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Abstract We present 3D ActionSLAM, a stand-alone

wearable system that can track people in previously

unknown multi-floor environments with sub-room accu-

racy. ActionSLAM stands for action-based simultaneous

localization and mapping: It fuses dead reckoning data

from a foot-mounted inertial measurement unit with the

recognition of location-related actions to build and update a

local landmark map. Simultaneously, this map compen-

sates for position drift errors that accumulate in open-loop

tracking by means of a particle filter. To evaluate the

system performance, we analyzed 23 tracks with a total

walked distance of 6,489 m in buildings with up to three

floors. The algorithm robustly (93 % of runs converged)

mapped the areas with a mean landmark positioning error

of 0.59 m. As ActionSLAM is fully stand-alone and not

dependent on external infrastructure, it is well suited for

patient tracking in remote health care applications. The

algorithm is computationally light-weight and runs in real-

time on a Samsung Galaxy S4, enabling immediate loca-

tion-aware feedback. Finally, we propose visualization

techniques to facilitate the interpretation of tracking data

acquired with 3D ActionSLAM.

Keywords Simultaneous localization and mapping �
Indoor tracking � Pedestrian dead reckoning � Location-

aware computing � Wearable systems

1 Introduction

The success of accurate outdoor localization through the

Global Positioning System (GPS) suggests that location is

an important source of information for and about people.

Example applications include navigation, sports monitor-

ing and location-based services. However, adults spend

about 90 % of their time outside of the reach of GPS, i.e.,

inside buildings [29]. A survey in Germany [7] reports that

for most of this time, people are at their private home (in

average 15:7� 4:4 h per day). Indoors, walls block the

GPS signals and alternative technologies such as GSM-

based positioning do not provide sub-room accuracy as

required by many applications.

In contrast to outdoor positioning, there are many

competing, application- and environment-specific technol-

ogies available for indoor localization [25]. This includes

Wifi fingerprinting (e.g., Google Indoor Maps1 or NAO

CLOUD
2) for navigation in large public buildings, and

multilateration-based high-accuracy tracking (e.g., CRICKET

[41]). The existing systems differ in complexity, accuracy,

installation and maintenance effort, and robustness.

In this work, we aim at facilitating localization in home

environments and thereby extend person tracking to the

space in which people spend most of their time. At-home

position traces contain information about a person’s daily

routines and his or her current state with respect to these

routines. This is for example of use in smart homes, which

optimize lighting and heating schedules based on the

location behavior of the inhabitants [47]. In remote health

care, at-home tracking systems indicate long-term changes

in a user’s activity patterns (see e.g., [10]), or they may
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assist patients in hazardous areas such as zones of frequent

falling [49]. A related example is location-induced rhyth-

mic auditory stimulation (RAS) for Parkinson’s disease

patients [33]. RAS was shown to help patients when they

move through areas in which they often experience walk-

ing difficulties, e.g., narrow corridors and doorways. When

used by multiple inhabitants of the same home, a location

tracker does not just reveal information about each indi-

vidual’s daily life routines, but also about their personal

interactions and the social dynamics in the house [12].

Localization technologies for deployment in private

settings should fulfill environment-specific requirements:

Usually, people with little technical expertise install and

maintain these systems, and only few people make use of a

single deployed infrastructure. As a result, the one-off cost

as well as the maintenance effort should be much smaller

compared to indoor positioning systems for public envi-

ronments, where building managers are in charge and up to

thousands of people may benefit from a single installation.

Furthermore, accuracy constraints in monitoring and rela-

ted applications are higher (within-room accuracy) com-

pared to navigation and friend-finder tools as for example

supported by Google Indoor Maps [13].

ActionSLAM is a fully stand-alone, wearable locali-

zation system that we first introduced in [23]. The system

fulfills the low deployment effort and high-accuracy

requirements for at-home tracking and thereby fills an

important gap toward ubiquitous all-day tracking. In this

paper, we expand upon our previous work by presenting a

3D version of the algorithm, introducing an improved

motion model, and providing systematic evaluations of

the system’s performance and boundary operating condi-

tions. 3D ActionSLAM infers position from a single foot-

mounted IMU and a hip-worn smartphone that acts as

both, sensor and computing platform. This setup recog-

nizes stair climbing, standing and sitting as observations

of landmarks that form a simultaneously built multi-floor

map. 3D ActionSLAM does not require any installation

and maintenance effort, and can therefore easily be

deployed to users without technical expertise. Neverthe-

less, it achieves within-room positioning accuracy. Our

android implementation of the algorithm [22] can fur-

thermore track a person in real-time on a Samsung Gal-

axy S4, enabling location-aware audio and visual

feedback through a fully wearable system. The here pre-

sented version of 3D ActionSLAM supersedes all previ-

ous iterations of the algorithm described in [22, 23] and

[24].

