λ0
λ1+λ0+

m1 m2 m3
m4 m5

ϕ̃(λ0) γ
γ

γ

Figure 2.9: Approximate bisection: bold lines represent a lower bound on ϕ in
the termination case.

Let 0 < t < 1 and let u, v ∈ {λ0, λ0+, λ1+, λ1}. Suppose that we can write
v = µt + (1 − µ)u for a µ ∈ ]µ0, 1] with µ0 > 0. If we can find constants
γ−, γ+ ≥ 0 that satisfy

ϕ(v) + γ+ ≥ ϕ̃(λ0) ≥ ϕ(u)− γ−

then we can infer:

µϕ(t) + (1− µ)(ϕ̃(λ0) + γ−) ≥ µϕ(t) + (1− µ)ϕ(u) ≥ ϕ(v) ≥ ϕ̃(λ0)− γ+,

and thus:

ϕ(t)− ϕ̃(λ0) ≥ γ− −
γ+ + γ−

µ
≥ γ− −

γ+ + γ−
µ0

. (2.9)
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1. If t ∈ ]0, λ0], we can take u := λ1 and v := λ0, giving µ0 = 1− λ0

λ1
= λ0.

Then γ− = γ+ = γ, and ϕ(t)− ϕ̃(λ0) ≥ −γ( 2
λ0
− 1).

2. If t ∈ ]λ1, 1[, we choose u := λ0 and v := λ1, and by symmetry with the
previous case we obtain µ0 = λ0. Now, γ− = 0 and γ+ = γ, yielding a
higher bound than in the previous case.

3. Suppose t ∈ ]λ0, λ0+]. Then with u := λ1 and v := λ0+, we get µ0 =
λ1−λ0+

λ1−λ0
= λ1, γ− = γ, γ+ = 2γ, giving as lower bound −γ( 3

λ1
− 1),

which is higher than the first one we have obtained.

4. Symmetrically, let us consider t ∈ ]λ1+, λ1]. With u := λ0 and v := λ1+,
we obtain also µ0 = λ1. As γ− = 0 and γ+ = 2γ, the lower bound we
get is larger than the one in the previous item.

5. Set λ′ := 1
5 (2λ0+ + 3λ1+). If t ∈ ]λ0+, λ

′], we can use u := λ0 and

v := λ0+, so that µ0 = λ0+−λ0

λ′−λ0
= 5λ2

0, γ− = 0, and γ+ = 2γ. Thus,

the lower bound is evaluated as − 2γ
5λ2

0
, which is higher than any of the

bounds we have obtained so far.

6. Finally, if t ∈ ]λ′, λ1+], we take u := λ1 and v := λ1+, so that γ− = γ,

γ+ = 2γ, and µ0 = λ1−λ1+

λ1−λ′ = 5λ0

2+λ0
. Hence, we get −γ( 3(2+λ0)

5λ0
− 1) =

− 2γ
5λ2

0
for the lower bound, just as in the previous item.

So, the lower bound for ϕ(t)−ϕ̃(λ0) on [0, 1] can be estimated as −γ( 2
λ0
−1) ≈

−4.236γ.

In the proof of the following proposition, we present an algorithm that returns
a point x ∈ [0, 1] whose function value ϕ(x) is close to min{ϕ(t) : t ∈ [0, 1]}.

Proposition 2.3.3. There exists an algorithm that finds a point x ∈ [0, 1]
for which ϕ̃(x) − (κ − 1)γ ≤ min{ϕ(t) : t ∈ [0, 1]} ≤ ϕ(x) in at most 2 +⌈
ln
(

(κ−1)γ
Vϕ

)
/ ln(λ1)

⌉
evaluations of ϕ̃, where Vϕ is the spread of ϕ on [0, 1].

Proof. We start with the interval [0, 1] and by evaluating ϕ̃ at λ0 and λ1.
If one of the two conditions in Lemma 2.3.1 is satisfied, we can shrink the
interval by a factor of λ0 ≈ 38% since it suffices to continue either with the
interval [0, λ1] or with [λ0, 1]. If not, then Lemma 2.3.2 applies: if the first
condition stated in Lemma 2.3.2 is met, then it suffices to continue with the
interval [λ0, λ1] so as to shrink the starting interval by a factor of 2λ0 ≈ 76%.
Otherwise, any x ∈ [λ0, λ1] satisfies the requirement of the lemma and we
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can stop the algorithm. Therefore, either the algorithm stops or we shrink
the starting interval by a factor of at least λ0. Iterating this procedure, it
follows that — if the algorithm does not stop — at every step the length of
the remaining interval is at most λ1 times the length of the previous interval.
Moreover, by the choice of λ0, the function ϕ̃ is evaluated in two points at
the first step, and in only one point as from the second step in the algorithm.
So, at iteration k, we have performed at most 2 + k evaluations of ϕ̃.

By construction, the minimum t? of ϕ lies in the remaining interval Ik of
iteration k. Also, the value of ϕ outside Ik is higher than the best value
found so far, say ϕ̃(t̄k). Finally, the size of Ik is bounded from above by λk1 .
Consider now the segment I(λ) := (1− λ)t? + λ[0, 1], of size λ. Observe that
for every λ such that 1 ≥ λ > λk1 , the interval I(λ) contains a point that is
not in Ik. Therefore,

ϕ̃(t̄k) ≤ max{ϕ(t) : t ∈ I(λ)} ≤ (1− λ)ϕ(t?) + λmax{ϕ(t) : t ∈ [0, 1]}
≤ (1− λ)ϕ(t?) + λ(Vϕ + ϕ(t?)).

Hence ϕ̃(t̄k) − ϕ(t?) ≤ λVϕ, and, by taking λ arbitrarily close to λk1 , we get
ϕ̃(t̄k)−ϕ(t∗) ≤ λk1Vϕ. If the algorithm does not end prematurely, we need at

most
⌈
ln
(

(κ−1)γ
Vϕ

)
/ ln(λ1)

⌉
iterations to make λk1Vϕ smaller than (κ−1)γ.

Remark 2.3.4. If we content ourselves with a coarser precision η ≥ (κ− 1)γ,
we merely need O(ln(Vϕ/η)) evaluations of ϕ̃. �

It is now easy to extend this procedure to minimize a convex function approx-
imately over the integers of an interval [a, b], or, using our simplifying scaling,
over (t0 + τZ) ∩ [0, 1] for given t0 ∈ R and τ > 0.

Proposition 2.3.5. There exists an algorithm that finds a point z? ∈ (t0 +
τZ) ∩ [0, 1] for which:

ϕ̃(z?)− κγ ≤ min{ϕ(z) : z ∈ (t0 + τZ) ∩ [0, 1]} ≤ ϕ(z?)

in less than

min

{
4 +

⌈
ln((κ− 1)γ/Vϕ)

ln(λ1)

⌉
, 5 +

⌈
ln(τ)

ln(λ1)

⌉}
evaluations of ϕ̃, where Vϕ is the spread of ϕ on [0, 1].

Proof. We denote in this proof the points in (t0 + τZ) as scaled integers. To
avoid a trivial situation, we assume that [0, 1] contains at least two such scaled
integers.
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Let us use the approximate bisection method described in the proof of Propo-
sition 2.3.3 until the remaining interval has a size smaller than τ , so that it
contains at most one scaled integer. Two possibilities arise: either the algo-
rithm indeed finds such a small interval Ik, or it finishes prematurely, with a
remaining interval Ik larger than τ .

In the first case, which requires at most 2 + dln(τ)/ ln(λ1)e evaluations of ϕ̃,
we know that Ik contains the continuous minimizer of ϕ. Hence, the actual
minimizer of ϕ over (t0 + τZ) ∩ [0, 1] is among at most three scaled integers,
namely the possible scaled integer in Ik, and, at each side of Ik, the possible
scaled integers that are the closest to Ik. By convexity of ϕ, the best of
these three points, say z?, satisfies ϕ̃(z?) − γ ≤ ϕ(z?) = min{ϕ(z) : z ∈
(t0 + τZ) ∩ [0, 1]}.

In the second case, we have an interval Ik ⊆ [0, 1] and a point t̄k that ful-
fill ϕ̃(t̄k) ≤ min{ϕ(z) : z ∈ [0, 1]} + (κ − 1)γ, which was determined within

at most 2 +
⌈

ln((κ−1)γ/Vϕ)
ln(λ1)

⌉
evaluations of ϕ̃. Consider the two scaled inte-

gers z− and z+ that are the closest from t̄k. One of these two points con-
stitutes an acceptable output for our algorithm. Indeed, suppose first that
min{ϕ̃(z−), ϕ̃(z+)} ≤ ϕ̃(t̄k) + γ. Then:

min{ϕ̃(z−), ϕ̃(z+)} ≤ ϕ̃(t̄k) + γ ≤ min{ϕ(t) : t ∈ [0, 1]}+ κγ,

and we are done. Suppose that min{ϕ̃(z−), ϕ̃(z+)} > ϕ̃(t̄k) + γ and that
there exists a scaled integer z with ϕ(z) < min{ϕ(z−), ϕ(z+)}. Without loss
of generality, let z− ∈ conv{z, zk}, that is z− = λz+(1−λ)zk, with 0 ≤ λ < 1.
We have by convexity of ϕ:

ϕ(z−) ≤ λϕ(z) + (1− λ)ϕ(zk) < λϕ(z−) + (1− λ)(ϕ̃(z−)− γ),

which is a contradiction because λ < 1 and ϕ̃(z−)− γ ≤ ϕ(z−). So, it follows
that ϕ(z) ≥ min{ϕ(z−), ϕ(z+)} for every z ∈ (t0 + τZ) ∩ [0, 1], proving the
statement.

In the the following we extend the above results to the problem min{ϕ(t) :
t ∈ [0, 1], g(t) ≤ 0}, where g : [0, 1] → R is a convex function with a known
spread Vg. In the case that we have access to exact values of g, an approach
for attacking the problem would be the following: we first determine whether
there exists an element t̄ ∈ [0, 1] with g(t̄) ≤ 0. If t̄ exists, we determine
the exact bounds t− and t+ of the interval {t ∈ [0, 1], g(t) ≤ 0}. Then we
minimize the function f over [t−, t+].



40 CHAPTER 2. MIRROR-DESCENT METHODS

The situation where we do not have access to exact values of g or where we
cannot determine the feasible interval [t−, t+] induces some technical com-
plications. We shall not investigate them in this chapter, except in the re-
maining of this section in order to appreciate the modification our method
needs in that situation: let us assume, that we have only access to a value
g̃(t) ∈ [g(t), g(t) + γ]. In order to ensure that the constraint g is well-posed
we make an additional assumption: either {t ∈ [0, 1] : |g(t)| ≤ γ} is empty,
or the quantity min{|g′(t)| : g′(t) ∈ ∂g(t), |g(t)| ≤ γ} is non-zero, and even
reasonably large. This ensures that the (possibly empty) 0-level set of g is
known with enough accuracy. We denote by θ > 0 a lower bound on this
minimum, and for simplicity assume that θ = 2Nγ for a suitable N ∈ N.

Our strategy proceeds as follows. First we determine whether there exists a
point t̄ ∈ [0, 1] for which g(t̄) < 0 by applying the minimization procedure
described in Proposition 2.3.3. If this procedure only returns nonnegative
values, we can conclude after at most 2+dln((κ−1)γ/Vg)/ ln(λ1)e evaluations
of g̃ that g(t) ≥ −(κ− 1)γ, in which case we declare that we could not locate
any feasible point in [0, 1].

Otherwise, if we find a point t̄ ∈ [0, 1] with g̃(t̄) < 0, we continue and compute
approximate bounds t− and t+ of the interval {t ∈ [0, 1], g(t) ≤ 0}. For that,
we assume g̃(0), g̃(1) ≥ 0. By symmetry, we only describe how to construct
t− such that g̃(t−) ≤ 0 and g(t−−η) ≥ 0 for an η > 0 reasonably small. Note
that g(t) ≤ 0 on [t−, t̄] by convexity of g.

In order to compute t−, we adapt the standard bisection method for finding
a root of a function. Note that the function g̃ might not have any root
as it might not be continuous. Our adapted method constructs a decreasing
sequence of intervals [ak, bk] such that g̃(ak) > 0, g̃(bk) ≤ 0, and bk+1−ak+1 =
1
2 (bk − ak). If g̃(ak) > γ, we know that g is positive on [0, ak], and we know
that there is a root of g on [ak, bk]. Otherwise, if 0 < g̃(ak) ≤ γ and that the
interval [ak, bk] has a length larger or equal to γ

θ . Given the form of θ, we
know that k ≤ N . We claim that for every 0 ≤ t ≤ min{0, ak − γ

θ } we have
g(t) ≥ 0, so that we can take η := 2γθ and t− := bN . Indeed, assume that
g′(ak) ≥ θ, then

g̃(bk) ≥ g(bk) ≥ g(ak) + g′(ak)(bk − ak) > −γ + θ · γ
θ
≥ 0

giving a contradiction, so we must have g′(ak) ≤ −θ. We can exclude the
case where t can only be 0. As claimed, we have

g(t) ≥ g(ak) + g′(ak)(t− ak) ≥ −γ + θ(ak − t) ≥ 0

as γ
θ ≤ ak − t. This takes

⌈
ln(γθ )/ ln( 1

2 )
⌉

evaluations of g̃.
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Summarizing this, we just sketched the proof of the following corollary.

Corollary 2.3.6. There exists an algorithm that solves approximately

min{ϕ(t) : t ∈ [0, 1], g(t) ≤ 0},

in the sense that it finds, if they exist, three points 0 ≤ t− ≤ x ≤ t+ ≤ 1
with:

(a) g(t) ≤ g̃(t) ≤ 0 for every t ∈ [t−, t+],

(b) if t− ≥ 2γθ , then g(t) ≥ 0 for every t ∈ [0, t− − 2γθ ],

(c) if t+ ≤ 1− 2γθ , then g(t) ≥ 0 for every t ∈ [t+ + 2γθ , 1],

(d) ϕ̃(x) ≤ min{ϕ(t) : t ∈ [t−, t+], g(t) ≤ 0}+ (κ− 1)γ

within at most 3 +
⌈

ln((κ−1)γ/Vg)
ln(λ1)

⌉
+ 2

⌈
ln(γ/θ)
ln(1/2)

⌉
evaluations of g̃ and at most

2 +
⌈

ln((κ−1)γ/Vϕ)
ln(λ1)

⌉
evaluations of ϕ̃.

As stressed before above, we assume from now on that we can compute exactly
the roots of the function g on a given interval, so that the segment [t−, t+]
in Corollary 2.3.6 is precisely our feasible set. This situation occurs e.g. in
mixed-integer convex optimization with one integer variable when the feasible
set S ⊂ R× Rd is a polytope.

Remark 2.3.7. In order to solve problem (2.1) with one integer variable, we
can extend Proposition 2.3.5 to implement the improvement oracle O0,κγ .
We need three assumptions: first, S ⊆ [a, b] × Rd with a < b; second, f has
a finite spread on the feasible set; and third we can minimize f(x, y) with
(x, y) ∈ S and x fixed up to an accuracy γ. That is, we have access to a value
ϕ̃(x) ∈ [ϕ(x), ϕ(x) + γ] with ϕ(x) := min{f(x, y) : (x, y) ∈ S} being convex.

Given a feasible query point (x, y) ∈ [a, b] × Rd, we can determine correctly
that there is no point (x′, y′) ∈ ((t0 + τZ) ∩ [0, 1])× Rd for which f(x′, y′) ≤
f(x, y), provided that the output x′ of our approximate bisection method for
integers given in Proposition 2.3.5 satisfies ϕ̃(x′) − κγ > f(x, y). Otherwise,
we can determine a point (x′, y′) for which f(x′, y′) ≤ f(x, y)+κγ. Note that
this oracle cannot report a and b simultaneously.
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2.3.2 Mixed-integer convex problems with two integer
variables

We could use the Mirror-Descent Method in Algorithm 1 to solve the generic
problem (2.1) when n = 2 with z 7→ 1

2 ||z||
2
2 as function V , so that σ = 1 and

M = 1
2diam(S)2, where diam(S) = max{||z − z′||2 : z, z′ ∈ S}. According

to (2.5), the worst-case number of iterations is bounded by a multiple of
L
√
M/σ = O(Ldiam(S)), where L is the Lipschitz constant of f . As Vf ≤

Ldiam(S), the resulting algorithm would have a worst-case complexity of
Ω(Vf ).

We improve this straightforward approach with a variant of Algorithm 3,
whose complexity is polynomial in ln(Vf ). This variant takes into account the
fact that we do not have access to exact values of the partial minimization
function φ defined in the preamble of this section.

Proposition 2.3.8. Suppose that we can determine, for every x ∈ Rn with
g(x) ≤ 0, a point yx ∈ Rd satisfying f(x, yx)− γ ≤ min{f(x, y) : (x, y) ∈ S}.
Then we can implement the oracle O0,κγ such that for every (x, y) ∈ S it
takes a number of evaluations of f that is polynomial in ln(Vf/γ).

Proof. We adapt the algorithm described in the proof of Theorem 2.2.1 for
the function φ(x) := min{f(x, y) : (x, y) ∈ S}, which we only know ap-
proximately. Its available approximation is denoted by φ̃(x) := f(x, yx) ∈
[φ(x), φ(x) + γ].

Let (x, y) ∈ S be the query point and let us describe the changes that the
algorithm in Theorem 2.2.1 requires. We borrow the notation from the proof
of Theorem 2.2.1.

The one-dimensional integer minimization problems which arise in the course
of the algorithm require the use of our approximate bisection method for
integers in Proposition 2.3.5. This bisection procedure detects, if it exists, a
point z on the line of interest for which φ̃(z) = f(z, yz) ≤ f(x, y) + κγ and
we are done. Or it reports correctly that there is no integer z on the line of
interest with φ(z) ≤ f(x, y).

In Case 2, we would need to check whether φ(z) ≤ f(x, y). In view of our
accuracy requirement, we only need to check φ̃(z) ≤ f(x, y) + κγ.

We also need to verify whether the line H intersects the level set {x ∈
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R2 | φ(x) ≤ f(x, y)}. We use the following approximate version:

“check whether there is a v ∈ conv{z0, z} for which

φ̃(v) < f(x, y) + (κ− 1)γ”,

which can be verified using Proposition 2.3.3. If such a point v exists, the
convexity of φ forbids any w ∈ conv{z, z1} to satisfy φ(w) ≤ f(x, y), for
otherwise:

φ̃(z) ≤ φ(z)+γ ≤ max{φ(v), φ(w)}+γ ≤ max{φ̃(v), φ̃(w)}+γ < f(x, y)+κγ,

a contradiction. Now, if such a point v does not exist, we perform the same
test on conv{z, z1}. We can thereby determine correctly which side of z on
H has an empty intersection with the level set.

Similarly as in Corollary 2.2.5, we can extend this oracle into an approximate
minimization procedure, which solves our optimization problem up to an ac-
curacy of κγ, provided that we have at our disposal a point (x, y) ∈ S such
that f(x, y) is a lower bound on the mixed-integer optimal value.

Let us now modify our method for finding the k-th best point for two-
dimensional problems to problems with two integer and d continuous vari-
ables. Here, we aim at finding — at least approximately — the k-th best
fiber x?k ∈ [−B,B]2, so that:

(x?k, y
?
k) ∈ arg min{f(x, y) : (x, y) ∈ S ∩ ((Z2 \ {x?1, . . . , x?k−1})× Rd)}

for a y?k ∈ Rd. We set f?[k] := f(x?k, y
?
k). The following proposition summarizes

the necessary extensions of Section 2.2.2.

Proposition 2.3.9. Let k ≥ 2 and let Πk−1 := {z?1 , . . . , z?k−1} ⊆ [−B,B]2 ∩
Z2 be points for which φ(z?i ) ≤ f̂?[i] + iκγ, g(z?i ) ≤ 0 when 1 ≤ i < k and such

that conv{Πk−1} ∩ Z2 = Πk−1. In a number of approximate evaluations of f
and g1, . . . , gm that is polynomial in ln(Vf/γ) and k, one can either

(a) find an integral point z?k ∈ [−B,B]2 for which φ(z?k) ≤ f̂?[k] +kκγ, g(z?k) ≤
0 and conv{Πk−1, z

?
k} ∩ Z2 = Πk−1 ∪ {z?k}, or

(b) show that there is no integral point z?k ∈ [−B,B]2 for which g(z∗k) ≤ 0.

Proof. If k = 2, we run Algorithm 3 applied to z∗1 with Line 9 replaced by
solving min{〈h, z〉 : z ∈ T̄k ∩Z2, 〈h, z〉 ≥ 〈h, z?1〉+ 1}, where h ∈ Z2 such that
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gcd(h1, h2) = 1. We also need to use approximate bisection methods instead
of exact ones. Following the proof of Proposition 2.3.8, the oracle finds, if it
exists, a feasible point z?2 . Either φ̃(z?2) ≤ φ̃(z?1)+κγ ≤ f?[1] +2κγ ≤ f?[2] +2κγ,

or φ̃(z?2) > φ̃(z?1) + κγ, then φ(z?2) ≤ φ̃(z?2) ≤ f?[2] + κγ. Note that, if φ(z?2) >

φ(z?1) +κγ, we can conclude a posteriori that z?1 corresponds precisely to f?[1].

For k ≥ 3, we can define the same triangulation as in Figure 2.7. Replicating
the observation sketched above, we generate indeed a feasible point z?k for

which φ̃(z?k) ≤ f?[k] + kκγ.

Lemma 2.2.7 is extended as follows. Suppose that there is an integer point
z in conv{Πk−1, z

?
k} \ (Πk−1 ∪ {z?k}). Since φ(x) ≤ φ̃(x) ≤ f?[k] + kκγ and

g(x) ≤ 0 for every x ∈ Πk−1 ∪ {z?k}, we have φ(z) ≤ f?[k] + kκγ and g(z) ≤ 0
by convexity. Thus, we can apply Algorithm 4 to find a suitable point z?k in
conv{Πk−1, z

?
k}.

2.3.3 A finite-time algorithm for mixed-integer convex
optimization

In this section, we explain how to use the results of the previous section in
order to realize the oracle Oα,δ for α ≥ 0, δ > 0 in the general case, i.e., with
n ≥ 3 integer and d continuous variables as in (2.1).

Let x ∈ S ⊆ [−B,B]n×Rd be the query point of the oracle. The oracle needs
to find a point x′ ∈ S ∩ (Zn ×Rd) for which f(x′) ≤ (1 +α)f(x) + δ (so as to
report a), or to certify that f(x) < f(x′) for every x′ ∈ S ∩ (Zn × Rd) (so as
to report b). To design such an oracle we have at our disposal a procedure to
realize the oracle Oα,δ for any mixed-integer convex minimization problem of
the kind (2.1) with n = 2. We propose a finite-time implementation of Oα,δ

with α = 0 and δ = κγ. The main idea is to solve the n-dimensional case
iteratively through the fixing of integer variables. This works as follows. We
start by solving approximately the relaxation:

f?12 := min{f(z, y) : (z, y) ∈ S ∩ (Z2 × R(n−2)+d)}

with the techniques developed in the previous section. If we can solve the
partial minimization problems up to an accuracy of γ ≤ δ/κ, we obtain a
point (u?1, u

?
2, y

?
3 , . . . , y

?
n+d) ∈ S with u?1, u

?
2 ∈ Z and for which:

f̃?12 := f(u?1, u
?
2, y

?
3 , . . . , y

?
n+d) ≤ f?12 + κγ

As f?12 is a lower bound on the mixed-integer optimal value f?, we can make
our oracle output b if f̃?12 − κγ > f(x). So, assume that f̃∗12 − κγ ≤ f(x).
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Then we fix u?1 and u?2 and solve (if k ≥ 4; if k = 3, the necessary modifications
are straightforward)

f?1234 := min{f(u?1, u
?
2, z, y) : (u?1, u

?
2, z, y) ∈ S ∩ ((u?1, u

?
2)× Z2 × R(n−4)+d)}.

We obtain a point (u?1, . . . , u
?
4, y

?
5 , . . . , y

?
n+d) ∈ S with u?i ∈ Z for 1 ≤ i ≤ 4

and for which:

f̃?1234 := f(u?1, . . . , u
?
4, y

?
5 , . . . , y

?
n+d) ≤ f?1234 + κγ ≤ f? + κγ.

Now, if f̃?1234−κγ > f(x), we can make our oracle output b. Thus, we assume
that f̃?1234 − κγ ≤ f(x) and fix u?i for 1 ≤ i ≤ 4. Iterating this procedure we
arrive at the subproblem (again, the procedure can easily be modified if n is
odd):

min{f(u?1, . . . , u
?
n−2, z, y) : (u?1, . . . , u

?
n−2, z, y) ∈ S∩((u?1, . . . , u

?
n−2)×Z2×Rd)}.

Let (u?1, . . . , u
?
n, y

?) ∈ Zn×Rd be an approximate optimal solution. If we can-
not interrupt the algorithm, i.e., if f(u?1, . . . , u

?
n, y

?) 6≤ (1 + α)f(x) + κγ, we
replace (u?n−3, u

?
n−2) by the second best point for the corresponding mixed-

integer convex minimization problem. In view of Proposition 2.3.9, the ac-
curacy that we can guarantee on the solution is only 2κγ, so the criterion to
output b must be adapted accordingly. Then we proceed with the computa-
tion of (u?n−1, u

?
n) and so on.

It is straightforward to verify that this approach results in a finite-time al-
gorithm for the general case. In the worst case the procedure forces us to
visit all integral points in [−B,B]n. However, in the course of this procedure
we always have a feasible solution and a lower bound at our disposal. Once
the lower bound exceeds the value of a feasible solution we can stop the pro-
cedure. It is precisely the availability of both, primal and dual information,
that makes us believe that the entire algorithm is typically much faster than
enumerating all the integer points in [−B,B]n.
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Chapter 3

Cutting Plane Methods

This chapter is based on a joint paper with Christian Wagner and Robert
Weismantel [OWW14]. The core of this chapter are two alternative, short,
and geometrically motivated algorithms proving that integer convex mini-
mization in fixed dimension can be polynomially reduced to mixed integer
linear optimization. That is, provided that the dimension is fixed, we can
reduce the latter problem to a polynomial number of mixed integer linear
optimization problems and to a polynomial number of function evaluations,
plus some polynomial work.

We aim at solving

min{f(x) | x ∈ Zn and g(x) ≤ 0}, (3.1)

where f, g : Rn → R are convex functions. We assume that the functions
are given by a first-order evaluation oracle. Queried on a specific point such
oracles return a function value and a subgradient of the subdifferential at
this point. We further assume that (i) some B ∈ N is known satisfying
{x ∈ Zn | g(x) ≤ 0} ⊂ [0, B]n, and (ii) the output of the first order evaluation
oracles is of sufficient precision.

In order to quantify what we consider sufficient precision. Let ε and δ be
given nonnegative constants. Throughout this chapter we consider them to
be fixed. Note that, in Definition 1.1.1 the output of the first-order evaluation
oracle is exact. For this chapter we define our first-order evaluation oracle as
follows:

Definition 3.0.10 (first-order evaluation oracle). Let f : Rn → R be convex
function presented by a first-order evaluation oracle. Then, queried on x̄ the
oracle returns f̄ and h̄ such that

|f(x̄)− f̄ | ≤ ε
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and

h̄ = 0 if 0 ∈ ∂f(x̄)

or

∥∥∥∥ h

‖h‖∞
− h̄

‖h̄‖∞

∥∥∥∥
∞
≤ δ for some h ∈ ∂f(x̄) \ {0},

where ∂f(x̄) denotes the subdifferential of f at x̄.

Since we are only interested in the separating property of the subgradients,
we assume that, whenever a subgradient is nonzero, then it is normalized, i.e.
‖h̄‖∞ = 1. That is, we assume to have an error on the function values such as
on the subgradients. Most of the Section 3.1 will be dedicated to this error.

Further we assume to have excess to the following mixed integer linear opti-
mization oracle.

Definition 3.0.11 (mixed integer linear optimization oracle). The oracle
returns an optimal solution when queried with a mixed integer linear opti-
mization problem (MILP) with a fixed number of integer variables.

Our motivation for using such an oracle lies in the significant progress in
developing efficient solution techniques for MILP’s that has been achieved
over the last decades. Today, one can solve MILP’s that were considered out
of reach twenty years ago. Moreover, if one intends to solve ICP’s, it is natural
to assume the existence of an oracle capable of solving easier optimization
problems. Thus, it is plausible to postulate that the linear case can be solved.

Also, on the theoretical side, Lenstra proved in [Len83] that, given a system of
linear inequalities with rational coefficients in fixed dimension, in polynomial
time in the size of the encoding length of the input data one can either find
an integral solution to the system, or show that all integral points of the
solution set of the system lie on few parallel hyperplanes. Further, Lenstra
showed that, given a system of linear inequalities with rational coefficientsn
and the additional constraint that a fixed number of variables are required to
be integral, in polynomial time in the size of the encoding length of the input
data one can either find an mixed-integral solution to the system, or show
that no such point exists.

Combined with binary search this yields a polynomial algorithm, realising a
mixed integer linear optimization oracle as in Definition 3.0.11

The main result that is shown in this chapter is stated below.
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Theorem 3.0.12. Let n ∈ N be fixed. Let B ∈ N, and δ, ε ≥ 0 with δ ∈
O(B−n) be given and satisfying the assumptions (i) and (ii). Assume to have
at hand first-order evaluation oracles for f and g, and a mixed integer linear
optimization oracle able to solve MILP’s with at most n integer variables.
Then problem (3.1) can be solved within a number of oracle calls bounded by
a polynomial in the binary encoding of B. That is, we either find a point
x̄ ∈ Zn with g(x̄) ≤ 2ε and

f(x̄) ≤ min{f(x) | x ∈ Zn and g(x) ≤ 0}+ 2ε,

or show that g(x) > 0 for all x ∈ Zn.

We acknowledge that this result, in a slightly different setting, was first proven
by Grötschel, Lovasz and Schrijver in [GLS88, Theorem 6.7.10]. There, they
generalized the approach of Lenstra.

We point out that the accuracy of 2ε in Theorem 3.0.12 comes from the fact
that the first-order evaluation oracles for f and g return the function value
only with a precision of ε. When fed with a point x̄ ∈ Rn, the first-order
evaluation oracle for g returns a value ḡ such that |g(x̄) − ḡ| ≤ ε. Hence, if
ḡ ≤ ε, then g(x̄) ≤ 2ε, and if ḡ > ε then g(x̄) > 0. Moreover, the evaluation
oracle for f is, in general, not able to distinguish the function values of two
points x̄, ȳ ∈ Rn with |f(x̄)−f(ȳ)| ≤ 2ε. Thus, the accuracy in Theorem 3.0.12
is best possible, assuming evaluation oracles as given. We note that even
enumerating all points in [0, B]n ∩ Zn would not lead to a better accuracy.

The standard approach to solve (3.1) is to set Fγ := f − γ and to solve
the feasibility problem for the level-set {x ∈ Zn : Fγ(x) ≤ 0 and g(x) ≤ 0}
while applying binary search on γ. In particular, this procedure is used in the
original proof that (3.1) is solvable in oracle-polynomial time in [GLS88]. The
drawback of this approach is that the underlying minimization problem (3.1)
can only be solved up to a certain accuracy, even if the evaluation oracles
provide exact output, i.e. ε = 0 (and δ ∈ O(B−n)). Our methods solve (3.1)
without binary search on the objective function value by only making use
of the local information from oracle outputs. The virtue of our methods is
that they solve (3.1) exactly when ε = 0. Nevertheless, if ε > 0, then all
the approaches can approximate the optimal solution up to 2ε in polynomial
time. Though, in the algorithm described in [GLS88], ε enters the run-time
while the run-time of our approach is independent of ε.

To the best of our knowledge it has never been stated directly that problems
of type (3.1) are oracle-polynomially solvable in fixed dimension. However,
this result is derivable from the work of Lenstra [Len83] and Grötschel et
al. [GLS88].
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After the preliminaries we present in section 3.2 and 3.3 two constructive
proofs for Theorem 3.0.12. Both use cutting plane methods. The first proof
culminates in an algorithm that uses centroids – whose computation is time-
consuming. The second proof results in an algorithm that avoids the compu-
tation of centroids at the expense of more iteration steps. The special feature
of the second algorithm is that it only needs to solve MILP’s as subproblems.
This is of practical relevance as the computation of centroids is theoretically
doable in fixed dimension, but intractable in practice. Moreover, to the best of
our knowledge, it is not known how to accelerate the computation of centroids
with an MILP oracle at hand.

Following the general cutting plane schemes presented in [Nes04, Section 3.2.6],
we see that there are parallels between the development of solution techniques
for continuous convex optimization and the introduced integral techniques.
The Ellipsoid Method (see [Nes04, p. 154]) bears resemblance with the algo-
rithms of [GLS88, KP00, Hei05, HK12] to solve (3.1), using ellipsoidal ap-
proximations. Furthermore, the Method of Centers of Gravity (see [Nes04,
p. 152], or for a randomized version see [BV04a]) exhibits many similarities
to our centroid algorithm in Section 3.2. Finally, the Kelly Method [Nes04,
Section 3.3.2] and the Level Method [Nes04, Section 3.3.3] can be seen as ana-
logues to our MILP algorithm in Section 3.3 in the sense that linear techniques
are applied to solve non-linear problems.

3.1 Preliminaries

In this section, we present auxiliary lemmata and observations that are needed
for the proofs in Sections 3.2 and 3.3.

Recall the notion of the lattice width and the flatness direction. See Sec-
tion 1.2.

called flatness direction for K.

Observation 3.1.1. Let n ∈ N be fixed and P = {x ∈ Rn : Ax ≤ b} ⊂ Rn

be a rational polytope. Given a mixed integer linear optimization oracle in
n integer variables, we can compute a flatness direction for P in polynomial
time.

Proof. W.l.o.g. let int(P ) 6= ∅ and let a>i denote the i-th row vector of A.
Further, we want to assume that Ax ≤ b has no redundant inequalities. By
scaling the rows, we may assume that bi − minx∈P aix = 1. Then P0 :=
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P − P = {x ∈ Rn | − 1 ≤ Ax ≤ 1}, where 1 denotes the all-one vector.
Observe that 2ω(P ) = ω(P0). Let P ?0 := {x ∈ Rn | x>y ≤ 1 for all y ∈ P0}
denote the polar set of P0 and let ‖x‖P?0 := min{γ ≥ 0 | x ∈ γP ?0 } denote the
norm induced by P ?0 . Then, we can reformulate the lattice width as follows

ω(P0) = 2 min
x∈Zn\{0}

max
y∈P0

x>y = 2 min
x∈Zn\{0}

‖x‖P?0 .

The latter minimization problem can be solved using MILP’s. For that, note
γP ?0 = γ conv{±a1, . . . ,±am} = {x ∈ Rn | x = A>λ, ‖λ‖1 ≤ γ}. For
i = 1, . . . , n we solve the following MILP’s that we call F i.

min γ
s.t. x = A>λ, ‖λ‖1 ≤ γ,

x ∈ Zn, xi ≥ 1,
λ ∈ Rm, γ ∈ R.

(F i)

Let (γ̄i, x̄i, λ̄i) be an optimal solution of F i and let γ̄j := mini=1,...,n γ̄
i. Then

ω(P ) = γ̄j and x̄j is a flatness direction for P .

The following lemma is similar to known results in literature, see [BLPS99] for
instance. It states that a convex set is flat whenever its volume is sufficiently
small. It thus defines the threshold at which to switch from adding cutting
planes to enumerating lower-dimensional subproblems. As it is stated here
we are not aware of a reference. This is why we outline a short proof.

Lemma 3.1.2. Let K ⊂ Rn be a bounded convex set. If vol(K) < 1 then

ω(K) ≤ cn 3
2

for a universal constant c.

Proof. We show that K has a lattice-free translate, i.e. there exists a point
x ∈ Rn such that (x+K)∩Zn = ∅. Then ω(K) ≤ cn 3

2 for a universal constant
c (see [BLPS99]).

Let χK denote the characteristic function of K and for a set S ⊂ Zn, |S|
denotes the cardinality of S. Assume that for all x ∈ Rn it holds that |(x +
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K) ∩ Zn| ≥ 1. Then it follows that

1 > vol(K) =

∫
Rn
χK(x)dx =

∑
z∈Zn

∫
[0,1)n

χK(x+ z)dx

=

∫
[0,1)n

∑
z∈Zn

χK(x+ z)dx

=

∫
[0,1)n

∑
z∈Zn

χK−x(z)dx

=

∫
[0,1)n

|(K − x) ∩ Zn|dx ≥ 1,

a contradiction.

Given a point x̄ ∈ [0, B]n the first-order evaluation oracle provides us with
a vector h̄ ∈ Rn. Either h̄ = 0 or ‖h̄‖∞ = 1 and there exists a h ∈ ∂f(x̄)
(resp. ∈ ∂g(x̄)) such that ‖ h

‖h‖∞ − h̄‖∞ ≤ δ. In the following we want to

discuss the error of the oracle, i.e. the value δ, of the second possible outcome.
Let us assume that h̄ 6= 0. For our algorithms in Sections 3.2 and 3.3 we need
to investigate how the the error of the oracle affects the volume, i.e. the ratio
between vol({x ∈ P | hTx ≤ hTx̄}) and vol({x ∈ P | h̄Tx ≤ h̄Tx̄}) for a
polyhedron P ⊂ [0, B]n. For that, we need the following observation.