In addition, we present visualization techniques for 3D

ActionSLAM tracks that facilitate the interpretation of a

person’s location behavior over time. In particular, we

show how the paths of multiple users can be translated into

narrative charts that describe the interpersonal location

behavior, giving an insight into the social dynamics

between home inhabitants.

Overall, our work supports the claim that 3D Action-

SLAM is a robust and easy-to-use system for both, real-

time location-awareness, and to post-analyze the walks of

people in single- and multi-floor homes.

2 State of the art

2.1 Person tracking technologies

Person tracking is the problem of estimating the position x̂

of a person whose actual position is x, from data of one or

multiple sensor modalities. A key characteristic of tracking

systems is the absolute accuracy, defined as the Euclidean

distance dxðtÞ ¼ kxðtÞ � x̂ðtÞk2. The mean tracking accu-

racy �dx is the average distance dxðtÞ over the full track of

the person. Further characteristics of a tracking system are

the deployment effort, robustness, the obtrusiveness of the

setup, privacy intrusion level, power requirements, and

whether the system makes use of dedicated and/or anyway

available infrastructure in the environment (see the surveys

in [25] and [31]). Subsequently, we discuss the most rel-

evant technologies with respect to the problem of tracking

people in home environments.

Multilateration systems locate a person from the arrival

times of signals from multiple synchronized sources (e.g.,

GPS satellites). For indoor applications, the so-called

pseudolites (e.g., LOCATA
3) deployed in the environment

can emit signals that penetrate walls. Alternative imple-

mentations use a network of ultrasound or Ultra-WideBand

(UWB) emitters (e.g., UBISENSE
4) to ensure line-of-sight

contact to the receiver at any time. If properly calibrated,

indoor multilateration systems are very accurate

(�dx\0:1 m), but they are sensitive to changes in the envi-

ronment, and expensive to deploy and maintain [31]. On

the other hand, fingerprinting approaches make use of

already available signal sources in the environment such as

Wifi, sound, and ambient light and position the user by

comparing current measurements to a pre-recorded fin-

gerprint map of the surroundings. Typically, fingerprinting

is inaccurate (�dx [ 3 m), and it requires the recording and

regular updating of prior fingerprint maps [14].

Two further approach families are independent of

infrastructure and a-priori knowledge about the environ-

ment: Pedestrian Dead Reckoning (PDR) and Simultaneous

Localization And Mapping (SLAM) (which typically

complements PDR). Both approaches exploit body-worn

sensors only to localize a person and are therefore fully

3 http://www.locata.com.
4 http://ubisense.net.
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wearable. While PDR only uses body-mounted motion

sensors, SLAM typically fuses multiple modalities such as

motion sensors, cameras, lasers, and Radio-Frequency (RF)

signals. SLAM implementations that fuse motion mea-

surements with cameras or lasers achieve high accuracy

(e.g., �dx\0:2 m in [8]). However, vision-based modalities

are less desirable in mobile and ubiquitous computing as

they may be considered as privacy-invading (with the

camera capturing others or the user itself), have higher

power consumption (e.g., active laser source), and are

obtrusive (need of occlusion-free on-body placement) [13].

Motion sensors on the other side can be placed below

clothing or inside shoes [37], they are small and light-

weight, and they record motion information at a compar-

atively low data bandwidth, allowing for real-time

processing on lower-power embedded systems.

The decision flow chart in Fig. 1 depicts how the

problem of tracking people at their home relates to other

indoor tracking scenarios. Given that we should avoid prior

deployment effort in this scenario, require sub-room

accuracy, and prefer an unobtrusive system, PDR and

motion-sensor-based SLAM are the most promising

approaches. We discuss both technologies in the remainder

of this section.

2.2 Pedestrian dead reckoning

PDR systems estimate the pose ŝt of a user at time t through

integration of the measurements of one or multiple body-

worn motion sensors. The pose st is made up of the per-

son’s floor coordinates and altitude xt ¼ fxt; yt; htg, and his

heading /t. Steps ut link two subsequent poses st�1 and st,

i.e., st ¼ f ðst�1; utÞ. PDR systems therefore perform open-

loop integration, and sensor noise accumulates in the pose

estimate ŝt. As a result, dx increases with time and PDR is

only suited for short-term tracking. Accuracy in PDR is

therefore reported as relative to the travelled distance.

There are two common PDR approaches:

– Step-and-Heading (SH-) PDR systems either rely on

hip- or belt-mounted IMUs [50], or they do not make

any assumption regarding the on-body location of the

sensor [5, 43]. SH-PDR combines step detection rules,

step length heuristics and heading estimators to derive

the user’s trajectory ŝt ¼ fŝ0; . . .; ŝtg. For regular,

straight gait, the error accumulation for SH-PDR may

be less than 2 % of the distance travelled [27]. In

recordings with more complex foot motions such as

jumps and walking in place, SH-PDR, however, fails.