Observation 3.1.3. M1 := {x ∈ [0, B]n | hTx ≤ hTx̄} ⊂ {x ∈ [0, B]n | h̄Tx ≤
h̄Tx̄+ nBδ} =: M2.

Proof. Suppose that x ∈M1\M2. Then 0 ≤ −hT(x−x̄) and nBδ < h̄T(x−x̄).
Adding these inequalities yields nBδ < (x− x̄)T(h̄−h) ≤

∑n
i=1 |xi− x̄i| · |h̄i−

hi| ≤ nBδ, a contradiction.

The following lemma states a lower bound for the ratio between the volumes
of K ∩ H ′ and K, provided that a lower bound for the ratio between the
volumes of K ∩H and K is known, where K ⊂ [0, B]n is a convex set and H
and H ′ are half-spaces whose boundary hyperplanes are translates.

Lemma 3.1.4. Let K ⊂ [0, B]n be a bounded convex set with vol(K) ≥ 1.
Let H := {x ∈ Rn | αTx ≤ β} and H ′ := {x ∈ Rn | αTx ≤ β − κ} with
‖α‖∞ = 1, β ∈ R and κ ≥ 0. Moreover, let vol(K ∩ H) ≥ C vol(K) for a
constant C > 0. Let σ denote the volume of the five-dimensional unit ball. If
κ ≤ C

2σ ( 2√
nB)

)n−1, then

vol(K ∩H ′) ≥ C

2
vol(K).
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Proof. Note that the volume of an n-dimensional unit ball is maximal for
n = 5. It holds that vol(K∩H ′) = vol(K∩H)−(vol(K∩H)−vol(K∩H ′)) ≥
C vol(K) − (vol(K ∩ H) − vol(K ∩ H ′)). Let S := {x ∈ Rn | ‖x − B

2 1‖2 ≤√
nB
2 } ⊃ [0, B]n. Then

vol(K ∩H ′)− C vol(K)

≥− vol({x ∈ K | β − κ ≤ αTx ≤ β})
≥− vol({x ∈ [0, B]n | β − κ ≤ αTx ≤ β})

≥− vol

({
x ∈ S

∣∣∣∣ β − κ‖α‖2
≤ αTx

‖α‖2
≤ β

‖α‖2

})
=−

∫ 0

− κ
‖α‖2

voln−1

({
x ∈ S

∣∣∣∣ αTx

‖α‖2
=

β

‖α‖2
− y
})

dy

≥− κ

‖α‖2
voln−1

({
x ∈ S

∣∣∣∣ αTx = αTB

2
1

})
≥− κ voln−1

({
x ∈ Rn−1

∣∣∣ ‖x‖2 ≤ √nB2

})
=− κ

(√
nB

2

)n−1

voln−1

({
x ∈ Rn−1 | ‖x‖2 ≤ 1

})
≥− κ

(√
nB

2

)n−1

σ ≥ −C
2
.

The second and third inequality follow from the fact that K ⊂ [0, B]n ⊂ S.
For the first equation we apply Cavalieri’s principle. Then, in the fourth in-
equality we use that voln−1

({
x ∈ S | αTx = y

})
is maximal for y = αTB

2 1. In
the fifth inequality we exploit that ‖α‖2 ≥ 1 and that the (n−1)-dimensional
ball {

x ∈ S
∣∣∣∣ αTx = αTB

2
1

}
is equivalent, up-to rotation and translation, to{

x ∈ Rn−1 | ‖x‖2 ≤
√
nB

2

}
.

Finally, in the last inequality we use that the n-dimensional volume of an
n-dimensional unit ball (i.e. πn/2/Γ(n/2 + 1)) is maximal for n = 5.

Hence vol(K ∩H ′) ≥ C(vol(K)− 1
2 ) ≥ C

2 vol(K).
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3.2 Cutting plane scheme based on centroids

In this section, we present our first algorithm to solve (3.1).

Let K ⊂ Rn be a compact convex set. The centroid of K is defined to be
the point cK := vol(K)−1

∫
K
xdx. In the case where K is a polytope, one

possible way of computing the centroid is to triangulate K into simplices
S1, . . . , Sr and to compute the centroids cS1

, . . . , cSr of the simplices. In turn,
the centroid of a simplex S with vertices v0, . . . , vn is cS = 1

n+1

∑n
i=0 vi.

Finally, cK = vol(K)−1
∑r
i=1 cSi · vol(Si). We note that the computation of

a triangulation of the polytope K can be done in polynomial time in the
number of vertices of K (see, for instance, [For97] or [DLRS10, Chapter 8]).

For a given compact convex body K and a 0 ≤ λ ≤ 1 we define

Kλ := λ(K − cK) + cK , (3.2)

i.e. the scaling of K by the factor λ with respect to its centroid. Note that
K1 = K and K0 = {cK}. Again, in the case where K is a polytope and is
given by linear inequalities, i.e. K = {x ∈ Rn | Ax ≤ b}, then Kλ = {x ∈
Rn | Ax ≤ λb+ (1− λ)AcK}.

In the following lemma we give a straightforward generalization of a theorem
of Grünbaum [Grü60, Theorem 2].

Lemma 3.2.1. Let 0 ≤ λ ≤ 1. Let K ⊂ Rn be a closed convex set, and let
H ⊂ Rn be a half-space. If Kλ ∩H 6= ∅, then

vol(K ∩H) ≥ (1− λ)n ·
(

n

n+ 1

)n
vol(K).

Proof. In [Grü60], Grünbaum defined the set

S := {x ∈ Rn | for all half-spaces G with x ∈ G

holds vol(K ∩G) ≥
(

n

n+ 1

)n
vol(K)}.

In the proof of [Grü60, Theorem 2] it is shown that cK ∈ S. This implies
that if cK ∈ H, then vol(K ∩ H) ≥ ( n

n+1 )n vol(K). Note that K = Kλ +
K1−λ − cK . Let x ∈ Kλ ∩H and let Kx := x + K1−λ − cK . Then Kx ⊂ K
and vol(K ∩ H) ≥ vol(Kx ∩ H). Since cKx = x we have cKx ∈ H. Hence
vol(Kx ∩H) ≥ ( n

n+1 )n vol(Kx). We can rewrite vol(Kx) in terms of vol(K),
namely vol(Kx) = (1− λ)n vol(K). Then the lemma follows.
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Observation 3.2.2. If int(Kλ) ∩ Zn = ∅, then

ω(K) =
1

λ
ω(Kλ) ≤ 1

λ
cn

3

2

for a universal constant c (see [BLPS99]).

We are now ready to give a first algorithmic proof of Theorem 3.0.12.

Proof of Theorem 3.0.12. We follow the idea of the Method of Centers of
Gravity in [Nes04, p. 152]. Our proof uses induction on n. We fix Λ ∈ (0, 1).
Further we assume that

δ ≤ 1

4σ
√
n

(
2n(1− Λ)

(n+ 1)
√
nB

)n
,

where σ denotes the volume of the five-dimensional unit ball. We define P 0

to be the box [0, B]n, to which we add cutting planes until we can reduce
the original problem to a small number of lower-dimensional subproblems.
Among all points visited in the course of the algorithm, we keep record of the
feasible point with smallest objective function value.

In the following, we construct a sequence of polytopes P 0 ⊃ P 1 ⊃ P 2 . . . ,
such that P i+1 arises from P i by intersecting P i with a half-space H = {x ∈
Rn | h̄Tx ≤ h̄Tx̄+ nBδ}. Here, x̄ is an integral point of P i and h̄ is a vector
provided by the first-order evaluation oracles. Note that, in order to avoid
cutting off an optimal integral point – if any feasible integral point exists –
we correct the oracle error δ by increasing the right hand side from h̄Tx̄ to
h̄Tx̄+ nBδ (see Observation 3.1.3)). Also, note that P i ∩ Zn 6= ∅ for all i.

The construction works as follows. Let P i = {x ∈ Rn | Ax ≤ b} be given,
where A ∈ Rm×n with rows aTi ∈ Rn and ‖ai‖∞ = 1 for all i = 1, . . . ,m.

We solve the mixed integer linear minimization problem

min λ
s.t. Ax+ (AcP i − b)λ ≤ AcP i

λ ∈ R+

x ∈ Zn.

(MILP-1)

Let (λ∗, x∗) be an optimal solution. Note that (MILP-1) always has a solution.
Further, observe that x∗ ∈ P iλ∗ = {x ∈ Rn | Ax+ (AcP i − b)λ∗ ≤ AcP i} and
that P iλ∗ is lattice-free.

We distinguish two cases.
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Case 1 If λ∗ > Λ, then we compute a flatness direction v ∈ Zn \ {0} for
P i (see Observation 3.1.1). Further, we compute s :=

⌈
minx∈Pi v

Tx
⌉

and

k :=
⌊
maxx∈Pi v

Tx
⌋
− s. Let Hj = {x ∈ Rn | vTx = s + j}, for j = 1, . . . , k.

It holds that P i ∩ Zn ⊂ H1 ∪ . . . ∪Hk and, by Observation 3.2.2,

k ≤

⌊
cn

3
2

λ∗

⌋
+ 1 ≤

⌊
cn

3
2

Λ

⌋
+ 1 =: ψ.

So we need to solve at most ψ subproblems of dimension n − 1. For all
j = 1, . . . , k, we solve the lower-dimensional problems min{f(x) | x ∈ Hj ∩
Zn and g(x) ≤ 0}. Among all feasible points, if they exist, we return the
point with smallest objective function value. We have reduced our initial
problem to a polynomial number of (n−1)-dimensional subproblems. By the
induction hypothesis, all these subproblems can be solved in polynomial time.

Case 2 Let λ∗ ≤ Λ. Let ḡ be the output of the first-order evaluation oracle of
g at x∗. Depending on the value of ḡ, we use either the first-order evaluation
oracle for f or the one for g to get h̄: if ḡ ≤ ε we use the first-order evaluation
oracle for f or otherwise, if ḡ > ε, we use the first-order evaluation oracle for
g. Let h̄ be the output of the first-order evaluation oracle at x∗. If h̄ = 0, then
either x∗ is the optimum solution or Problem 3.1 is infeasible. In both cases
are be done; we either return x∗ or state that g(x) > 0 for all x ∈ Zn. Hence
let us assume that h̄ 6= 0. Then we define P i+1 := P i ∩ {x ∈ Rn | h̄Tx ≤
h̄Tx∗+nBδ}. With C = (1−Λ)n( n

n+1 )n as in Lemma 3.2.1 and with κ = nBδ,
it follows from Lemma 3.1.4 that

vol(P i+1) ≤
(

1− 1

2
(1− Λ)n

(
n

n+ 1

)n)
vol(P i). (3.3)

In particular, (3.3) guarantees that after at most

Ω :=

 − log(Bn)

log
(

1− 1
2 (1− Λ)n

(
n
n+1

)n)
+ 1 (3.4)

iterations we obtain a polytope P l with vol(P l) < 1. We compute a flatness
direction v ∈ Zn \ {0} for P l (see Observation 3.1.1). Next, we can construct
as in Case 1 the value s ∈ Z and, by Lemma 3.1.2, a

k ≤
⌊
cn

3
2

⌋
+ 1 =: φ

and parallel hyperplanes Hj = {x ∈ Rn | vTx = s + j}, j = 1, . . . , k, such
that P l ∩ Zn ⊂ H1 ∪ . . . ∪Hk. So we need to solve at most φ subproblems of
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dimension n−1. For all j = 1, . . . , k, we solve the lower-dimensional problems
min{f(x) | x ∈ Hj ∩ Zn and g(x) ≤ 0}. Among all feasible points, if they
exist, we return the point with smallest objective function value. We have
reduced our initial problem to a polynomial number of (n − 1)-dimensional
subproblems. By the induction hypothesis, all these subproblems can be
solved in polynomial time.

Each iteration needs a constant number of oracle calls and the number of
iterations is polynomial in log(B).

3.3 Cutting plane scheme based on mixed in-
teger linear programs

In this section, we propose an alternative algorithm that avoids the compu-
tation of centroids. For that, we sacrifice on the fraction of volume decrease
of our polytopes in every iteration. Let P = {x ∈ Rn : Ax ≤ b} be a
full-dimensional polytope with P ∩ Zn 6= ∅. We assume that b ∈ Rm and
A ∈ Rm×n is a matrix with rows a>i and ‖ai‖∞ = 1 for i = 1, . . . ,m. Further,
we assume that Ax ≤ b has no redundant inequalities.

For i = 1, . . . ,m let li := minx∈P a
>
i x, and let l := (l1, . . . , lm)>. Since P is

bounded and int(P ) 6= ∅, li exists and li < bi for all i. Consider the following
problem in variables x = (x1, . . . , xn)> and λ.

max λ
s.t. Ax+ (b− l)λ ≤ b

λ ∈ R+

x ∈ Zn.

(MILP-2)

Since P ∩ Zn 6= ∅, (MILP-2) has an optimal solution. We will use (MILP-2)
to replace (MILP-1).

The following observation relates feasible points of (MILP-2) with the dif-
ference body of P .

Observation 3.3.1. {(λ, x) ∈ R+ × Rn | Ax + (b − l)λ ≤ b} = {(λ, x) ∈
R+ × Rn | x+ λ(P − P ) ⊂ P}.

Proof. See Figure 3.1 for an illustration.

Let (λ, x) ∈ R+ × Rn.
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Assume that Ax + (b − l)λ ≤ b. For any z ∈ P − P there exist x1, x2 ∈ P
such that z = x1 − x2 and l ≤ Ax1 ≤ b, l ≤ Ax2 ≤ b. It follows that
A(x+ λz) = Ax+ λA(x1 − x2) ≤ Ax+ λ(b− l) ≤ b.

Assume that x + λ(P − P ) ⊂ P . Then for each i = 1, . . . ,m there exists a
pair x1, x2 ∈ P such that aTi x1 = bi and aTi x2 = li (we assume that there are
no redundant inequalities). Hence, aTi x+(bi− li)λ = aTi x+(aTi x1−aTi x2)λ =
aTi (x+ λ(x1 − x2)) ≤ bi.

Let (λ, x) be a feasible point with respect to MILP-2. Observe that Ax ≤
b−λ(b−m) = (1−λ)b+λm ≤ (1−λ)b+λAcP . Hence, x ∈ P1−λ, where P1−λ is
defined as in (3.2). It is now straightforward to adapt Lemma 3.2.1. Let H ⊂
Rn be a half-space. If x ∈ H, then vol(P ∩H) ≥ λn ·

(
n
n+1

)n
vol(P ). However,

we can do better. The next lemma is a suprior analogue to Lemma 3.2.1 for
the new algorithm in this section.

Lemma 3.3.2. Let (λ, x) ∈ R+×Zn be a feasible point of (MILP-2), and let
H ⊂ Rn be a half-space. If x ∈ H, then vol(P ∩H) ≥ 2n−1λn vol(P ).

Proof. By Observation 3.3.1, we have x + λ(P − P ) ⊂ P . Furthermore, due
to the central symmetry of the difference body P − P , we have

vol(P ∩H) ≥ vol
((
x+ λ(P − P )

)
∩H

)
≥ 1

2
vol
(
λ(P − P )

)
=
λn

2
vol(P − P ) ≥ 2n−1λn vol(P ).

See Figure 3.1.

The last inequality follows from the Brunn-Minkowski inequality (see, for
instance, Gruber [Gru07, Theorem 8.5]), stating that 2n vol(P ) ≤ vol(P −
P ).

The following lemma is an analogue to Observation 3.2.2.

Lemma 3.3.3. Let P = {x ∈ Rn | Ax ≤ b} and let P ′ = {x ∈ Rn | Ax+ (b−
l)λ ≤ b} for some λ ∈ [0, 1

2n ). If int(P ′) ∩ Zn = ∅ then

ω(P ) ≤ cn
5
2

1− 2λn

for a universal constant c.
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H

P
P1−λ

QcP

x

x+ λ(P − P )

Figure 3.1: This figure illustrates the correlation between P , Q = {y ∈ Rn | Ay ≤
b−λ(b−m)}, λ(PP ), P1−λ and the centroid cP . Further, it shows the main proof idea
of Lemma 3.3.2, i.e. that a half space containing x ∈ Q contains half of x+λ(P−P ).

Proof. Since int(P ′) ∩ Zn = ∅ it holds that ω(P ′) ≤ cn
3
2 for a universal

constant c (see [BLPS99]).

By Observation 3.3.1, P ′ = {x ∈ Rn | x + λ(P − P ) ⊂ P}. By John’s
characterization of inscribed ellipsoids of maximal volume (see John [Joh48]
and Ball [Bal92]), there exists an ellipsoid E centered at the origin, and a
point q such that q + E ⊂ P ⊂ q + nE. By the definition of the difference
body P − P , it follows that 2E = E − E ⊂ P − P ⊂ nE − nE = 2nE. This
implies λ(P−P ) ⊂ 2λnE and thus (1−2λn)E+λ(P−P ) ⊂ E ⊂ P−q. Hence,
q+(1−2λn)E+λ(P −P ) ⊂ P . This implies that q+(1−2λn)E ⊂ P ′. Thus,
we obtain P ⊂ q + nE ⊂ q + n

1−2λn (P ′ − q). Hence ω(P ) ≤ n
1−2λnω(P ′).

We now give an alternative proof of Theorem 3.0.12.

Proof of Theorem 3.0.12. The main structure remains equivalent to the proof
in Section 3.2. This time we set the threshold value Λ ∈ (0, 1

2n ). Further we
assume that

δ ≤ 1

8σ
√
n

(
4Λ√
nB

)n
,

where σ denotes the volume of the five-dimensional unit ball. We replace
(MILP-1) by (MILP-2). Let (λ?, x?) be an optimal solution of (MILP-2). We
define P iλ? := {x ∈ Rn | Ax+ (b− l)λ? ≤ b}. Again, we distinguish two cases.

In Case 1, if λ? ≤ Λ, we apply Lemma 3.3.3. It follows that we have to solve
at most ψ subproblems, where

ψ :=

⌊
cn

5
2

1− 2λ?n

⌋
+ 1 ≤

⌊
cn

5
2

1− 2Λn

⌋
+ 1.
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In Case 2, if λ? > Λ, we set C = 2n−1Λn as in Lemma 3.3.2 and κ = nBδ.
Then we apply Lemma 3.1.4. Thus, we ensure to reduce the volume of P i by
a constant factor of 1− 2n−2Λn. This guarantees that after at most

Ω :=

⌊
− log(Bn)

log(1− (1− 2n−2Λn)

⌋
+ 1

iterations we obtain a polytope P k with vol(P k) < 1. Again, each itera-
tion needs a constant number of oracle calls and the number of iterations is
polynomial in log(B).

3.4 Extension to the mixed-integer setting

Let F,G : Zn × Rd → R be convex functions given by first-order evaluation
oracles. Then the general mixed-integer convex minimization problem is

min{F (x, y) | (x, y) ∈ Zn × Rd and G(x, y) ≤ 0}.

We assume that the problem is bounded, i.e. {(x, y) ∈ Zn × Rd | G(x, y) ≤
0} ⊂ [0, B]n+d. We define for x ∈ Zn the function

g(x) := min{G(x, y) | y ∈ [0, B]d} (3.5)

and for every x ∈ Zn with g(x) ≤ 0 we define

f(x) := min{F (x, y) | y ∈ [0, B]d with G(x, y) ≤ 0}. (3.6)

In order to solve the mixed integer problem with a pure integer algorithm we
emulate the first-order evaluation oracles of f and g with a continuous convex
minimization oracle, as outlined below. For that we omit the errors ε and δ.

Function g. Let x̄ ∈ Zn and let y? be an optimal solution of (3.5). We
assume that the oracle returns a Ḡ = g(x̄) = G(x̄, y?) and a H̄ ∈ Rn+d.
Either H̄ = 0 if 0 ∈ ∂G or, otherwise, ‖H̄‖∞ = 1 such that there exists some
H in the subdifferential of G at (x̄, y?), (i.e. H ∈ ∂G(x̄, y?)) with Hi = 0 for
i = n+ 1, . . . , n+ d, and H̄ = 1

‖H‖∞
H.

Function f . Let x̄ ∈ Zn be feasible and let y? be an optimal solution of (3.6).
We assume that the oracle returns a F̄ = f(x̄) = F (x̄, y?) and a H̄ ∈ Rn+d.
We distinguish two cases:
If G(x̄, y?) < 0 then H̄ is equal to zero if 0 ∈ ∂F or, otherwise, ‖H̄‖∞ = 1
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such that there exists H ∈ ∂F (x̄, y?), with Hi = 0 for i = n + 1, . . . , n + d,
and H̄ = 1

‖H‖∞
H.

If G(x̄, y?) = 0 then there exists a HG ∈ ∂G(x̄, y?), HF ∈ ∂F (x̄, y?) and an
α ≥ 0 such that (HF + αHG)i = 0 for i = n+ 1, . . . , n+ d, and

H̄ =

{
0, if HF + αHG = 0,

1
‖HF+αHG‖∞ (HF + αHG) otherwise.

Note that, the link between HF and HG arises from the Karush-Kuhn-Tucker
conditions.

Realizations of such a continuous convex minimization oracle exists provided
that we do not omit the errors ε and δ. Examples for such realizations can
be found, for instance, in [Nes04].
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Chapter 4

Center-Points

This chapter is partially based on joint work with Kalle Klimkewitz and
Robert Weismantel. Some parts are published in Kalle Klimkewitz’s Mas-
ter’s Thesis [Kli14]. Again, our aim is to minimize a convex function f over
a vector-field En, i.e.

min
x∈En

f(x).

It is also possibly to add convex constraints g(x) ≤ 0.

Our main goal in this chapter is to revisit the Method of Center of Gravity
and generalize it. See [Nes04, Section 3.2.6.], or for a randomized version see
[BV04a]. The main difference between Section 3.2 and the material developed
here is that we introduce a general measure function. With respect to integer
convex minimization we will use the number of integer points in polytopes as
a measure. We construct a series of polytopes always containing the optimal
solution and such that the measure decreases in each step by a constant frac-
tion. One advantage of this new approach is that we can avoid to enumerate
lower dimensional sub-problems.

We begin our discussions by introduceing the general terms of center-points
and approximate center-points of sets. Those are points that guarantee that
any half-space containing them cuts off a certain part of the set. This approach
of generating iteratively center-points will allow us to develop a general theory
for convex continuous, integer, and mixed integer optimization. Whereas the
continuous case has been well studied and leads to the Method of Center of
Gravity, the other two approaches seem to be novel. Common features of the
new approaches are (i) that they avoid any kind of enumeration (at least on
a high level) and (ii) that they lead to an optimal algorithm in the sense that
the worst case number of calls of a first-order evaluation oracle is minimized.
Further, in the mixed integer setting another novelty is that we can treat
integer and continuous variables simultaneously.

The remaining Chapter is organized as follows. We start with the first sec-
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tion, introducing center-points and approximate center-points, proving their
existence and proving lower bounds for several instances of En. In the second
section we introduce two algorithms to compute approximate center-points
in Zn. In Section 4.3 we introduce optimality certificates for convex (mixed-)
integer optimization problems. Then, in the last section, we discuss an op-
timization scheme that terminates with, or at leasts converges to, the latter
optimality certificates.

4.1 Center-points and their existence

In this section we extend results of Grünbaum [Grü60] which itself are exten-
sions of results of Neumann [Neu45] and Eggleston [Egg53, Egg57, Egg58] for
the two dimensional case. For that we introduce the definition of a k-hull,
which is a generalization of a definition first introduced by Cole et al. in
[CSY87].

Let En denote a vector-space equipped with an inner product 〈·, ·〉. This allows
us to define half-spaces, that is, given an element of the vector-space a ∈ En

and a scalar b ∈ E we can define the half-space H := {x ∈ En | 〈a, x〉 ≤ b}.

Definition 4.1.1 (k-Hull). Let µ be a finite measure on En and let S ⊂ En

be a compact subset with a non-zero measure. For a k ∈ [0, 1] we define the
k-hull of S as

hullµk(S) =

{
x ∈ En

∣∣∣∣ ∀ half-spaces H 3 x it holds
µ(H ∩ S)

µ(S)
≥ k

}
.

In other words, the k-hull defines the subset of the vector-space such that
any half-space containing any point of this set cuts of a k-fraction of S with
respect to the measure µ. Depending on our vector-space En we will work
with different measures. We will consider the Lebesgue measure for Rn, i.e.
the volume, the counting measure for Zn and the d-dimensional Lebesgue
measure for Zn × Rd.

We are interested in the optimum of the following maximization problem:

max k
s.t. x ∈ hullµk(S)

x ∈ En

k ∈ [0, 1].

(4.1)
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An optimal solution (k?, x?) of (4.1) minimizes the worst case, that is x? is a
solution of

max
x∈En

min
half-space H

x∈H

µ(H ∩ S)

µ(S)
.

That is, a half-space containing x? automatically contains a largest possible
fraction of S with respect to the measure. In view of optimization, center-
points guarantee a priori that we can significantly reduce the region in which
the optimal solution lies. We synthesize this in the following definition of
center-points.

Definition 4.1.2 (Center-Point). Let µ be a finite measure on En and let
S ⊂ En be a compact subset with positive measure. If (k?, x?) is optimal
with respect to (4.1), then we call x? a center-point of S.

Given a k ∈ [0, 1], trying to solve the feasibility problem, amounts to finding
a point in hullµk(S) or determining that hullµk(S) is empty. This problem is
already hard on its own. On the one hand we will address the question of
determining and characterizing k?. On the other hand we will present two
algorithms that can solve the feasibility problem in Zn for special values of k.

Notation 4.1.3. A point x ∈ hullµk(S) we call a k-approximate center-point.

In the remainder of this section we consider the three cases where the vector
space equals to Rn, Zn or Zn × Rd.

4.1.1 Existence of center-points in Rn

For the special setting where S is a bounded convex set and where µ is the
Lebesgue measure, the centroid gives us a particularly interesting center-
point. Recall the definition. The centroid of a compact convex set K ⊂ Rn,
is defined as

cK := vol(K)−1

∫
K

xdx.

Grünbaum proved the following theorem.

Theorem 4.1.4. (Grünbaum, [Grü60, Theorem 2]) Let µ be the Lebesgue
measure on Rn and let K ⊂ Rn be a compact convex set. Then

cK ∈ hullµ
( n
n+1 )

n(K).
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Or in other terms:
Let K ⊂ Rn be a compact convex set, and let H ⊂ Rn be a half-space. If cK ,
the centroid of K, is in H, then

vol(K ∩H) ≥
(

n

n+ 1

)n
vol(K).

Note that limn→∞

(
n
n+1

)n
= e−1, i.e. the bound is essentially independent

of the dimension n. This bound is best possible when K is a simplex.

Corollary 4.1.5. Let K ⊂ Rn be a closed convex set and let f : K 7→ R+ be
a concave, nonnegative and Riemann measurable function. Then there exists
a point x ∈ K such that for every half-space H with x ∈ H, it holds that∫

K∩H
f(x)dx ≥

(
n+ 1

n+ 2

)n+1 ∫
K

f(x)dx.

Proof. We define K ′ ⊂ Rn+1 as follows,

K ′ := {(x, y) ∈ Rn+1 | x ∈ K and 0 ≤ y ≤ f(x)}.

K ′ is a closed convex set. From Theorem 4.1.4 it follows that there exists a
point (x∗, y∗) ∈ Rn × R such that vol(K ′ ∩ H ′) ≥ (n+1

n+2 )n+1 vol(K ′) for any

half-space H ′ ∈ Rn+1 containing (x∗, y∗). In particular this holds for any
half-space H = {x ∈ Rn+1 | uTx ≤ wu} containing x∗ and with un+1 = 0.
Observing that vol(K ′) =

∫
K
f(x)dx and vol(K ′ ∩ H ′) =

∫
K∩H f(x)dx the

Corollary follows.

Grünbaum also proved the following more general Theorem.

Theorem 4.1.6. (Grünbaum, [Grü60, Theorem 1]) Let µ be a finite measure
on Rn and let K ⊂ Rn be compact. Then

hullµ 1
n+1

(K) 6= ∅.

4.1.2 Existence of center-points in Zn

We now consider the case when En = Zn. To illustrate that there is no direct
connection between center-points in Rn and Zn consider K = conv((−10, 1)T,
(0, 1)T, (0, 0)T, (10, 0)T). For R2 consider the Lebesgue measure and for Z2
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the counting measure, i.e. the number of integers points in a set. Then,
in case of R2 together with the Lebesgue measure, the center-point of K is
uniquely determinate by the point {(0, 0.5)T}, however, if we chose Z2 and the
counting measure, then the center-points of K ∩ Z2 are (5, 0)T and (−5, 1)T

(see Figure 4.1).

The core argument in the proof of Theorem 4.1.6 is Helly’s Theorem (e.g.
[Gru07, Theorem 3.2.]). To achieve a similar result, we need the following
Helly-type theorem for Zn.

Theorem 4.1.7. (Doignon, [Doi73, Proposition 4.2]) Let K1, . . . ,Km ⊂ Rn

be a family of closed convex sets. Suppose for every subfamily Ki1 , . . . ,Kil

with l ≤ 2n
l⋂

j=1

(Kij ∩ Zn) 6= ∅.

Then
m⋂
j=1

(Kj ∩ Zn) 6= ∅.

With this we can now prove an analogue of Theorem 4.1.4.

Theorem 4.1.8. Let µ be a finite measure on Zn and let K ⊂ Zn be a finite
set. Then

hullµ1
2n

(K) 6= ∅.

Proof. We assume without loss of generality that µ(K) = 1. Let Sn−1 := {u ∈
Rn | uTu = 1} denote the unit sphere. For u ∈ Sn−1 and w ∈ R we denote by
H(u,w) the half-space {x ∈ Zn | uTx ≤ w}. We define g : Sn−1 × R 7→ [0, 1]
as

g(u,w) := µ(K ∩H(u,w)).

Note that g is right-continuous in w. Next, for each u ∈ Sn−1 we choose
wu ∈ R such that g(u,wu) > 1− 1

2n and such that for any ε > 0 it holds that

cK

Figure 4.1: An example where the center-points can vary significantly when one
changes the vector spaces and the measures.
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g(u,wu−ε) ≤ 1− 1
2n . Assume there exists a x ∈

⋂
u∈Sn−1 H(u,wu). Then for

any half-space H containing x we know that µ(K ∩H) ≥ 1
2n . Hence, proving

Theorem 4.1.8 is equivalent to proving⋂
u∈Sn−1

H(u,wu) 6= ∅. (4.2)

The set K is a finite set of integers. The number of different partitions of K
into two parts is upper bounded by 2|K|. We are interested in all partitions
K = K1 ∪ K2 such that K1 ⊂ H(u,wu) and K2 ⊂ H(−u,−wu). For each
such partition we select one representative u ∈ Sn−1. Let us denote them by
u1, u2, ..., um. Then

⋂
u∈Sn−1

H(u,wu) =

m⋂
i=1

H(ui, wui). (4.3)

In order to apply Theorem 4.1.7, consider any subset of {1, . . . ,m} of cardinal-
ity less than or equal to 2n. Without loss of generality, {1, . . . , l} with l ≤ 2n.
Then, by the definition of H(u1, wu1

), we know that µ(K ∩ H(u1, wu1
)) >

1 − 1
2n . By the additivity of measures we have that µ(K ∩ H(u1, wu1

) ∩
H(u2, wu2

)) > 1− 2
2n . Hence,

µ

(
K

l⋂
i=1

H(ui, wui)

)
> 1− l

2n
≥ 0.

In particular, this implies that
⋂l
i=1H(ui, wui) 6= ∅. Applying (4.3) and

Theorem 4.1.7 we obtain (4.2).

Choosing µ to be the counting measure, i.e. for S ⊂ Zn

µ(S) =

{
|S|, if S is finite,

∞, otherwise,

we obtain the following particularly interesting case.

Corollary 4.1.9. Let K ⊂ Rn be a compact convex set. Then there exists a
point x ∈ K ∩ Zn, such that for any half-space H 3 x

|K ∩H ∩ Zn| ≥ 1

2n
|K ∩ Zn|.
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Remark 4.1.10. The bound in Corollary 4.1.9 is tight for K = [0, 1]n. Further-
more it is possible to give examples of convex bodies containing an arbitrary
number of lattice points such that the bound is tight. For that, consider
the following example. Let n ≥ 2 and let K = [0, 1]n−1 × [0, 2m − 1] with
m ∈ N. Then, for any point x ∈ K ∩Zn there exists a half-space H such that
|K ∩H ∩ Zn| ≤ 1

2n |K ∩ Zn| = m.

There is a natural connection between the volume of a convex set and the
number of integer points contained within. That is, for convex bodies with a
large lattice width, the volume and the number of integer points contained in
the body is approximately the same. This allows us to adapt Theorem 4.1.4
to the counting measure on Zn. We quantify this in Lemma 4.1.13 and in
Lemma 4.1.16.

For Lemma 4.1.13 we first need the following auxiliary lemma.

Lemma 4.1.11. Let K ⊂ Rn be a closed convex set. If there exists an affine
unimodular transformation U such that U(c[0, 1]n) ⊂ K, where c ∈ N and
c > 0, then (

1− 1

c

)n
≤ |K ∩ Zn|

vol(K)
≤
(

1 +
1

c

)n
Proof. Without loss of generality assume that c[0, 1]n ⊂ K, i.e. U is the
identity matrix. Let b := 1

2c (1, . . . , 1)T and let B := 1
2 [−1, 1]n. Further we

define K̄ := (K ∩ Zn) + B and Kλ := (1 + λ)(K − b) + b where λ ∈ R and
λ > −1. Then |K ∩ Zn| = vol(K̄) ≤ vol(K + B). It remains to observe that
K +B ⊂ K1/c. Hence |K ∩ Zn| = vol(K̄) ≤ vol(K1/c) = (1 + 1/c)n vol(K).
In order to prove the lower bound assume that there exists an x ∈ K−1/c \ K̄.
We define z := bxieU .1 Then, since ‖x − z‖K ≤ 1/c,2 the point z must be
in K ∩ Zn. This contradicts x /∈ z + B ⊂ K̄. Hence |K ∩ Zn| = vol(K̄) ≥
vol(K−1/c) = (1− 1/c)n vol(K).

Remark 4.1.12. This bound is tight. For example, let K = c[0, 1]n.

Lemma 4.1.13. Let K ⊂ Rn be a compact convex set. If there exists a c ∈ N,
c > 0 and a unimodular matrix U such that bcKeU +

(
c+ 1

2

)
[−1, 1]

n ⊂ K,
then, for any half-space H 3 bcKeU

|K ∩H ∩ Zn| ≥
(

n

n+ 1

)n(
4c2 − 4c

4c2 + 4c+ 1

)n
|K ∩ Zn|.

1Let x ∈ Rn and let U be a unimodular matrix. With bxe we denote the point z ∈ Zn

such that for each component − 1
2
< zi − xi ≤ 1

2
. With bxeU we then denote U · bU−1xe.

2With ‖x‖K we denote the norm induced by 1
2

(K − K), i.e. ‖x‖K =

min
{
λ ≥ 0 | x ∈ λ

2
(K −K)

}
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Proof. Without loss of generality we assume that U is equal to the identity
matrix. Hence bcKeU = bcKe. Let H ⊂ Rn be an arbitrary half-space
containing bcKe. Further, let K̄ := bcKe + 2c

2c+1 (K − cK). It holds that

K̄ ⊂ K and cK̄ = bcKe. Thus, together with Theorem 4.1.4, it follows that

vol(K∩H) ≥ vol(K̄∩H) ≥
(

n

n+ 1

)n
vol(K̄) =

(
n

n+ 1

)n(
2c

2c+ 1

)n
vol(K).

(4.4)
Recall that K contains a translation of 2c[0, 1]n and note that K̄ ∩ H, and
in particular K ∩H, contains a translation of cn[0, 1]n. Then, due to Lemma
4.1.11, we can rewrite (4.4) as(

c

c− 1

)n
|K ∩H ∩ Zn| ≥

(
n

n+ 1

)n(
2c

2c+ 1

)n(
2c

2c+ 1

)n
|K ∩ Zn|.

Hence,

|K ∩H ∩ Zn| ≥
(

n

n+ 1

)n(
4c2 − 4c

4c2 + 4c+ 1

)n
|K ∩ Zn|.

Note that

lim
c→∞

(
4c2 − 4c

4c2 + 4c+ 1

)n
= 1.

Hence, for large values of c Lemma 4.1.13 and Theorem 4.1.4 are essentially
the same. Recall the definition of the lattice width of a compact convex set
K. See Section 1.2. We can weaken the conditions in Lemma 4.1.13 and give
a more precise dependence of the number k? from the lattice width of the
underlying polytope. First we prove two auxiliary lemmata.

Lemma 4.1.14. Let K ⊂ Rn be a bounded convex set with nonempty interior.
There exists an ellipsoid E such that

cK + E ⊂ K ⊂ cK + n3/2E.

Proof. Without loss of generality we assume that cK = 0. Let E′ be the max-
imum volume ellipsoid contained in K−K. Then, by John’s characterization
of inscribed ellipsoids of maximum volume for centrally symmetric convex
bodies (see John [Joh48] and Ball [Bal92] or [Gru07, Section 11.1]) it holds
that

E′ ⊂ K −K ⊂
√
nE′.