– Zero-velocity UPdaTe (ZUPT-) PDR on the other side

integrates the raw acceleration and rotation velocity

data of a foot-mounted IMU, and corrects the velocity

whenever the foot is on the ground and therefore not

moving to v � 0 m
s2. Outside and in wooden buildings,

where magnetometers provide in addition reliable

information about the sensor’s heading /t, the position

drift can be as low as 0.3 % of the distance travelled

[20]. In particular, in steel-framed constructions, the

magnetic field close to the ground is strongly disturbed

and can only be used as local reference [46]. ZUPT-

PDR without magnetometer correction achieves a

tracking accuracy of 0.6–1.2 % of the distance trav-

elled [27]. Fusion of IMUs attached to both feet [40]

and zero angular rate updates (ZARUs) [27] further

decrease the error accumulation. To perform frequent

zero-velocity updates, ZUPT-PDR requires that the feet

are on the ground and not moving at regular intervals.

Aside from that, ZUPT-PDR is independent of the

user’s motions and therefore better suited for real-world

deployment than SH-PDR.

The accumulation of position errors in PDR may be alle-

viated by restoring the position when the person passes a

pre-placed RFID beacon [28], or by constraining the path

estimate to correspond with the building layout [51].

However, these assisted PDR solutions require the

deployment of infrastructure and/or the availability of prior

maps.

Fig. 1 This (simplified) decision flow chart depicts the choice of

technology for long-term indoor tracking of humans. Unassisted PDR

works only for short tracks and is therefore omitted in this chart
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2.3 Simultaneous localization and mapping

If no a-priori information is available, additional observa-

tions from the same and/or complementary body-worn

sensors must be fused to compensate for PDR drift errors.

SLAM is a family of techniques in which one set of sensors

estimates the user trajectory st (e.g., through PDR), while

another set of sensors recognizes landmarks h½i� in the

environment. By adding these landmarks to a map H, future

observations of the same landmarks will compensate for

errors in the user trajectory. SLAM was originally intro-

duced in robotics for navigation of autonomous, camera- and

laser-equipped agents in unknown environments [8]. How-

ever, some specific landmark categories can also be recog-

nized from a person’s motions, and therefore from the same

body-worn IMUs as used to estimate the trajectory. The

following motion landmark categories have been investi-

gated: wall-constrained walking patterns (turns in corners

[38], corridors [2]) and location-related actions such as door

opening and sitting [21, 23]. Unlike in PDR, the position

error dx in SLAM does not increase with walking distance,

and it is therefore usually reported as average �dx over time.

Mathematically, SLAM is the problem of estimating the

pose st within a previously unknown map H, given step

measurements ût ¼ fû0; . . .; ûtg, environment observation

ẑt ¼ fẑ0; . . .; ẑtg and data associations n̂t ¼ fn̂0; . . .; n̂tg
[11]. Each data association n̂t associates an observation ẑt to

a landmark h½i�¼n̂t
in the map H. In a probabilistic sense,

SLAM approximates the probability distribution

pðst;Hjût; ẑt; n̂tÞ and derives maximum likelihood estimates

for the pose st and the map H. Most SLAM implementations

calculate pðst;Hjût; ẑt; n̂tÞ in an iterative process: In the

motion update, they estimate st given the prior pose st�1 and

the latest motion reading according to pðstjst�1; ûtÞ. Then,

the observation update fuses the environment observations

with the trajectory to update the map H. This two-step

process can be implemented by means of an Extended

Kalman Filter (EKF) [8]. In some cases, however, nonlinear

filtering methods such as particle filters perform better [35].

Table 1 lists SLAM implementations that were applied in

pedestrian tracking. The systems differ in the algorithm for

estimating the user trajectory, the type of environment

observation, and the applied SLAM algorithm. SLAM

represents maps either as a set of landmarks h½i� or by means

of an occupancy grid (see e.g., [2]). All the systems listed in

Table 1 except for [39] aim at voluntary mapping of larger

buildings, for example to acquire radio fingerprint maps

with low effort. Users in these applications walk with the

goal of mapping, and they behave accordingly. To the best

of our knowledge, the only work that aims at performing

pedestrian SLAM from natural human behavior is Action-

SLAM, as first proposed in [23] and extended in the next

section. ActionSLAM applies an alternative type of land-

mark observations to SLAM, i.e., the recognition of loca-

tion-specific actions. These actions are frequent in a

person’s daily life and thus enable robust and accurate

SLAM execution. A further limitation to the studies in

Table 1 is that they only present one or few test walks and

lack a detailed evaluation. We here demonstrate the capa-

bilities of 3D ActionSLAM in 23 recordings, 17 of them

performed under real-life conditions.

3 The 3D ActionSLAM algorithm

3.1 Overview and definitions

In this section, we present an updated version of the Ac-

tionSLAM algorithm from [23], with a novel motion model

and the modifications added to allow for 3D mapping.

Figure 2 depicts the overall framework of 3D Action-

SLAM, with its two main blocks: The pre-processing

phase, and the SLAM update phase. In pre-processing, 3D

ActionSLAM derives a step estimate û and recognizes

location-related actions Â from body-worn inertial sensors.