Without loss of generality we assume that E′ = Bn := {x ∈ Rn | ‖x‖2 ≤ 1}.
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A well known property regarding the centroid is that for any u ∈ Sn−1 it
holds

1

n
≤
∣∣∣∣maxx∈K u

Tx

minx∈K uTx

∣∣∣∣ ≤ n (4.5)

(e.g. [Grü60]). To prove this property, we assume that (4.5) does not
hold. Without loss of generality we also assume that minx∈K u

Tx = −1
and maxx∈K u

Tx =: a > n where u = e1, i.e. u is equal to the first
unit vector. Let z := argmaxx∈K u

Tx. We define for every t ∈ R the set
Kt := K ∩ {x ∈ Rn | uTx = t}. Further, we define C := z + cone(K0 − z),
S1 := {x ∈ Rn | − 1 ≤ uTx ≤ 0} and S2 = {x ∈ Rn | 0 ≤ uTx ≤ a}. Then

K ∩ S1 ⊂ C ∩ S1 and K ∩ S2 ⊃ C ∩ S2.

See Figure 4.2 for an illustration. It follows

−
∫ 0

−1

t voln−1(Kt)dt

≤−
∫ 0

−1

t voln−1

(
a− t
a

K0

)
<

∫ a

0

t vol

(
a− t
a

K0

)
≤
∫ a

0

t voln−1(Kt)dt.

But our assumption that cK = 0 implies that

−
∫ 0

−1

t voln−1(Kt)dt =

∫ a

0

t voln−1(Kt)dt,

cK z

S1 S2

Figure 4.2: An illustration of the sets K, C, K ∩ S1, C ∩ S1, K ∩ S2 and C ∩ S2.
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which is a contradiction. Hence, this proves (4.5).

Now, it follows on the one hand that

K ⊂ n

n+ 1

√
nE′

and on the other hand it follows that

1

n+ 1
E′ ⊂ K

The lemma follows by choosing E = 1
n+1E

′.

Lemma 4.1.15. Let K ⊂ Rn be a bounded convex set with lattice-width ω(K).
Then there exists a universal constant α and a unimodular matrix U ∈ Zn×n

such that

cK +
ω(K)

2αnn−1
U [−1, 1]n ⊂ K

Proof. By Lemma 4.1.14, we know that there exists an ellipsoid E such that
cK +E ⊂ K ⊂ cK +n3/2E. Let E = {x ∈ Rn | xTD−2x ≤ 1} where D ∈ Sn++

is a positive definite matrix. We want to map cK + E to the n-dimensional
unit ball Bn. For that we define φ : Rn 7→ Rn by

φ(x) := D−1x.

Let Λ := φ(Zn) and K ′ := φ(K). Note that cK′ = φ(cK). Further, note that
ωΛ(K ′) = ωZn(K) and that cK +Bn ⊂ K ⊂ cK + n3/2Bn.

Let B denote a Korkine-Zolotareff basis of Λ [KZ73]. Then, a well known
property is that

‖B?,1‖2 · · · ‖B?,n‖2 ≤ αnn det(Λ) (4.6)

(see [LLS90, Theorem 2.3]), where α is a universal constant and B?,i denotes
the i-th column of B for i = 1, . . . , n.

Let C denote the cross-polytope conv({±e1, . . . ,±en}), where ei denotes the

i-th unit vector for i = 1, . . . , n. Next we show that cK′+
√
n ω(K)

2αnn−1BC ⊂ K ′.
This then implies that

cK +
ω(K)

2αnn−1
DB[−1, 1]n ⊂ cK +

√
n
ω(K)

2αnn−1
DBC ⊂ K.

To derive a contradiction let us assume that
√
n ω(K)

2αnn−1B?,n 6∈ K ′. Then

‖B?,n‖2 >
1

√
n ω(K)

2αnn−1

. (4.7)
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Let B̃?,1, . . . , B̃?,n denote the Gram-Schmidt orthogonalization ofB?,1, . . . , B?,n
(see for example [Gru07, Chapter 28]). It holds that ‖B̃?,i‖ ≤ ‖B?,i‖2 for all

i = 1, . . . , n and it holds that det(Λ) = det(B) =
∏n
i=1 ‖B̃?,i‖2. Together

with (4.6) and (4.7) this implies

‖B̃?,n‖2 >
1

√
n ω(K)

2αnn−1

1

αnn
=

2

n3/2ω(K)
.

This, in turn, implies that ω(K) < 2n
3/2ω(K)

2
1

n3/2 = ω(K), which isa contra-

diction. Then, setting U := DB proves the lemma.

Now we are ready to prove the alternative version of Lemma 4.1.13 depending
on the lattice-width.

Lemma 4.1.16. Let K ⊂ Rn be a compact convex set with lattice-width
ω(K) ≥ 3αnn−1 (where α is defined as in Lemma 4.1.15). There exists a
point z ∈ Zn such that for any half-space H 3 z, we have

|K ∩H ∩ Zn| ≥ c
(

n

n+ 1

)n
|K ∩ Zn|,

where c is a constant only depending on ω(K) and n.

Proof. From Lemma 4.1.15 we know that

cK +
ω(K)

2αnn−1
U [−1, 1]n ⊂ K,

where U is defined and constructed as in the proof of Lemma 4.1.15. Let

c′ :=
ω(K)

2αnn−1
− 1

2
≥ 1. (4.8)

Define z := bcKeU . (For the notation bxeU , see the proof of Lemma 4.1.13
and its corresponding footnote.) First, we define the unimodular mapping
ψ : Rn 7→ Rn as

ψ(x) := U−1x.

Then

cψ(K) + (c′ +
1

2
)[−1, 1]n ⊂ ψ(K).

Then the lemma follows from Lemma 4.1.15, with

c :=

(
4c′

2 − 4c′

4c′2 + 4c′ + 1

)n
. (4.9)
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Remark 4.1.17. We want to point out that the proof of Lemma 4.1.16 is
constructive. In particular, if K is a polytope and the dimension n is fixed,
then the point z can be computed in polynomial time in the input-size of the
polytope.

4.1.3 Existence of center-points in Zn × Rd

In this section we consider the mixed-integer setting. In order to derive an
analogue result to Theorem 4.1.6 and Theorem 4.1.8, we need a Helly-type
theorem for the mixed-integer setting Zn × Rd.

Theorem 4.1.18. (Averkov and Weismantel, [AW12]) Let K1, . . . ,Km ⊂
Rn+d be a family of closed convex sets. If for every subfamily Ki1 , . . . ,Kil

with l ≤ 2n(d+ 1)
l⋂

j=1

(Kij ∩ Zn × Rd) 6= ∅,

then
m⋂
j=1

(Kj ∩ Zn × Rd) 6= ∅.

Theorem 4.1.19. Let µ be a finite measure on Zn×Rd and let K ⊂ Zn×Rd

be a compact set. Then

hullµ1
2n

1
d+1

(K) 6= ∅.

Proof. The proof follows precisely the lines in the proof of Theorem 4.1.8.
Instead of Doignon’s theorem, Theorem 4.1.7, we use Theorem 4.1.18.

If we choose µ to be the d-dimensional Lebesgue measure, a very interesting
open question is whether one can improve the constant k. In terms of volume,
we conjecture the following:

Conjecture 4.1.20. Let K ⊂ Rn×d be a closed convex set. There exists a
point x ∈ Zn × Rd such that any half-space H containing x satisfies

vold(K ∩H ∩ (Zn × Rd)) ≥ 1

2n

(
d

d+ 1

)d
vold(K ∩ (Zn × Rd)).
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This bound is tight, in the sense that if we choose K = conv{{0, 1}n ×
S}, where S ⊂ Rd is a d-dimensional simplex, there exists a hyperplane
that only truncates one corner of one of the copies of the simplices. The
interesting part would be that the bound is independent of d in the sense

that limd→∞
1

2n

(
d
d+1

)d
= 1

2n e
−1.

4.2 Computation of approximate center-points

In this section we present two algorithms which compute approximate center-
points for the pure integer case with respect to polytopes P and the counting
measure µ. The first algorithm deals with the special case where n = 2,
which yields a point in hullµ1

4

(P ). The second algorithm will handle any fixed

dimension n, however it will only compute a point in hullµ1

2n
2

(P ).

4.2.1 The 2-dimensional case

The main result in this section is the following one:

Theorem 4.2.1. Let P = {x ∈ R2 | Ax ≤ b}, where A ∈ Zm×2 be a bounded
polytope and b ∈ Zm, such that P ∩ Z2 6= ∅. Then, in polynomial time in the
input-size of A and b, one can compute a point

z ∈ hullµ1
4

(P ),

where µ denotes the counting measure.

Proof. First we compute the lattice-width ω(P ) and the flatness-direction v
of P . See Observation 3.1.1. Then, we distinguish between the two cases
where P either has a large or a small lattice-width. Let c(ω) be defined as in
(4.9) and (4.8). Then, let c? be sufficiently large, such that c(ω)

(
4
9

)
≥ 1

4 for
n = 2 and all ω ≥ c?.

If ω(P ) > c?, then, by Lemma 4.1.16, we can compute z ∈ hullµ1
4

(P ). See

Remark 4.1.17 on how to compute z.

Otherwise, if ω(K) ≤ c? we determine the center-point of P (and not an
approximation). For that we define the function f : S1 × Z2 7→ N as

f(u, y) := |P ∩ {x ∈ Z2 | uTx ≤ uTy}|.
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That is, the function f returns the number of integer points contained in P
intersected with the half-space defined by u and y. For any fixed y ∈ Z2 we can
optimize minu∈S1 f(u, y). We will prove this in a separate claim below. With
f , we can now express the center-point of P as the following optimization
problem

argmax
y∈K∩Z2

min
u∈S1

f(u, y).

Since P is flat, we can divide the latter problem into bω(K)+1c subproblems.
We consider all levels Li = {x ∈ R2 | vTx = i} such that Li ∩ P 6= ∅. Note
that f is quasi-convex in y. Therefore, with binary search on Li ∩Z2, we can
solve the subproblems

argmax
y∈Li∩Z2

min
u∈S1

f(u, y).

Among all the subproblems we pick the optimal solution.

It remains to prove the following claim.

Claim: Given a point y ∈ Z2, then, in polynomial time in ω(P ) and the
binary encoding length of A and b one can solve

min
u∈S1

f(u, y).

We assume that the flatness-direction v = (0, 1)T, 0 = dminx∈K v
Txe and that

l = bmaxx∈K v
Txc = bω(K)+1c. That is K∩Z2 ⊂

⋃l
i=0 Li. Let w := (1, 0)T.

For i = 0, . . . , l we define

w−i := argmin
x∈K∩Li

wTx and w+
i := argmax

x∈K∩Li
wTx.

For y 6= w−i , w
+
i we define

u−i =
w−i − y
‖w−i − y‖2

and u+
i =

w+
i − y

‖w+
i − y‖2

.

There are three main observations to make: (i) f is piece-wise constant in u
(ii) given a u ∈ S1 one can compute f(u, y) (one only needs to count integer
points on at most l+ 1 line segments) and (iii) one can divide S1 into 2d+ 2
intervals (defined by the u−i and u+

i ) such that f is monotone in each of them.
See Figure 4.3.

It remains to evaluate f(u, y) for a constant number of points u, i.e. u ∈ U :=
{u−0 ± ε, u

+
0 ± ε, u

−
1 ± ε, . . . } where ε is a sufficiently small perturbation. It

holds that
minu∈S1f(u, y) = minu∈Uf(u, y).
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y

u−1

L5

L4

L3

L2

L1

L0

H

v

Figure 4.3: Let H = {x ∈ R2 | uTx = uTy}. This figure illustrates the character-
istics of f . In particular the monotonicity of f only changes around critical points
such as u−

1 .

Remark 4.2.2. With the same approach as in Theorem 4.2.1 one can solve for
any fixed k̄ < 4

9

(k?, x?) := argmax k
s.t. x ∈ hullµk(S)

x ∈ E2

k ∈ [0, k̄].

For that, one needs to adapt the threshold for when one uses Lemma 4.1.16
or not.

4.2.2 An approximation algorithm for fixed dimension n

Analogous to the previous section we could define a function f : Sn−1×Zn 7→
N with f(u, y) := |P ∩ {x ∈ Zn | uTx ≤ uTy}|. Then, if we could evaluate
for a fixed y ∈ Zn the subproblem minu∈Sn−1 f(u, y), we could proceed in a
similar way as before. However, up to this point it is not clear to us how to
achieve this.

As an alternative, we present the following weaker result, which is based on
induction.

Theorem 4.2.3. Let n be fixed, let P = {x ∈ Rn | Ax ≤ b} be a polytope,
where A ∈ Zm×n and b ∈ Zm, such that P ∩ Zn 6= ∅. Then, in polynomial
time in the input-size of A and b, one can find a point

z ∈ hullµ1

2n
2

(P ),
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where µ denotes the counting measure.

Proof. Clearly, the theorem holds true for n ≤ 2 by Theorem 4.2.1. For the
purpose of induction, let us assume that the theorem holds for n− 1.

As in the proof of Theorem 4.2.1 we distinguish two cases. For that let c(ω)
be defined as in (4.9) and (4.8) depending on ω. Further, let c? be sufficiently

large, such that c(ω)
(

n
n+1

)n
≥ 1

2n2 for all ω ≥ c?. Note that c? is a constant

only depending on n.

If ω(P ) > c?, we apply Lemma 4.1.16 and compute a point z as in Re-
mark 4.1.17. By the choice of c? we have that z ∈ hullµ1

2n
2

(P ).

Otherwise, if ω(P ) ≤ c?, we can partition P ∩Zn into ω(K) sets. Let v ∈ Zn

be the flatness direction corresponding to the lattice-width ω(P ). Without
loss of generality we assume that v = (0, . . . , 0, 1)T, 0 = dminx∈K v

Txe and
that l = bmaxx∈K v

Txc = bω(K) + 1c. We define Li = {x ∈ Rn | vTx = i}
and Pi = P ∩ Li for i = 0, . . . , l. Hence P ∩ Zn =

⋃l
i=0(Pi ∩ (Zn−1 × {i})).

Each Pi, with i ∈ {0, . . . , l}, is of the dimension n − 1 or smaller. By the
inductive hypothesis we can compute the points

zi ∈ hullµ 1

2(n−1)2
(Pi)

for i = 0, . . . , l. We define the following measure µ̄ on Zn. For each z ∈ Zn

set

µ̄(z) :=

{
|Pi ∩ Zn| if z = zi,

0 otherwise.

Note that with Barvinok’s algorithm [Bar94] we can compute the number
|Pi ∩ Zn| in polynomial time in the input size. Further note that µ̄(Zn) =
µ̄(P ∩ Zn) = |P ∩ Zn|. By Theorem 4.1.8 we know that there exists a point

z ∈ hullµ̄1
2n

(P ).

There is a constant number of possible partitions of {z0, . . . , zl}. Hence, this
point z can be computed by brute force.

Let H denote a half-space containing z. If bd(H), the boundary of H, is
parallel to L0, then |H ∩P ∩Zn| ≥ 1

2n |P ∩Zn|. Otherwise, H defines (n− 1)-
dimensional half-spaces Hi with respect to the affine sub-spaces Li for i =
0, . . . , l, i.e. Hi := H ∩ Li for i = 0, . . . , l. We have that

µ̄(H ∩ Zn)

µ̄(Zn)
=

∑l
i=0 µ̄(Hi ∩ Zn)

µ̄(Zn)
≥ 1

2n
.
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If zi ∈ Hi then µ̄(Hi ∩ Zn) 6= 0. By construction of the zi’s we have that
|H ∩ Pi ∩ Zn| ≥ 1

2(n−1)2
|Pi ∩ Zn| = 1

2(n−1)2
µ̄(Hi ∩ Zn). Hence,

l∑
i=0

|H ∩ Pi ∩ Zn| ≥ 1

2(n−1)2

1

2n
|P ∩ Zn|.

This finally proves that |H ∩ P ∩ Zn| ≥ 1
2n2 |P ∩ Zn| for any half-space H

containing z.

4.3 Mixed-integer optimality conditions for con-
vex functions

Given a convex function f : Rn 7→ R. Assume that f has a, not necessar-
ily unique, minimizer x?. Then a necessary and sufficient certificate for x?

being a minimizer of f is that 0 ∈ ∂f(x?), i.e. the zero-function is in the
subdifferential of f at x?. Hence

x? = argmin
x∈Rn

f(x)⇐⇒ 0 ∈ ∂f(x?).

We can add convex constraints g(x) ≤ 0, where g : Rn 7→ Rm and consider
the following problem

x? = argmin
x∈Rn,
g(x)≤0

f(x).

Assume that there exists a point y fulfilling the Slater condition, that is,
g(y) < 0. In this case the Karush-Kuhn-Tucker conditions (e.g. [Kar39,
KT51]) provide necessary and, in our setting, sufficient optimality conditions.
Namely, let hf ∈ ∂f(x?) and hgi ∈ ∂gi(x?), i = 1, . . . ,m. Then there exist
non-negative λi, i = 1, . . . ,m, such that

−hf =

m∑
i=1

λihgi .

Note that it suffices only to consider those gi(x
?) that are active, i.e. λi 6= 0,

and linearly independent.

It is natural to ask, whether it is possible to formulate optimality conditions
for the integer setting

x? = argmin
x∈Zn,
g(x)≤0

f(x) (4.10)
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and for the mixed-integer setting

x? = argmin
x∈Zn×Rd,
g(x)≤0

f(x). (4.11)

One key element in the proof of the Karush-Kuhn-Tucker conditions is the
Carathéodory theorem (e.g. [Gru07, Theorem 3.1.]). In order to obtain an
integer or mixed-integer analogue we will have to replace Carathéodory’s the-
orem by an integer and mixed-integer Helly-type theorem, i.e. Theorem 4.1.7
and Theorem 4.1.18 proven in [Doi73] and [AW12] respectively.

For an easier exposition of this material we start with the unconstrained case.

Theorem 4.3.1. A point x? ∈ Zn × Rd is optimal with respect to

min
x∈Zn×Rd

f(x)

if and only if there exist k ≤ 2n points x1 = x?, x2, . . . , xk with corresponding
hxi ∈ ∂f(xi) such that f(xi) ≥ f(x?) for i = 1, . . . , k and

{x ∈ Rn+d | hTxix < hTxixi for all i = 1, . . . , k} ∩ (Zn × Rd) = ∅.

Proof. One key observation is that given a point x ∈ Zn×Rd and a subgradient
h ∈ ∂f(x) we have that x = argmin{f(y) | hTy ≥ hTx, y ∈ Zn × Rd}, i.e. x
minimizes the function f with respect to the half-space defined by x and its
subgradient h, If h = 0, then x minimizes f over Zn × Rd.

We assume that x? is optimal. Let X? denote the set of all optimal solutions.
We may assume that X? 6= ∅, otherwise there is nothing to prove. If there
exists a point x ∈ X? with 0 ∈ ∂f(x), then the theorem follows directly from
the purely continuous case, described at the beginning of this section. Next,
assume there exists an x ∈ X? ∩ int(conv(X?)) and hx ∈ ∂f(x) such that
hx 6= 0. Then, since x is in the interior of conv(X?), there exists a x′ ∈ X?

such that f(x′)−f(x) ≥ hTx(x′−x) > 0, which contradicts that x′ is optimal.
This implies that if X?∩int(conv(X?) 6= ∅ that then 0 ∈ ∂f(x) for all x ∈ X?.
Hence, let us assume that X? ∩ int(conv(X?)) = ∅ and that 0 /∈ ∂f(x) for all
x ∈ X?.

Let the function F : Rn 7→ R be defined as

F (z) := min
y∈Rd

f(z, y).

Note that F is convex again. For each z ∈ Rn let yz := argminy∈Rd f(z, y).
Since yz is an optimal solution of a continuous problem there exists a (hz, hyz ) ∈
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∂f((z, yz)) such that (hz, hyz ) is orthogonal to {z} × Rd (i.e. hyz = 0). Fur-
ther, hz ∈ ∂F (z).

Let L := {y ∈ Rn | hTz y < hTz z, z ∈ Zn, hz ∈ ∂F (z)}. Clearly L ∩ Zn = ∅,
i.e. L is lattice-point free. It follows from [Doi73] that a sub-selection of
k ≤ 2n inequalities hTziy ≤ hTzizi, i = 1, . . . , k (we can choose z1 such that
(z1, yz1) = x?) suffice, such that the relaxation L̄ := {y ∈ Rn | hTziy <
hTzizi, i = 1, . . . , k} remains lattice-point free. Then the one direction follows
by choosing x1 = x?, x2 = (z2, yz2), . . . , xk = (zk, yzk).

To prove the other direction, let

P := {x ∈ Rn+d | hTxix < hTxixi for all i = 1, . . . , k}

and assume that P ∩ (Zn × Rd) = ∅. Let x̄ ∈ Zn × Rd. Then x̄ must violate
at least one inequality of P , say the i-th inequality. But then we know from
our observation in the beginning that xi minimizes f over the half-space
{x ∈ Zn × Rd | hTxix ≥ hTxixi}. Hence, f(x̄) ≥ f(xi) ≥ f(x?). Therefore x?

must be optimal.

Now we prove the following theorem, providing if and only if conditions for
an optimal point with respect to (4.11) (which includes (4.10)).

Theorem 4.3.2. Assume that there exists a point s ∈ Rn+d such that g(s) <
0. A point x? ∈ Zn × Rd is optimal with respect to (4.11) if and only if
g(x?) ≤ 0 and there exist k + l ≤ 2n(d + 1) points x1 = x?, x2, . . . , xk and
y1, . . . , yl in Rn+d with corresponding hxi ∈ ∂f(xi), and hyi ∈ ∂gj(yi) such
that f(xi) ≥ f(x?) for i = 1, . . . , k, g(yi) ≥ 0 for i = 1, . . . , l and such that

{x ∈ Rn+d | hTxix < hTxixi for all i = 1, . . . , k,

hTyix ≤ h
T
yiyi for all i = 1, . . . , l } ∩ (Zn × Rd) = ∅.

Proof. Let X? denote the set of all optimal solutions. It follows from the
arguments in the proof of Theorem 4.3.1 that we may assume that X? ∩
int(conv(X?)) = ∅ and that 0 /∈ ∂f(x) for all x ∈ X?.

Let x? ∈ X?, L := {x ∈ Rn+d | f(x) ≤ f(x?)} and S := {x ∈ Rn+d | g(x) ≤
0}. We can describe X? as the intersection of the level-set L, the feasible
region S and mixed-integer lattice. In turn, we can describe L and S as the
intersection of half-spaces defined by the boundary points and their corre-
sponding subdifferentials

L =
⋂

z∈bd(L),
h∈∂f(z)

{x ∈ Rn+d | hTx ≤ hTz}
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and
S =

⋂
z∈bd(S),
h∈∂g(z)

{x ∈ Rn+d | hTx ≤ hTz}.

Assume that x+ Bε ⊂ L ∩ S, where x ∈ X? and Bε denotes a ball of radius
ε > 0. Then, f(x) = f(x?) and f(y) ≤ f(x?) for all y ∈ x + Bε. This
then, implies that 0 ∈ ∂f(x), which then in turn contradicts our assumption.
Hence, X? ⊂ bd(L∩S). By our assumption int(conv(X?))∩(Zn×Rd) = ∅, i.e.
conv(X?) is mixed-integer lattice free, it holds that int(L∩S)∩(Zn×Rd) = ∅.
It follows from [AW12] that a subset of 2n(d+1) half-spaces suffice in order to
guarantee that the corresponding intersection remains mixed-integer lattice
free.

To prove the other direction, let

P := {x ∈ Rn+d | hTxix < hTxixi for all i = 1, . . . , k,

hTyix ≤ h
T
yiyi for all i = 1, . . . , l }.

Since P ∩ (Zn × Rd) = ∅, P cannot contain any feasible point x ∈ Zn × Rd

with a smaller objective value. Any other point x ∈ Zn×Rd \P must violate
at least one inequality, say either hTx1

x ≥ hTx1
x1 or hTy1x > hTy1y1. By the

definition of subgradients, x must either have objective value greater than
or equal to f(x?) or it is infeasible. Hence, no feasible mixed-integer lattice
point exists with better objective value than x?.

In the following section, we present an algorithm that will terminate with
precisely the optimality certificate established here.

4.4 Algorithmic implications

We consider (mixed)-integer convex minimization problems, that is

min
x∈Zn×Rd,
g(x)≤0

f(x),

where f, g : Rn × Rd 7→ R are convex functions. In this section we want
to present a general cutting plane method based on center-points. This can
be interpreted as a direct extension of the well-known Method of Centers
of Gravity or the more general cutting plane methods (e.g. [Nes04, Section
3.2.6.]). Algorithms such as ellipsoid method, outer approximation, Kelly’s
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cutting plane method and level method also fit into this framework. As input
we consider two functions f and g given by first-order evaluation oracles. See
Definition 1.1.1.

Further, we assume that we have access to approximate center-points of poly-
topes. For that we define the following oracle.

Definition 4.4.1 (α-central-point-oracle). For a polytope P , the oracle re-
turns a point

z ∈ hullµα(P ).

This way we hide the problem of computing central points with its complexity
in the oracle and keep the following discussion as general as possible. However,
for several instances the oracle can be realized. For example in the continuous
case (i.e. n = 0) and the Lesbesgue measure we have the centroid as an
approximate center-point or another alternative is the center of the maximum
inscribed ellipsoid of the polytope. For the case d = 0, we have seen two
possible choices of approximate center-points in sections 4.2.1 4.2.2.

The general algorithmic framework is as follows. We start with the bounding
box, say P 0 := [0, B]n. Then we construct iteratively a sequence of polytopes
P 1, P 2, . . . by intersecting P k with the half-space defined by its (approximate)
center-point and the corresponding subgradient arising from either f or g.
That is, let xk ∈ hullµα(Pk) and let h̄ ∈ ∂f(xk) (or h̄ ∈ ∂g(xk) if xk is not
feasible). Then we define P k+1 := P k ∩ {x ∈ Rn | h̄Tx < h̄Txk}. It follows
that

P k ⊃ P k+1 ⊃ argmin
x∈Zn×Rd,
g(x)≤0

f(x)

for all k ∈ N. Further, by the choice of xk, the measure of P k decreases
in each iteration by a fraction of at least 1 − α. Among all (approximate)
center-points xk that we encounter, we keep track of the feasible point with
smallest objective value. We denote that point by x? and its objective value
by f? = f(x?). This discussion is summarized in Algorithm 5.

Let us first recall the classical continuous case without the constraint g(x) ≤ 0.
We consider the method of centers of gravity, i.e. we choose the centroid as the
approximate-central-point with α = e−1. Let x̂ := argminx∈[0,B]n f(x) and

f̂ := f(x̂). With L we denote the maximal Lipschitz constant of the function
f . On the one hand we know, by Theorem 4.1.4, that in each iteration we
reduce the volume by a factor 1 − e−1, i.e. vol(Pk) ≤ (1 − e−1) vol(Pk−1).
Hence, after k iterations vol(Pk) ≤ (1−e−1)k vol([0, B]n) = (1−e−1)kBn. On



84 CHAPTER 4. CENTER-POINTS

Data: Functions f and g given by first-order evaluation oracles and B ∈ N
such that {x ∈ Rn+d | g(x) ≤ 0} ⊂ [0, B]n+d.

Set P 0 := [0, B]n+d and f? =∞.
for k = 0, 1, . . . do

Let xk ∈ hullµα(Pk) and let ḡ = g(xk)
if ḡ ≤ 0 then

Let f̄ = f(xk)
if f̄ < f? then

f? = f̄ and z? = xk.
end
Let h̄ ∈ ∂f(xk)

else
Let h̄ ∈ ∂g(xk)

end

P k+1 := P k ∩ {x ∈ Rn+d | h̄Tx < h̄Txk}
end
return z? and f?.

Algorithm 5: The general cutting-plane method

the other hand, following from the Lipschitz constant, we have that f?− f̂ ≤
L‖x̂− x‖2 for all x ∈ Rn with f(x) = f?. Hence,

Pk ⊃ {x ∈ Rn | f(x) ≤ f?}

⊃

{
x ∈ Rn

∣∣∣∣ ‖x̂− x‖2 ≤ f? − f̂
L

}

It follows,

vol(Pk) ≥ vol

({
x ∈ Rn

∣∣∣∣ ‖x̂− x‖2 ≤ f? − f̂
L

})

=

(
f̂ − f?

L

)n
κn,

where κn denotes the volume of the n-dimensional unit ball, i.e. κn =
πn/2

Γ(n/2+1) . This gives us then an upper bound on f̂ − f? with respect to

the number of iteration k. Namely, it holds that

f̂ − f? ≤ LB(1− e−1)k/nκ−nn .
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Given a precision ε > 0 this implies that, after at most

k ≤ n ln(ε/LB)

ln(1− e−1)

iterations the algorithm returns a solution x?, f? such that f? − f̂ ≤ ε.

The main argument for the quality of the output of the algorithm was based
on volumes. However, when we consider integer or mixed-integer settings the
volume tends to be a bad measure. Only when the convex sets Pk have a
big lattice width, there is a strong correlation between the volume and the
number of integer points. (See Lemma 4.1.11.) When the lattice width is
small there is basically no connection. For the pure integer case it appears
that the number of integer points in Pk is a better measure. In the mixed-
integer case (i.e. Zn × Rd) it would be natural to consider the d-dimensional
volume, that is vold(Pk ∩ Zn × Rd) =

∑
z∈Zn vold({x ∈ Rd | (z, x) ∈ Pk}).

In the following we want discuss these two measures for the integer and the
mixed integer case.

4.4.1 Integer and mixed-integer convex minimization

Let us begin our discussion with the problem

min
x∈Zn,
g(x)≤0

f(x),

where f, g : Rn 7→ R are convex functions. Here, we have again the interesting
fact (as already stressed in Chapter 3) that we can compute the optimal point
rather than an ε approximation. If we use the counting measure instead of the
volume to evaluate our progress, this follows from the fact that the optimal
solution(s), if they exist, have a measure greater than or equal to one.

Again we need the assumption that the problem is bounded, i.e. the optimum
lies within a box [0, B]n. In the beginning we have (B + 1)n ≈ Bn integer
points to consider. In each iteration we reduce this number by a fraction
1− α. Hence after at most

k ≤ n ln(B)

ln(1− α)
+ 1

iterations we are left with no integer points in the interior of P k. Hence we
have found the optimal solution and furthermore, up to redundant inequalities
we also have a certificate for its optimality in form of P k.
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Let us now consider the mixed-integer problem

min
x∈Zn×Rd

f(x),

where f : Rn × Rd 7→ R is a convex function. For simplicity of exposition we
discuss the unconstrained problem. Let L denote the Lipschitz constant of
f and let ε > 0 be a given precision. Again, in order to make the problem
tractable, let us assume that the problem is bounded, i.e. the optimum lies
within a box, say [0, B]n+d.

Now again we can employ the same analysis as for the continuous case. Let
µ denote the d-dimensional volume on Zn × Rd and let

(x̂, ŷ) := argmin
(x,y)∈Zn×Rd

f((x, y))

and f̂ := f((x̂, ŷ)). We have µ({0, . . . , B}n × [0, B]d) ≈ Bn+d. This time we
bound µ(Pk) from below as follows

µ(Pk) ≥ µ({(x, y) ∈ Zn × Rd | f((x, y))− f̂ ≤ f? − f̂})

≥ µ

({
(x, y) ∈ Zn × Rd

∣∣∣∣ ‖(x̂, ŷ)− (x, y)‖2 ≤
f? − f̂
L

})

≥ µ

({
(x̂, y) ∈ {x̂} × Rd

∣∣∣∣ ‖(x̂, ŷ)− (x̂, y)‖2 ≤
f? − f̂
L

})

=

(
f̂ − f?

L

)d
κd.

Then, it follows that after at most

k ≤
d ln

(
ε
LB

)
+ n ln(B)

ln(1− α)

iterations we have that f(x?, y?)− f(x̂, ŷ) ≤ ε.

We close this chapter with a remark on the constrained case. By adding
constraints, we might encounter the problem that we do not find any feasible
point, i.e. g(xi) > 0 for all i = 1, . . . , k. However, if g is also Lipschitz
continuous, with Lipschitz constant L, then we can conclude that {x ∈ Zn ×
Rd | g(x) ≥ −ε} = ∅. One can avoid this problem if one knows a priori that
the value µ({x ∈ Zn × Rd | g(x) ≥ 0}) is of sufficient size.



Chapter 5

A Polyhedral Frobenius Theorem
with Applications to Integer Op-
timization

This chapter is based on a joint work with David Adjiashvili and Robert
Weismantel [AOW14].

Non-linear integer programming is concerned with optimizing a non-linear
function over the integer points in a polyhedron. Significant effort has been
made in recent years to extend the well-established theory of linear integer
programming to the non-linear case. Along these line, polynomial algorithms
for various classes of nonlinear functions were developed, including convex
functions [GLS88], bounded-degree polynomials [DPW14, DPHWZ14] and
more. Apart from very few exceptions [HS90, DLHOW08], however, all results
in this vein were proved for the fixed-dimension case, namely for the case
where the total number of variables is a fixed constant. The latter fact makes
these methods less practical, limiting their potential domain of applications.

There are, of course, good reasons why positive algorithmic results in non-
linear variable-dimension integer programming are harder to come by. Firstly,
this class of problems trivially generalized linear integer programming, which
is NP-hard in almost every variable-dimension setup. Secondly, non-linear
variable-dimension integer problems often become hard already in the fixed-
dimensional case. Finally, if the non-linear function acts directly on the
variable-dimensional space, even stronger hardness results can be proven.
For example, in the function oracle model one can prove simple information-
theoretic exponential lower bounds on the complexity of any algorithm ap-
proximating the minimum of a convex function over the hypercube. If the
function class is further restricted to be convex quadratic polynomials and
stronger oracles are assumed, the latter problem becomes “merely” NP-hard
to solve exactly. Worse still, the latter example shows the large increase in
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complexity when a linear objective function is replaced with a non-linear one.
This means that any algorithm reducing the latter problems to integer linear
programming will most likely need to replace the well-structured feasible set,
namely the hypercube, with a much more complicated one.

Still, it is meaningful to ask: Which non-linear variable-dimension integer
programming problems can be reduced to the linear case, maintaining the
structure of the problem class? In this chapter we study one such class of
problems. Our class of problems contains an additional component, namely
that of a projection into a low-dimensional space. The previous discussion
suggests that this is, to a large extent, unavoidable when efficient reductions
of the latter type are sought. Formally, we are interested in studying problems
of the form

min{f(Wx) | x ∈ Zn ∩ P}, (5.1)

where f : Rd → R is a function from our function class, P := {x ∈ Rn | Ax ≤
b} is a polyhedron in n-dimensional space, (with A ∈ Zm×n, b ∈ Zm) and
W is a n × d integer matrix. We discuss minimization here, but our results
also hold for maximization problems. The set F := {x ∈ Zn | x ∈ P} is
called the feasible set, and points x ∈ F are called feasible. Although not
necessary for our main result, we think of n as being large (variable) and of
d as being small (fixed). We note that this class of problems includes linear
integer programming already for d = 1 and f the identity.

In this chapter we give a first general-purpose efficient reduction from the
latter class of problems to integer programming. The efficiency of our re-
duction depends on various input parameters. We elaborate on this exact
dependence later. As a result, we obtain the first polynomial algorithms
for several classes variable-dimension non-linear integer problems. For other
problem classes, our method provides a polynomial time reduction from the
non-linear problem to linear integer programming, maintaining the structure
of the feasible set.

We assume black-box access to two oracles, namely a fiber oracle and an d-
dimensional non-linear optimization oracle (or simply, optimization oracle),
defined as follows.

Definition 5.0.2 (fiber oracle, optimization oracle). line break

• The fiber oracle accepts as input a point y ∈ Zd and either returns a
feasible point (a point x ∈ F) such that Wx = y, or asserts that no
such point exists.
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• The optimization oracle accepts descriptions of a polyhedron R ⊂ Rd

and a affine sub-lattice Λ ⊂ Zd of the integer lattice, and returns a point
y∗ in

arg min{f(y) | y ∈ Λ ∩R},
if one exists, or asserts that the latter set is empty.

We note that both oracles can be implemented in polynomial time for various
classes of input parameters. We defer a detailed discussion on this topic to a
later stage.

Our algorithmic results follow from a careful analysis of the set

R = WF := {y = Wx | x ∈ F},

namely the projection of the feasible set with respect to the matrix W . Let
us first explain why understanding this set can have important algorithmic
consequences. Assume, for example, that R = Q ∩ Zd holds, where

Q := WP = {Wx | x ∈ P}.

In this case we can solve Problem (5.1) with two oracle calls as follows. First,
use the optimization oracle to obtain y∗ ∈ arg min{f(y) | y ∈ Q ∩ Zd}.
This is possible since Zd is clearly a lattice, thus the latter problem has the
required form. Then, use the fiber oracle to obtain x∗ ∈ F with Wx∗ = y∗.
The oracle is guaranteed to return a point x∗ ∈ F since we assumed that
R = Q ∩ Zd, namely that every integer point in Q has a feasible pre-image
under the projection with W . The obtained x∗ is clearly an optimal solution.
In the following remark we give a concrete example of a class of matrices with
this property.