A Rao-Blackwellized particle filter then fuses these mea-

surements as proposed in [35].

3D ActionSLAM segments paths into stance phases t

with poses st ¼ fxt; yt; ht;/tg, and steps ut that connect

st�1 and st. In this notation, fxt; yt; htg denotes the 3D

position of the user at time t, and /t the foot’s heading. The

outputs of 3D ActionSLAM are a path �st ¼ f�s0; . . .; �stg
composed of poses �st ¼ f�xt; �yt; �ht; �/tg, and a map �Ht made

up of Nl;t landmarks �ht;½i�. ½i� 2 f1. . .Nl;tg is the index of the

landmark, and Nl;t the number of landmarks in the map.

3.2 Pre-processing

3.2.1 User trajectory

The first output of pre-processing is the open-loop estimate

ŝt of the person’s trajectory, made up of steps ût. We use

ZUPT-PDR for estimation of 3D foot coordinates. Our

implementation follows the guidelines in [18] and is sim-

ilar to the open-source code of the OPENSHOE project.5 The

stance detection of ZUPT-PDR segments the walking path

into steps ût described by horizontal step length l̂t, altitude

change d̂ht and heading change d/̂t ¼ /̂t � /̂t�1 (see

Fig. 4). Preliminary recordings showed that a major error

contribution in real-life scenarios is heading drift during

long phases without movement, mainly as a consequence

of gyroscope random walk noise. Figure 3 depicts the

5 www.openshoe.org.
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introduced, slow drift in heading for standard ZUPT-PDR

while a person is sitting. As described in [24], we correct

for this drift by constraining the heading changes that

ZUPT-PDR predicts to be similar to those measured with a

magnetometer. This uses the fact that the earth magnetic

field is locally constant with time, even in steel-framed

buildings [45].

3.2.2 Action recognition

Previous work [23, 24] indicated that for ActionSLAM

execution in at-home tracking, the identification of the two

basic actions sitting and standing still is sufficient. These

actions are often related to a location: Sitting can only take

place on chairs and sofas, and standing still most frequently

occurs in front of sinks, drawers, windows, etc. Both

actions can be recognized from motion sensors attached to

the hip and one foot.

For 3D tracking in multi-floor buildings, two further

location-related actions may be recognized with the same

sensor setup: the reaching of the lower end of a stair (stair

low), and the reaching of the upper end of a stair (stair high).

To detect these actions, the recognition algorithm calculates

the variance varðhðtÞÞ of the ZUPT-PDR altitude output hðtÞ
in a sliding window of length DT . If varðhðtÞÞ stays for at

least s0 above a threshold h0, the phase is identified as a stair

ascent or descent.6 Thanks to this requirement, jumps and

similar short vertical motions are not misinterpreted as

stairs. The beginning and end of a stair ascent or descent

phase are then observations of stair high and stair low.

As final output, the action recognition block of 3D

ActionSLAM (see Fig. 2) provides observations Ât �
fsitting, standing still, stair high, stair lowg associated to

stance phases t.

3.3 3D ActionSLAM update

3.3.1 Particle filter

In contrast to the standard SLAM problem of estimating

pðst;Hjût; ẑt; n̂tÞ (see Sect. 2.3), the landmarks of 3D

Table 1 Body-worn SLAM systems proposed for human tracking

System Trajectory Observation Algorithmic framework Evaluation and applications

Pradeep et al. [39] Stereo vision Visual object recognition FastSLAM (particle filter)

with object landmarks

High-accuracy tracking, large

computational, and storage

requirements

Ferris et al. [17] Probabilistic

motion model

(no sensor)

Wifi fingerprint landmarks Gaussian process latent

variable model

Mean error of 4 m in simple

walking scenarios

Shin et al.:

SMARTSLAM [48]

SH-PDR from

smartphone in

pocket

Wifi fingerprint landmarks FastSLAM with Wifi

landmarks

Mean error of 3 m in simple

walking scenarios

Faragher et al.:

OPPORTUNISTIC RADIO

SLAM [15]

SH-PDR from hip-

mounted IMU

Radio (Wifi, GSM, etc.)

fingerprints

DPSLAM (particle filter) Position error of 4 m after 15

min of walking in office

buildings

Mirowski et al.:

SIGNALSLAM [34]

SH-PDR from

smartphone

Signal (Wifi, BT, LTE, and

magnetic field) fingerprints

GraphSLAM (posterior

optimization) with signal

landmarks

Median difference between

tracks in same office building

less than 5 m

Robertson et al.:

MAGSLAM [45]

ZUPT-PDR Magnetic Field Strengths in

combination with

FootSLAM

FastSLAM with hexagonal

occupancy grid

Mean error of � 15 cm after 17

min mapping walk with 12

repetitions in residential flat,

similar in other scenarios

Park et al. [38] SH-PDR from

smartphone in

pocket

Corner landmarks (recognized

from path)