Remark 5.0.3. One important case in which R = Q ∩ Zd is the case of a
totally unimodular matrix

(
W
A

)
(see e.g. [Sch86, Theorem 19.1]). In this case

one can show the inclusion Q ∩ Zd ⊂ R as follows. Let y ∈ Q ∩ Zd. Since
y ∈ Q there exists x ∈ Rn such that Ax ≤ b and Wx = y. Since

(
W
A

)
is totally

unimodular and y ∈ Zd, the solution set to the latter system is an integral
polyhedron. Thus, there exists an integral point x̄ ∈ Zn with Ax̄ ≤ b and
Wx̄ = y. This implies that y ∈ R.

It is, unfortunately, rarely the case that R = Q ∩ Zd, as typically one has

R ( Q ∩ Zd,

namely, the set Q ∩ Zd contains holes, i.e., points without pre-images in F .
We illustrate this with the following simple example.
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Example 5.0.4. Let n = 3, d = 2, P = {x ∈ R3 | 0 ≤ xi ≤ 3, i = 1, 2, 3},
and consider the matrix

W =

(
1 2 1
−2 0 1

)
.

Figure 5.1 illustrates the polyhedron Q and the set R, which corresponds to
the thick points. All other points are holes.

In this more common situation, the latter simple strategy can not be directly
applied. One can still hope, however, to decompose the problem into sub-
problems, each solvable in this way. Ideally, this decomposition should have
the form

R =
⋃
i∈I

Qi ∩ Λi,

where Qi ⊂ Rd are polyhedra and Λi ⊂ Zd are affine sub-lattices, the descrip-
tion of which can be efficiently computed from the input data. Then, k = 2|I|
oracle calls are sufficient to solve the problem, by simply repeating our simple
procedure for every sub-problem i ∈ I, defined over Qi ∩ Λi, and taking the
best solution, among the |I| resulting candidates. It is hence of particular
interest to study such efficient representations, trying to minimize k, while
maintaining the property that both Qi and Λi are efficiently computable.

Our main contribution provides such a decomposition. Concretely, we show
strong existential bounds on some important parameters of such decomposi-
tions. These bounds, in turn, lead to strong bounds on efficiently computable
decompositions, which are later exploited to obtain efficient algorithms.

It is now evident that we deal with a problem of representability of sets of
integer vectors. Indeed, what we seek in our decomposition is a way to cover

Figure 5.1: An illustration of the set R and the notion of holes.
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all points in R by “simple” sets, with the property that none of these sets
contains a hole, namely a point in (Q∩Zd) \R. One can almost equivalently
ask: How complicated can the set of holes be?

Our result can hence be seen as a polyhedral variant of the Frobenius prob-
lem 1. Given a set S = {a1, · · · , am} ⊂ Z+ of positive integers with gcd(S) =
1, the Frobenius problem asks to find the largest integer k ∈ Z+ that can
not be represented as a positive integer combination of numbers in S. The
Frobenius problem is known to be NP-hard [RA96] in all but a few special
cases [Kan92, Kan89]. Several bounds on the Frobenius number were also
proven [EG72, BS62, Bra42].

For a positive integer s, let [s] = {1, · · · , s}. In higher dimensions one can
define the following generalization of the Frobenius problem, called the diag-
onal Frobenius problem 2 [AH10]. Given an d× n integer matrix M with the
property that cone(M) = {Mλ | λ ∈ Rn+} forms a full-dimensional pointed
cone, and such that MZn = Zd, find the smallest t ∈ Z with the property
that

(tv + cone(M)) ∩ Zd ⊂ {Mx | x ∈ Zm+},

where v =
∑
i∈[m]M·i is the sum of the columns of M . Intuitively, the

diagonal Frobenius number is the smallest factor by which one needs to shift
the cone cone(M) inwards (in the direction v ∈ cone(M)), so that every
integer point in it be expressible as a positive integer combination of the
columns of M (For an illustration see the second row in Figure 5.2). The
following result of Aliev and Henk [AH10] proves a strong bound on the
diagonal Frobenius number.

Theorem 5.0.5 (Aliev and Henk 2010). Let M ∈ Zd×n, such that MZn = Zd

with cone(M) pointed. Then the diaginal Frobenius number of M is at most

c(M) =
(n− d)

√
n

2

√
det(MMT).

Theorem 5.0.5 guarantees that the set MZn+ becomes very regular in the cone
cone(M) shifted by the vector c(M)v. For our purposes we need a similar
result for arbitrary polyhedra, instead of cones. To this end we define a notion
of regularity, suitable for our needs.

Definition 5.0.6 (∆-regular set). We call a set S ⊂ Zd ∆-regular, with
respect to a region B ⊂ Rd, if there exists a family of full-dimensional affine

1also known as the coin problem.
2We note that there are several ways to define such a generalization.
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sub-lattices Λ1, · · · ,Λk of Zd with determinants det(Λi) ≤ ∆ such that

S ∩B =
⋃
i

Λi ∩B. (5.2)

Theorem 5.0.5 can be restated in terms of our new definition as follows. For
a matrix M satisfying the conditions of Theorem 5.0.5, the set Zd is 1-regular
with respect to B = c(M)v+ cone(M). Furthermore, only the lattice Λ = Zd

is needed to certify this fact.

Our main result proves a similar statement for a much more general setup.
Firstly, the matrix M is replaced with the arbitrary matrix W . Secondly, the
admissible set of positive combinations is no longer the convenient set Zn+, but
rather the set F . Finally, we prove regularity with respect to a polyhedron
Q′ ⊂ Q. Since Q can be bounded, Q′ can no longer be a translate of Q.
We use instead the notion of α-inscribed polyhedron defined as follows. Let
R ⊂ Rd be a polyhedron, and let B(α) = {x ∈ Rd | ||x||∞ ≤ α} denote the `∞
ball with radius α. Then the α-inscribed polyhedron of R is the polyhedron

Rα := {x ∈ R | x+B(α) ⊂ R}.

We are now ready to state our main result. We henceforth fix the notations
P,A, b,W,F ,R, Q, d and n to represent the input to our problem. We denote
by ∆ and ω the maximum absolute sub-determinant of A, and the largest
absolute-value of an entry in W , respectively.

Theorem 5.0.7. R is δ-regular with respect to the γ-inscribed polyhedron
Qγ of Q, where δ and γ are bounded polynomially in ∆, ω and n.

Remark 5.0.8. We remark that one can also define a clean notion of a poly-
hedral Frobenius number as follows. Given two matrices A ∈ Zn×d and
W ∈ Zd×m let the polyhedral Frobenius number of A and W be

F (A,W ) = min {‖γ, δ‖∞ | R is δ-regular with respect to Qγ ∀b ∈ Zm} ,

where Q,P and R are defined from A,W and b, as before. We stress that
one can define a polyhedral Frobenius number in various alternative ways.
With the latter definition, however, Theorem 5.0.7 can be restated as fol-
lows. The polyhedral Frobenius number F (A,W ) is polynomially bounded
in ∆, ω and n, and exponentially by d. For an illustration of the conection
between the classical Frobenius problem, the diagonal Frobenius problem and
the polyhedral Frobenius problem see Figure 5.2.

The remainder of the chapter is organized as follows. In Section 5.1 we prove
Theorem 5.0.7. In Section 5.2 we use Theorem 5.0.7 to prove algorithmic
results for various classes of non-linear integer optimization problems.
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P = Rn+ w ∈ Zn

P = Rn+ W ∈ Zd×n

P = {x ∈ Rn : Ax ≤ b}

W ∈ Zd×n

Figure 5.2: Given a polytope P and a matrix W we illustrates the the relationship
between W (P ∩ Zn) and WP ∩ Zn. From top to bottom, the first row shows the
classical Frobenius setting, the second row the diagonal Frobenius problem and the
last rows shows the polyhedral Frobenius setting (see Remark 5.0.8).
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5.1 A proof of Theorem 5.0.7

In this section we prove Theorem 5.0.7. For that we first introduce notation
and we prove an auxiliary lemma that adapts Theorem 5.0.5 to our needs.
Then we prove our main theorem.

We start with some notation. Let B,C ⊂ Rd and let D ∈ Rm×d be a matrix.
With B + C we denote the Minkowski sum {x ∈ Rd | x = b + c with b ∈
B and c ∈ C}. With DB we denote the set {x ∈ Rm | x = Db with b ∈ B}.
Further, we denote with Di,? the i-th row of D and with D?,i the i-th column.
The operator b·c maps component wise every entry to the largest integer
smaller than or equal to the corresponding entry. Finally, let ‖D‖max :=
maxi,j |Di,j | denote the maximum absolute value of an entry of D.

Lemma 5.1.1. Let M ∈ Zd×n, such that cone(M) = Rn and let Λ = MZn.
Let z ∈ Λ and let α := ‖z‖∞. Then z can be expressed as z = Mλ such
that λ ∈ Zn+ and ‖λ‖∞ ≤ p(α, n, ω), where p(α, n, ω) ∈ R+[x1, x2, x3] is a
polynomial in α, n and ω := ‖M‖max.

Proof. To start with, we show why we may assume that Λ = Zd. Let B be
the Korkin-Zolotariv basis of Λ [KZ73]. Then, a well known property is that
the following inequality holds ‖B?,1‖2 · · · ‖B?,d‖2 ≤ add det(Λ) (see [LLS90,
Theorem 2.3]), where a is a universal constant. It follows that the entries of
B are bounded polynomially in det Λ. Therefore, there is also a polynomial
bound for the entries of its inverse matrix B−1. We can hence transform M, z
and Λ by B−1 to arrive at a matrix M ′ = B−1M , a vector z′ = B−1z and
a lattice Λ′ = B−1Λ. The entries in M ′ and z′ are polynomially bounded in
the entries in M and z, respectively. Furthermore, Λ′ becomes the standard
lattice, that is Λ′ = Zd. We hence assume hereafter that Λ = Zd.

Case 1. Assume that {M?,j | j = 1, . . . , n} = {−M?,j | j = 1, . . . , n},
i.e., the negative of every column in M is also a column in M . Let p =
(2d−1ωd−1, . . . , 20ω0)T. It holds that pTM?,j 6= 0 for all j = 1, . . . , n. Without
loss of generality, we assume that n is even, that pTM?,j > 0 for all j =
1, . . . , n/2 and that M?,j = −M?,n/2+j for j = 1, . . . , n/2. This implies that
cone(M?,1, . . . ,M?,n/2) is pointed.

By Caratheodory’s Theorem (see e.g. [Gru07, Theorem 3.1]), we can express
z as a positive combination of at most d linearly independent columns of M ,
say z =

∑d
j=1 γijM?,ij with γij

∈ R+. Using Cramer’s rule, the Lagrange
expansion of determinants and Hadamard’s inequality, we can compute the
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bound
γij ≤ dαωd−1(d− 1)(d−1)/2 =: ρ1.

We set γij = 0 for j = d+ 1, . . . , n.

Let c = c(M), defined as in Theorem 5.0.5. Note that c is polynomially
bounded by ω and n. Next, define γ̄i := max{0, γi−c} for i = 1, . . . , n/2 and
γ̄i := min{γi, γi−n/2 − c} for i = n/2 + 1, . . . , n. Let z̄ := Mbγ̄c. Then z ∈
z̄+c

∑n/2
j=1M?,j +cone(M?,1, . . . ,M?,n/2). It follows from Theorem 5.0.5 that

z − z̄ can be expressed as a positive integer combination of M?,1, . . . ,M?,n/2.

Let z − z̄ =
∑n/2
j=1 µjM?,j , with µj ∈ Z+ be such a combination.

Next, we exploit the fact

1 ≤ pTM?,j ≤ d2dωd for all j ∈ {1, . . . , n/2}.

It holds that pT(z − z̄) ≤ pT((c + 1)
∑n/2
j=1M?,j) ≤ (c + 1)n/2d2dωd. In

particular, this implies that

µj ≤ (c + 1)n/2d2dωd =: ρ2.

Finally, let λ := bγ̄c + µ. It holds that λ ∈ Zn+, z = Mλ and ‖λ‖∞ ≤
p(α, n, ω) := ρ1 + ρ2. This completes the proof for Case 1.

Case 2. In the general case {M?,j | j = 1, . . . , n} 6= {−M?,j | j = 1, . . . , n}.
Without loss of generality we assume that −M?,1 /∈ {M?,j | j = 1, . . . , n}.

Since cone(M) = Rd there exists, by Caratheodory’s Theorem, a selection of

at most d linearly independent columns ofM , such that−M?,1 =
∑d
j=1 ξjM?,ij

with ξj ∈ R+. With δ1 := det(M?,i1 , . . . ,M?,id) and δj = δ1ξj ∈ Z+ it follows
that

−M?,1 = (δ1 − 1)M?,1 +

d∑
j=1

δjM?,ij and δj ≤ ωddd/2 =: ρ3 (5.3)

for all j = 1, . . . , d. From this it follows that we can insert −M?,1 to the set
{M?,j | j = 1, . . . , n} with the slight modification that whenever a multiplier
β for column −M?,1 is used in a representation, we replace it by β times its
expression for (5.3). By performing the latter replacement for all n columns
independently, we obtain the general bound

‖λ‖∞ ≤ p(α, n, ω) := ρ1 + ρ2 + nρ2ρ3.
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We are now ready to prove Theorem 5.0.7

Proof of Theorem 5.0.7. In order to distinguish between vectors in fixed di-
mension d from those in variable dimension n, we denote elements in the
n-dimensional space with capital letters and elements in the d-dimensional
space with small letters. Without loss of generality we assume that P is
given in the form {x ∈ Rn+ | Ax = b}. We can do so by introducing m
slack-variables and decomposing any vector into the difference of two positive
vectors of the same dimension, i.e. Ax − Ay + Iz = b with x, y ∈ Rn+ and
z ∈ Rm+ . Note that the dimension only grows linearly and that the maximum
absolute sub-determinant remains the same. For each orthant Oi we define
Hi to be the Hilbert basis of the cone {x ∈ Oi | Ax = 0}. By Cramer’s rule
we can conclude that we can express {x ∈ Oi | Ax = 0} as cone(G1, . . . , Gk)
with Gj ∈ Oi ∩ {−∆, . . .∆}d for j = 1, . . . , k. Further, it is well known that
Hi ⊂ {x ∈ Oi ∩ Zn | ‖x‖∞ ≤ η1} with

η1 := d∆.

This implies that for each H ∈ Hi it holds that

‖WH‖∞ ≤ nωd∆ =: η2.

For an introduction to Hilbert bases see, e.g. [Sch86, Section 16.4].

Let v1, v2, . . . , vl denote the vertices of Q. For each j = 1, . . . , l there exists a
vertex Vj of P such that WVj = vj . Assuming that F is non empty we can
conclude that for each j = 1, . . . , l there exist a Yj ∈ F such that

‖Vj − Yj‖∞ ≤ n∆

(see [Sch86, Theorem 17.3]). In words, there exists a feasible integral point
Yj close to each vertex Vj for j = 1, . . . , l. Then, with yi := WYi it follows
that

‖vi − yi‖∞ ≤ n2ω∆ =: η3.

For an illustration of the points in d-dimensional space see Figure 5.3.

We will proceed from here as follows. For suitable polynomials δ and γ, we
will consider the pre-image Z of an arbitrary point z ∈ Qγ ∩R, construct an
affine lattice Λ induced by the Hilbert basis representation of Y1−Z, . . . , Yl−Z
containing z, such that det(Λ) ≤ δ, and then prove that this lattice intersected
with Qγ is contained in R. This will then prove our theorem.

Let z ∈ Qγ ∩ R and Z ∈ F such that WZ = z. We first exhibit our
construction.



5.1. A PROOF OF THE MAIN THEOREM 97

For each index j ∈ {1, . . . , l} we consider the vector Yj − Z. Let us say that,
Yj − Z is contained in the orthant Oij , with ij ∈ {1, . . . , 2n}. In view of
[Seb90], we can express Yj −Z as the positive integer combination of at most
2n− 2 elements of the Hilbert basis Hij , i.e.

Yj − Z =

2n−2∑
k=1

λkjH
k
j ,

with λkj ∈ Z+ and Hk
j ∈ Hij . Note that all points in {Z+

∑2n−2
k=1 γkjH

k
j | γkj ∈

Z+, and γkj ≤ λkj } are feasible, i.e. they are a subset of F . This follows from

the fact that Hk
j ∈ {x ∈ Oij | Ax = 0} for every k = 1, . . . , 2n− 2.

Let
p := p((2n− 2)lη1, (2n− 2)l,η2)

be the polynomial defined in Lemma 5.1.1. Letting η4 := (2n− 2)l(p + 1)η1,
we define

λ̄kj := max{0, λkj − η4}

and

Ȳj := Z +

2n−2∑
k=1

λ̄kjH
k
j . (5.4)

Notice that ȳj := WȲj remains close to its corresponding vertex vj . That is

‖vj − ȳj‖∞ ≤ η3 + (2n− 2)η2η4 =: η5.

Choosing γ ≥ η5 we ensure that z is sufficiently far from each vertex vj so
that at least one λkj must be greater or equal than η4 for each j.

For simplicity, we assume that λ̄kj > 0 for all j and k. This can be assumed

without loss of generality, as if λkj = 0 we can simply modify Yj and consider

a representation of it with one Hilbert basis element less. Let hkj := WHk
j for

every j = 1, . . . , 2n− 2 and k = 1, . . . , l. We define the affine lattice

Λ = {x ∈ Zd | x = z +

l∑
j=1

2n−2∑
k=1

γkj h
k
j , γ

k
j ∈ Z(2n−2)×l}.

We can bound the determinant of Λ by any sub-lattice induced by d linearly
independent hij-s. Hence, by Hadarmad’s inequality and since ‖hkj ‖∞ ≤ η2,

it holds that det(Λ) ≤ δ := ηd2d
d/2. Next, we define the matrix

M := [h1
1, . . . , h

(2n−2)
1 , . . . , h1

l , . . . , h
(2n−2)
l ].
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It holds that ‖M‖max ≤ η2. In order to apply Lemma 5.1.1 let us first verify
Claim 1.

Claim 1. cone(M) = Rd.

Proof of Claim 1. Assume that cone(M) 6= Rd. Then there exists a u ∈ Rd

with ‖u‖2 = 1 defining a half-space {x ∈ Rd | uTx ≤ 0} such that cone(M) ⊂
{x ∈ Rd | uTx ≤ 0}. Since z ∈ Qγ it holds that z + B(γ) ⊂ Q. This implies
that there exists a vertex vi such that uTvi − uTz ≥ γ. On the one hand, it
holds that

γ ≤ uT(vi − yi + yi − z) ≤ η3 +

2n−2∑
k=1

λki u
Thki .