FastSLAM Correct maps of simple floor

plans

Angermann et al.:

FOOTSLAM [2]

ZUPT-PDR Floors (recognized from path) FastSLAM with hexagonal

occupancy grid

Mean error of 2m for mapping

of office buildings

Robertson et al.:

PLACESLAM [44]

ZUPT-PDR User labels at revisited places

in combination with

FootSLAM

FastSLAM with hexagonal

occupancy grid

Similar performance as

FootSLAM, but at reduced

computational costs

Grzonka et al. [21] Xsens motion suit

post-processing

Stairs and doors as recognized

from motion suit data

Scan-matching with multi-

hypothesis tracking

Voluntary mapping of large

buildings

6 We used a sliding window length DT ¼ 2 s, given that this time

span should always cover a full step, and experimentally chose s0 ¼
4 s and h0 ¼ 0:05 m.
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ActionSLAM are not uniquely identifiable with n̂t, but only

their action type Ât. Furthermore, the estimated position of

a landmark observed at time t is always equal to the per-

son’s position at the same time. Therefore, ẑt can be

derived from st and H alone, which reduces the SLAM

problem to approximating pðst;Htjût; ÂtÞ. For fusion of

motion and observation measurements, 3D ActionSLAM

uses the Rao-Blackwell factorization proposed in [35]:

p st;Htjût; Ât
� �

¼ p stjûtð Þ
YNl;t

½i�¼1

p h½i�;tjst; Ât
� �

ð1Þ

This factorization decomposes the SLAM problem of

estimating a path st in a previously unknown environment

Ht into separate estimators for the person’s path st and each

of the Nl;t landmarks h½i�;t. 3D ActionSLAM estimates the

path probability p stjûtð Þ in a particle filter with Np particles,

thus being capable of approximating non-Gaussian distri-

butions and performing nonlinear filtering. Meanwhile, Nl;t

individual filters estimate the landmark probability distri-

butions pðh½i�;tjst; ÂtÞ. As the landmark characteristics h½i�;t
are conditioned on the person’s path, each particle ½m� must

maintain its own map H½m�, together with the pose s
½m�
t .

3D ActionSLAM estimates s
½m�
t in the motion update,

while the updating of the map H½m� is done in the obser-

vation update and only in response to action observations.

Algorithm 1 outlines the main functions of the 3D Ac-

tionSLAM updating.

Fig. 2 The 3D ActionSLAM system takes measurements from body-worn motion sensors and processes them to a map H made up of landmarks

h½i�, and a path st within this map (according to [24])

Fig. 3 This plot shows the heading estimation /t of ZUPT-PDR with

and without magnetometer correction for a recording with long no-

movement phases (marked), interrupted by two short walks. For

ZUPT-PDR without magnetic field correction, we estimate a slow

heading drift at times when the user did actually not move his foot

128 Pers Ubiquit Comput (2015) 19:123–141
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3.3.2 Motion update

At each beginning of a stance phase t, 3D ActionSLAM

performs a motion update and sequentially calculates

pðstjûtÞ through sampling of particle poses from:

s
½m�
t � p s

½m�
t js

½m�
t�1; ût

� �
ð2Þ

The motion model describes the probability density func-

tion pðs½m�t js½m�t�1; ûtÞ. In previous work, we used a Gaussian

error model for describing errors in step length and heading

estimation [23]. This model did not account for the expo-

nential error growth in long phases without stance detec-

tions. We now define Tt as the time that passes between the

two subsequent stance phases t � 1 and t. According to

[52], the position error introduced by a perfectly calibrated

accelerometer in this phase follows a second-order random

walk with standard deviation rx;accðTtÞ ¼ kx;acc � T
3
2
t , where

kx;acc is a characteristic of the accelerometer. The heading

error introduced by an unbiased, calibrated gyroscope

follows a random walk with r/;gyroðTtÞ ¼ k/;gyro �
ffiffiffiffi
Tt

p
,

with k/;gyro being a gyroscope property. Assuming constant

forward velocity during the foot swing, the gyroscope adds

furthermore a random walk position error with rx;gyroðTtÞ
� kx;gyro � T

3
2
t . In [52], the author shows with simulations

and measurements that gyroscope errors are predominant

for Tt [ 0:3 s, therefore we omitted rx;accðTtÞ in the 3D

ActionSLAM motion model.

In addition to sensor errors, inaccuracies in stance

detection affect the ZUPT-PDR position and heading

estimates. We modeled these errors as additive Gaussian

noise with standard deviations rx;0 for position and r/;0 for

heading, both independent of Tt. The new pose s
½m�
t of a

particle after a step ut equals the sum of the previous pose

s
½m�
t�1, the ZUPT-PDR estimate ût, and a sampled error q½m�.

Figure 4 depicts the variable definitions in two dimensions.

The resulting motion equations are:

q½m�/ �N 0; r/;0 þ k/;gyro �
ffiffiffiffi
Tt

p� �
ð3Þ

q½m�x �N 0; rx;0 þ kx;gyro � T
3
2
t

� �
ð4Þ

q½m�y �N 0; rx;0 þ kx;gyro � T
3
2
t

� �
ð5Þ

q½m�h �N 0; rh;0 þ kh;gyro � T
3
2
t

� �
ð6Þ

/½m�t ¼ /½m�t�1 þ ^d/t þ q½m�/ ð7Þ

x
½m�
t ¼ x

½m�
t�1 þ l̂ cos /½m�t þ q½m�x

ð8Þ

y
½m�
t ¼ y

½m�
t�1 þ l̂ sin /½m�t þ q½m�y

ð9Þ

h
½m�
t ¼ h

½m�
t�1 þ d̂hþ q½m�h

ð10Þ

3.3.3 Observation update

For non-empty Ât, 3D ActionSLAM performs observation

updates after the motion update associated to stance phase

t. If more than one action occurs during a single stance

phase (e.g., stairs high and standing still), the action rec-

ognition triggers multiple subsequent observation updates.

The observation update itself did not change compared to

the previous ActionSLAM version in [24], except that we

now assign an additional coordinate h for vertical dis-

placement to landmarks.

During the observation update, 3D ActionSLAM mod-

ifies the maps H½m�t�1 of each particle given its current pose

s
½m�
t and the observation Ât. First, the algorithm decides

whether the observation corresponds to a landmark that is

already in the map, and if yes, to which of these landmarks.

It then either adds a new landmark h½m�Nl;t ;t
with Nl;t ¼ Nl;t�1

þ1, or modifies the associated h½m�½i�;t. Figure 5 illustrates the

decision procedure. Landmarks in 3D ActionSLAM have a

planar elliptic shape, which accounts for the fact that dif-

ferent foot placements in a plane can correspond to the

same location-related action. Consider for example sitting:

The foot may move in an area of � 0.5 m diameter without

a change in upper-body posture. The parameters we use in

3D ActionSLAM to describe a landmark are therefore the

centroid location fx½i�;t; y½i�;tg, the ellipse shape parameters

fa½i�;t; b½i�;t; a½i�;tg, and the altitude of the landmark h½i�;t. In

addition, each landmark has an associated action type A½i� 2
fsitting, standing still, stair high, stair lowg that remains

fix.

Fig. 4 Definitions of step measurements for particle ½m�. ût is the

ZUPT-PDR estimate of the step ut; ŝ
½m�
t the particle’s new position

before adding the motion model noise q̂½m�t , and s
½m�
t the final position

of particle ½m� after the motion update
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For better readability, we leave away the particle index

½m� from now on. First, 3D ActionSLAM calculates the

probability for associating the current observation to each

of the previously inserted landmarks in the particle’s map.

If Ât 6¼ A½i�, the probability of association p½i�;t equals 0. In

all other cases, the difference vector ẑ½i� between the current

location of the foot and the landmark’s shape is calculated,

using the formulas for ellipse intersection (with q½i� as

intersection angle):

q½i� ¼ atan
a½i�;t�1

b½i�;t�1

�
xt � x½i�;t
yt � y½i�;t

� �
ð11Þ

~xe ¼ a½i�;t�1 cosðq½i�;tÞ cosða½i�;t�1Þ ð12Þ

� b½i�;t�1 sinðq½i�Þ sinða½i�;t�1Þ ð13Þ

~ye ¼ a½i�;t�1 cosðq½i�;tÞ sinða½i�;t�1Þ ð14Þ

þ b½i�;t�1 sinðq½i�Þ cosða½i�;t�1Þ ð15Þ

ẑ½i� ¼
maxð0; x½i�;t�1 � ~xeÞ
maxð0; y½i�;t�1 � ~yeÞ

h½i�;t�1 � ht

0

B@

1

CA ð16Þ

The probability p½i� for associating the action observation Ât

to the landmark h½i�;t�1 is then:

p½i� ¼

0; if Ât 6¼ A½i�; ½i� 	Nl;t�1

g � j2pQ½i�j�
1
2 exp � 1

2
ẑT
½i�Q
�1
½i� ẑ½i�

� �
; if Ât ¼ A½i�; ½i� 	Nl;t�1

g � p0; if ½i� ¼ Nl;t�1 þ 1

8
>>><

>>>:

ð17Þ

g is a normalization factor so that the sum of all p½i� with

½i� ¼ 1. . .Nl;t�1 þ 1 is 1. The observation covariance matrix

Q½i� is the sum of the landmark position covariance R½i�;t�1,

and the measurement covariance Rt.