On the other hand, for each k = 1, . . . , 2n− 2 it holds that uThki ≤ ‖hki ‖∞ ≤
η2. It follows that for some j ∈ {1, . . . , 2n − 2} we have that uThji > 0 and

λji ≥ η4. By construction, this implies that hji is a column of M , contradicting
that cone(M) ⊂ {x ∈ Rd | uTx ≤ 0}.

It remains to show that R is δ-regular with respect to Qγ . We split the proof
into Claim 2 and 3. In Claim 2 we show that for every j = 1, . . . , l, all lattice
points sufficiently close to ȳj have a feasible pre-image.

Claim 2. For every γ ∈ Z(2n−2)l
+ with ‖γ‖∞ ≤ p + 1 it holds that ȳj + Mγ

has a feasible pre-image, i.e. it is not a hole.

Proof of Claim 2. We prove the claim by showing that Ȳj + (2n − 2)l(p +
1)Hk

i ∈ P for every i, j and k. This will then imply the slightly stronger
result, that

ȳj +Mγ

is feasible for any γ ∈ Z(2n−2)l
+ with ‖γ‖1 ≤ (2n− 2)l(p + 1).

In order do derive a contradiction, let us assume that the latter does not
hold for j = 1 and i = 2, i.e. that Y1 + (2n − 2)l(p + 1)H1

2 6∈ P . The
only constraints defining P that can be violated by this vector are the non-
negativity constraints, thus some component of this vector must be strictly
negative. Let us assume that the first component is negative. We have an
upper and a lower bound for this component, namely

−(2n− 2)l(p + 1)η1 ≤ (Y1 + (2n− 2)l(p + 1)H1
2 )1 < 0.
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Since Z + (2n − 2)l(p + 1)H1
2 is feasible, it must hold that (−Hk

1 )1 ≥ 0
for all k = 1, . . . , 2n − 2. In particular, there must be at least one index
k ∈ {1, . . . , 2n− 2} such that (−Hk

1 )1 ≥ 1. Hence,

0 ≤
(
Y1+(2n−2)l(p+1)H1

2−η4

2n−2∑
k=1

Hk
1

)
1

=
(
Ȳ1 + (2n− 2)l(p + 1)H1

2

)
1
< 0.

We obtained a contradiction.

We now use Claim 2 to show that all points in Λ ∩ Qγ have pre-images, i.e.
they are not holes.

Claim 3. Λ ∩Qγ ⊂ R.

Proof of Claim 3. Let z̄ ∈ Λ ∩Qγ . We prove that there exists a Z̄ ∈ P ∩ Zd

such that z̄ = WZ̄. Note that Qγ ⊂ conv(ȳ1, . . . , ȳl). By Caratheodory’s
theorem there exist i1, . . . , id ∈ {1, . . . , l}, such that z̄ ∈ conv(z, ȳi1 , . . . , ȳid).
Without loss of generality we may assume that i1 = 1, . . . , id = d. Let
α ∈ [0, 1] and αj ∈ R+ for j = 1, . . . , d, such that z̄ = αz+ (1−α)

∑d
j=1 αj ȳj

and
∑d
j=1 αj = 1. Hence, using (5.4), z̄ is the image under W of a, not

necessarily integral point

Z + (1− α)

d∑
j=1

αj

2n−2∑
k=1

λ̄kjH
k
j ,

which is included in P . We can approximate this point by

Ẑ = Z +

d∑
j=1

2n−2∑
k=1

d(1− α)αj λ̄
k
j eHk

j .

Clearly, ẑ = WẐ ∈ Λ. Let L :=
∑d
j=1

∑2n−2
k=1 (d(1−α)αj λ̄

k
j e−(1−α)αjλ

k
j )Hk

j .
Since Z + L ∈ P and Yj + L ∈ P holds for all j = 1, . . . , d (see Claim 2),

Ẑ must be feasible. From Claim 2 it follows again that ẑ + Mγ is feasible
for any γ ∈ Z2nl−2l

+ with ‖γ‖∞ ≤ p. It holds that ‖z̄ − ẑ‖∞ ≤ (2n − 2)lη1.
Finally, we can apply Lemma 5.1.1 to guarantee the existence of Z̄ ∈ F such
that z̄ = WZ̄.

This completes the proof of the theorem.
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Figure 5.3: An illustration of the notation in the proof of Theorem 5.0.7.

5.2 Applications to non-linear integer optimiza-
tion

We describe next a general algorithmic framework that allows us to apply The-
orem 5.0.7 to solve variable-dimension non-linear integer optimization prob-
lems. More precisely, we show a general purpose algorithm that solves Prob-
lem (5.1) with a number of oracle calls that is polynomial in the input size,
∆, n and ω. For brevity, we will henceforth say “in polynomial time” to imply
a running time of the latter type. We recall that the oracles available to our
algorithm are an optimization oracle and a fiber oracle (see Definition 5.0.2).
We stress that the dependence in d can be exponential. We assume in this
section that d is an arbitrary fixed constant. We later mention a number of
concrete examples of problem classes, for which, using polynomial-time im-
plementations of the oracles, our algorithm runs in polynomial time in the
encoding length of the input.

Our main goal in this section is to prove the following theorem.

Theorem 5.2.1. Let d be any fixed constant. There is an algorithm that
solves the non-linear optimization problem

opt {f(Wx) | Ax ≤ b, x ∈ Zn} ,

with input A ∈ Zm×n, W ∈ Zd×n, b ∈ Zm and f : Rd → R. The number of
oracle calls it performs (to the optimization and fiber oracles) is polynomial
in n, the maximum sub-determinant ∆ of A and the unary encoding length of
W .
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To simplify notation, we will henceforth restrict our attention to minimiza-
tion problems. We stress that Theorem 5.2.1 works also for maximization
problems.

Our algorithm works with an inequality description of the polyhedra Q and
Qγ . Since the input only provides implicit representations of these polyhedra,
we need the following lemma, which also states a useful connection between
the two descriptions.

Lemma 5.2.2. One can compute in polynomial time a matrix F ∈ Zq×d and
vectors g, g′ ∈ Zq such that Q = {x ∈ Rd | Fx ≤ g} and Qγ = {x ∈ Rd | Fx ≤
g′}, with ‖F‖max ≤ (nω∆)d−1(d− 1)(d−1)/2 and

|gi − g′i| ≤ γ‖Fi,?‖∞

for every i ∈ [q].

Proof. We start with some notation. Let v1 and v2 denote two adjacent
vertices of Q. Together they define the edge conv(v1, v2) of Q. In the following
we call a vector e an edge-direction of an edge conv(v1, v2), if e ∈ lin(v2− v1).

To prove the lemma, we exploit that each edge-direction of Q is the image
(under the linear mapping W ) of an edge-direction of P . An edge-direction
E of P , which corresponds to an edge-direction of Q, can be expressed as
the intersection of n − 1 linearly independent facets. Let us assume without
loss of generality that these are A1,?, . . . , An−1,?. Applying Cramer’s rule we
know that there exists a non-trivial solution E ∈ Zn such that Ai,?E = 0
for all i ∈ {1, . . . , n − 1} and ‖E‖∞ ≤ ∆. Let e := WE. It follows that,
‖e‖∞ ≤ nω∆.

A facet of Q is defined by d − 1 linear independent edge-directions, say
e1, . . . , ed−1. Then, a facet defining vector Fi,? is defined by a non-trivial
solution to eTi c = 0. Using Cramer’s rule and Hadarmad’s inequality we can
choose Fi,? ∈ Zd such that ‖FT

i,?‖∞ ≤ (nω∆)d−1(d− 1)(d−1)/2. It remains to
note that there is only a polynomial number of possible Fi,?. Hence, one can
compute F and g by brute force with linear programming [Sch86].

We can now find an inequality description of Qγ as follows. First, by nor-
malizing the inequalities defining Q, i.e., by setting F̄i,? = 1

‖Fi,?‖∞Fi,? and

ḡi = 1
‖Fi,?‖∞ gi, one easily verifies that

Qγ = {x ∈ Rd | F̄T
i,?x ≤ ḡi − γ ∀i ∈ [q]}.
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A description with integral coefficients is hence given by

Qγ = {x ∈ Rd | FT
i,?x ≤ gi − γ‖Fi,?‖∞ ∀i ∈ [q]},

so we can set g′i = gi−γ‖Fi,?‖∞ for all i ∈ [q]. The bound |gi−g′i| ≤ γ‖Fi,?‖∞
immediately follows.

As was discussed in the introduction, our algorithmic approach relies on a
decomposition of the problem into “sufficiently regular” sub-problems. Each
sub-problem corresponds to a projected feasible set R ∩ Λ ⊂ Zd containing
no holes, where R is a polyhedron and Λ is a lattice. Then, the optimization
oracle is invoked to obtain a point y∗ ∈ R ∩ Λ attaining

min {f(y) | y ∈ R ∩ Λ} ,

and a point x∗ ∈ F is computed with Wx∗ = y∗ using the fiber oracle. The
best solution across all sub-problems is then an optimal solution.

We distinguish between two types of sub-problems. The first type is concerned
with the polyhedron Qγ , i.e., such sub-problems optimize over the restricted
feasible region

F ′ := {x ∈ F |Wx ∈ Qγ} .
In the following lemma we prove, using Theorem 5.0.7, that the optimal point
in this region can be found efficiently.

Lemma 5.2.3. The problem

min {f(Wx) | x ∈ F ′}

can be solved with a polynomial number of calls to the optimization and fiber
oracles.

Proof. As guaranteed by Theorem 5.0.7, for every point x ∈ F ′ there is a
lattice Λx with determinant at most δ such that x ∈ Λx and Λx ∩ Qγ ⊂ R,
i.e., Λx∩Qγ contains no holes. Consider an optimal solution y∗ to the problem

min{f(y) | y ∈ Λx ∩Qγ},

obtainable by a single oracle call to the optimization oracle. Since Λx ∩ Qγ

contains no holes, one can obtain, using a call to the fiber oracle, a pre-
image x∗ ∈ F ′ of y∗. Furthermore, due to x ∈ Λx ∩ Qγ we also know that
f(x∗) ≤ f(x). Consequently, to minimize over F ′ it suffices to consider the
problem

min{f(y) | y ∈ Λ ∩Qγ},
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for every affine lattice Λ with determinant bounded by δ. Next, we bound
the number of such lattices.

An affine lattice can be represented by a basis B ⊂ Zd×d and a translation
vector t ∈ {Bλ | λ ∈ [0, 1)d} ∩ Zd as

Λ = {t+ v | ∃z ∈ Zd v = Bz}.

We can assume that B comprises the columns of a matrix in Hermite Normal
Form. The bound on the determinant of the lattice now translates to a bound
on the maximum absolute value of an entry in B. We can thus roughly

estimate the number of affine lattices by δd
2+ddd.

It follows that, by considering every bounded-determinant lattice, as described

before, one can obtain the best solution x ∈ F ′ with at most 2δd
2+ddd oracle

calls.

To treat the region F \ F ′ we use a recursive decomposition into lower-
dimensional problems. To control the number of such problems we use the
fact that all points y = Wx for points x ∈ F \F ′ fall close to the boundary of
Q. This fact is used in the following lemma to prove a bound on the number
of hyperplanes needed to cover all integer points in Q \Qγ .

Lemma 5.2.4. There is a polynomial time procedure that computes a set H
of hyperplanes parallel to the facets of Q, with the property that all integer
points in Q \Qγ lie on at least one hyperplane in H, i.e.,

(Q \Qγ) ∩ Zd ⊂
⋃
H∈H

H

In particular, H has polynomial size.

Proof. Lemma 5.2.2 asserts that Q and Qγ admit inequality descriptions Q =
{x ∈ Rd | Fx ≤ g} and

Qγ = {x ∈ Rd | FT
i,?x ≤ gi − γ‖Fi,?‖∞ ∀i ∈ [q]},

with ‖Fi,?‖ polynomially bounded for all i ∈ [q]. We can now use this de-
scription to cover all integer points in Q \ Qγ with a polynomial number of
hyperplanes parallel to the facets of Q. More precisely, for i ∈ [q] let Hi
denote the set of hyperplanes of the form

Hi(s) = {x ∈ Rd | FT
i,?x = s},
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where s ∈ {gi − γ‖Fi,?‖∞, gi − γ‖Fi,?‖∞ + 1, · · · , gi} ranges over all integer
right-hand sides between gi − γ‖Fi,?‖∞ and gi. Note that, by Lemma 5.2.2,
the number of such hyperplanes is indeed polynomially bounded. We can now
take the union over all facets of Q of the sets Hi, i.e.

H =
⋃
i∈[q]

Hi

to arrive at the desired set of hyperplanes. Since the number of facets of Q is
polynomially bounded, the lemma is proved.

We now have almost all ingredients for the proof of Theorem 5.2.1. The
following remark states that the constraint matrix of sub-problems arising by
restricting the feasible set to the pre-image of an arbitrary face of Q has a
determinant that is polynomially bounded.

Remark 5.2.5. Let I ⊂ Rd denote an i-face of Q. Let Fi1,?, . . . , Fid−i,? ∈ Zd

be the corresponding face defining facets, i.e. I = {x ∈ Q | FT
ij ,?

x = gij ∀j ∈
[d − i]}. Then W−1I, the pre-image of I under W , can be expressed as
{x ∈ Rn | Āx ≤ b̄} with

Ā := [AT, (Fi1,?W )T,−(Fi1,?W )T, . . . , (Fid−i,?W )T,−(Fid−i,?W )T]T

and
b̄ := [bT, gi1 ,−gi1 , . . . , gid−i ,−gid−i ]T.

In particular, note that the maximum absolute sub-determinant of Ā is poly-
nomially bounded.

We are now ready to prove Theorem 5.2.1.

Proof of Theorem 5.2.1. The algorithm starts by computing the inequality
descriptions of Q and Qγ , as in Lemma 5.2.2. Then, the algorithm proceeds
by solving the problem

min {f(Wx) | x ∈ F ′}

by invoking the procedure in Lemma 5.2.3. To treat the region F \ F ′, the
algorithm obtains first the polynomially-bounded set of hyperplanes H, using
the procedure in Lemma 5.2.4. For every hyperplane H ∈ H, the algorithm
recursively solves the (d− 1)-dimensional problem

min {f(Wx) | x ∈ F(H)} ,
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where F(H) := {x ∈ F | Wx ∈ H ∩Q}. Each such sub-problem admits the
same form as the original one. Additionally, Remark 5.2.5 implies that the
matrix corresponding to the inequality description of P ′ := {x ∈ Rd | Wx ∈
H∩Q} has determinant that is polynomially bounded, as well. See Figure 5.4
for an illustration of the algorithm.

Finally, since d is fixed, so is the depth of the recursion, implying that the
algorithm performs, in total, a polynomial number of oracle calls, and addi-
tional polynomial work.

Theorem 5.2.1 achieves our main algorithmic goal, namely a general-purpose
efficient reduction from non-linear integer programming to linear integer pro-
gramming. The linear integer programs that arise corresponds to the fiber
problem, implying that their feasible set is defined from the matrices given
in the input data. This property is desirable, since our algorithm does not
require solving linear integer programs with a feasible set, whose structure
dramatically differs from that of the original non-linear problem. Conse-
quently, our reduction makes it possible to solve a large class of non-linear
integer problems using well-known techniques for linear integer programming,
such as cutting planes methods etc.

We conclude the chapter by mentioning some concrete class of problems solved
by our algorithm. Unless stated otherwise, no polynomial time algorithms
were known for these problems. To arrive at the desired polynomial algo-
rithms we need to present polynomial implementations of the optimization
and fiber oracles. Let us first list a number classes of non-linear functions for
which the optimization oracle can be implemented in polynomial time. We
stress that the latter results hold in fixed dimension, i.e., whenever d is an
arbitrary, but fixed constant. In all cases the feasible set comprises an ar-
bitrary intersection of a polyhedron and an affine lattice, whose descriptions
are provided in the input, and the functions are presented with evaluation
oracles.

• Minimization of convex functions. Grötschel, Lovász and Schri-
jer [GLS88] presented an algorithm for the minimization of a convex
function.

• Minimization of bounded degree polynomials. Del Pia and Weis-
mantel [DPW14] presented an algorithm for minimizing arbitrary degree-
two polynomials with integer coefficients in the plane. This result
was recently extended by Del Pia, Hildebrand, Weismantel and Zem-
mer [DPHWZ14] to cubic polynomials in two variables, in the case of a
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Figure 5.4: An illustration of the algorithm.

bounded polyhedron. With the same restriction on the feasible set, the
authors also present a polynomial algorithm for minimizing a homoge-
neous polynomial with two variables and an arbitrary fixed degree.

• Approximate maximization of non-negative polynomials. De
Loera, Hemmecke, Köppe and Weismantel [DLHKW06] showed that
a polynomial in fixed dimension can be approximately maximized in
polynomial time over the integer points in a polyherdon, provided that
the polynomial is non-negative over the polyhedron. Concretely, the
authors show a fully polynomial-time approximation scheme (FPTAS)
for the problem.

We stress that the latter list gives a few prominent examples of classes for
which the optimization oracle can be implemented efficiently, but it is far
from being a complete list. We remark that in order to obtain an approximate
solution to Problem (5.1) it suffices to employ an approximate implementation
of the optimization oracle.

We turn to implementations of the fiber oracle. Recall that the fiber oracle is
required to provide a point in {x ∈ Zn : Ax ≤ b, Wx = y} for an arbitrary
y ∈ Zd, if one exists, or correctly report that the latter set is empty.

• A Constant number of constraints. Eisenbrand, Vempala and
Weismantel [EVW14] recently showed that an integer program with a
fixed number of rows can be solved in time polynomial in the dimension
and the maximum sub-determinant of the constraint matrix, and inde-
pendent of the right-hand side. This result implies that when

(
W
A

)
has
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a constant number of rows, and the entries in this matrix are polynomi-
ally bounded in the input length, the fiber oracle can be implemented
in polynomial time.

• N-fold systems. It is well-known that if A is an N -fold matrix then
the matrix

(
W
A

)
can be transformed to an equivalent N -fold matrix,

provided that all entries in W form a set K ⊂ Z of fixed size. As was
shown by De Loera, Hemmecke, Köppe and Weismantel [DLHOW08],
integer programs with an N -fold constraint matrix admit polynomial-
time algorithms.

We note that there are several other interesting classes of matrices that admit
polynomial algorithms. One obvious example is when

(
W
A

)
is totally unimod-

ular. In such cases, however, one has R = Q ∩ Zd, so the Problem (5.1) can
in these cases be solved with two oracle calls (see Remark 5.0.3).
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ETH Zürich

2008-2010 Student Research Assistant
Otto-von-Guericke Universität, Magdeburg

Academic Visists

2008 Internship
Zuse-Institut, Berlin