Q½i� ¼ R½i�;t�1 þ Rt with Rt ¼
r2

0 0 0

0 r2
0 0

0 0 rh

0

B@

1

CA ð18Þ

Given the probabilities p½i�, 3D ActionSLAM samples the

data association decision n̂ 2 f1; . . .;Nl;t�1 þ 1g. If the

outcome is n̂ ¼ Nl;t�1 þ 1, 3D ActionSLAM adds a new

landmark with the following characteristics to the map

Ht�1 of the particle:

xn̂;t ¼ xt; yn̂;t ¼ yt; hn̂;t ¼ ht ð19Þ

an̂;t ¼ bn̂;t ¼ r1; an̂;t ¼ 0o ð20Þ

An̂ ¼ Ât ð21Þ

Rn̂;t ¼ Rt ð22Þ

If, however, n̂	Nl;t�1, 3D ActionSLAM updates the asso-

ciated landmark’s position in a Kalman filter with gain K:

K ¼ Rn̂;t�1Q�1
n̂ ð23Þ

The new position of the landmark hn̂;t and the updated

position covariance Rn̂;t are:

xn̂;t

yn̂;t

hn̂;t

0

B@

1

CA ¼
xn̂;t�1

yn̂;t�1

hn̂;t�1

0

B@

1

CA� KẑT
n̂ ð24Þ

Rn̂;t ¼ ðI � KÞRn̂;t�1 ð25Þ

If the center of the landmark hn̂;t is within the ellipse shape

of another landmark h½j� of identical action type after this

step, the two ellipses are combined to a single ellipse

landmark h0n̂;t. 3D ActionSLAM fits an ellipse around all

observation locations of the landmarks h½j� and hn̂;t, with the

semi-major axis lengths constrained to be 	 0.8 m.

(a)

(b)

(c)

(d)

Fig. 5 At time t, an action of type A1 is recognized. Part (a) depicts

the state of particle ½m� before the observation update (map H½m�t�1, pose

s
½m�
t ). In the data association step, 3D ActionSLAM calculates the

probability of each association n̂ based on the distances to the ellipse-

shaped landmark in H½m�t�1. As the action type of h½2� is not A1, the

association probability for n̂ ¼ 2 is p2 ¼ 0. Part (b) shows the

consequence of choosing n̂ ¼ 1 (update position of h½1�, indicated by

arrow), (c) for n̂ ¼ 3 (update h½3�), and (d) for n̂ ¼ 4 (insertion of a

new landmark h½4� at the current particle position)
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3D ActionSLAM executes the observation update for

each particle individually and in the end calculates the new

weights w
½m�
t according to Montemerlo et al. [35]:

w
½m�
t ¼ w

½m�
t�1 � p

½m�
n̂

ð26Þ

3.4 Resampling and post-processing

After each observation update, 3D ActionSLAM calculates

the effective particle number Neff ¼ 1PNp

m¼1
w
½m�
tð Þ and per-

forms systematic resampling as in [9] if Neff \Nth. In this

way, the filter gets rid of particles with very low weight,

and better approximates p st;HtjÂt; ût
� �

in areas which are

not close to zero.

Sometimes, the observation update step adds land-

marks due to not location-related actions, for example

because a person stops in the middle of a room to

answer a phone call. Such landmarks should be removed,

since they may lead to erroneous data association in later

observation updates. For this purpose, 3D ActionSLAM

applies the landmark removal method proposed in [24]:

The system stores an observation time L½i� for each

landmark and resets it to the current time whenever

n̂ ¼ ½i�. L½i� is measured in distance walked within the

indoor area. Map maintenance removes landmarks from

the particle’s map if they have not been observed for at

least Lmax.7

The 3D ActionSLAM particle filter approximates the

probability density p st;HtjÂt; ût
� �

, but we are actually

interested in st and Ht. The 3D ActionSLAM estimates �st

and �Ht of st and Ht are the paths and map of the best

particle ½ �m�. This is the particle which best reflects the

current belief of the filter according to the following,

heuristically defined rules: 1) Candidates for ½ �m� are all

particles with the minimum number of landmarks

N
½ ~m�
l 	N

½m�
l 8 ½m� ¼ 1. . .Np, and 2), among these candi-

dates, ½ �m� is the particle with the highest weight w
½ �m�
t .

4 System evaluation

4.1 Datasets

We characterize 3D ActionSLAM on a rich set of at-home

and office recordings with multiple sensor setups and set-

tings, reflecting the wide range of usage of the system.

Figure 6 shows the sensor setups we employed in this

work, and Table 2 summarizes the most relevant charac-

teristics and settings of the corresponding ETHOS [26],

EXLs18 and EXLs39 IMUs. Table 3 gives an overview of

all recordings that we investigate. In all experiments, we

attached one IMU to the right foot, and a second IMU or a

smartphone to the right upper leg, both measuring syn-

chronized acceleration, rotation velocity and magnetic field

data. We used the upper leg sensor to distinguish between

sitting and standing, while the foot-mounted IMU provided

the input for ZUPT-PDR. The IMU noise characteristics

improved from ETHOS to EXLs1 and EXLs3, but more

importantly, the EXLs3 accelerometer has a higher

dynamic range (16 g) than ETHOS and EXLs1 (6 g). We

increased fs for the EXLs3 setup compared to the previous

recordings, following the suggestions for optimal ZUPT-

PDR performance in [36].

The dataset is subdivided into three categories:

– Regular walking (R1–6): In these recordings, a person

walked between pre-placed markers in a self-chosen

order, trying to perform regular steps and standing still

for a few seconds at the markers. [22] presents a

detailed discussion of these recordings, including a

comparison of SH-PDR and ZUPT-PDR in Action-

SLAM preprocessing. In R1–6, there was only one type

of landmarks (standing still).

– At-home recordings (H1–9): These were performed at

the home of volunteers, either with the experimenter

present and giving basic instructions, e.g., cook dinner,

close the windows, etc. (H1–H5), or completely free

(H6–H9). In the second case, we assisted participants in

mounting and starting the sensor system, but did not

further regulate their activities. H6, H7, and H9 were

multi-floor recordings, and in H6, H8, and H9, multiple

people were simultaneously equipped with sensors for

tracking. All four landmark types (standing still, sitting,

stair low and stair high) occurred in these experiments.

– Office recordings (O1-2): Here, people wore the sensors

during a normal morning at work, including activities

such as getting print-outs, going to the bathroom, and

making coffee in the kitchen. They did not receive any

specific instructions. The participants did not climb

stairs, therefore ActionSLAM only observed standing

still and sitting landmarks for these two experiments.

Except for the recordings R1–6, H8a, H9c and O1–2, the

volunteers were not familiar with the principles of SLAM.

However, all the participants knew that they were being

tracked while wearing the sensors, which might have

affected their behavior, as stated by the participant in H7.

For the experiments R1–R6, H1–H5 and O1–O2, we col-

lected detailed ground truth floor plans, in which we

marked the expected locations of landmarks (chairs, water

7 We experimentally chose the distance Lmax ¼ 250 m for all our

analyses.

8 http://www.cupid-project.eu/node/44.
9 http://www.exelmicroel.com/products_medical_exls3.html.
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taps, windows, etc.). Our quantitative evaluation of 3D

ActionSLAM is limited to these recordings. We qualita-

tively analyzed the remaining experiments by plotting the

3D ActionSLAM tracks and comparing them to the actual

building layouts. Furthermore, we use synchronized videos

as ground truth position measurements.

4.2 Performance measures

All iterations of ActionSLAM are probabilistic and the

outcome tracks �st and maps �Ht change with every execu-

tion of the algorithm, even for identical input data and

parameter settings. Consequently, there is no guarantee for

3D ActionSLAM to converge to the correct map H. Fur-

thermore, 3D ActionSLAM outcomes differ from ground

truth data in scaling, rotation and translation. For perfor-

mance analysis, we therefore need to first scale, rotate, and

translate �Ht for best fit with the ground truth map H, using

the multi-start interior point optimization algorithm from

the MATLAB Optimization Toolbox.10 We then assess 3D

ActionSLAM along the probabilistic measures robustness r

and mean map accuracy �dH:

– Robustness r is the percentage of successful 3D

ActionSLAM runs. A successful 3D ActionSLAM run

fulfills the following conditions: (1) the percentage of

landmarks in the final 3D ActionSLAM map �H that is

within the boundaries of the building must be

c1 C 90 %, and (2), the percentage of landmarks in

the ground truth map that has a correspondence with

distance below 1.5 m in �H must be c2 ¼ 100 %.

– Map accuracy �dH is the mean Euclidean distance in 3D

between the ground truth landmark coordinates and the

center of the closest 3D ActionSLAM landmark of

identical action type. We only take landmarks with

ground truth correspondence into account. Map accu-

racy �dH is related to tracking accuracy �dx, since every

landmark observation resets the error in estimating the

person’s position xt to approximately �dH. In between

action observations, the position error increases fol-

lowing the motion model rules.

4.3 Parameter optimization

We optimized the main parameters (r/;0; k/;gyro; rx;0;

kx;gyro; r0; r1; p0) of 3D ActionSLAM with respect to the

performance measures r and �dH in extensive parameter

sweeps. For each parameter configuration and experimental

dataset, we repeated 20 runs of 3D ActionSLAM with

Np ¼ 1;000, applied to the datasets R1–R6, H1–H5 and

O1–O2. Assuming that motion and observation model

parameters only weekly influence each other, we per-

formed independent sweeps for (1) r/;0 and k/;gyro, (2) rx;0

and kx;gyro, (3) r0 and r1, and (4) p0.

We ran the optimization separately for each recording,

and found similar, well-defined optima around the values

listed in Table 4 for all experiments. The only exceptions

were rx;0 and kx;gyro, which seem to have little influence on

the overall performance. Given that independent parameter

optimizations for 13 recordings all resulted in similar

optima, we conclude that the algorithm is insusceptible to

parameter overfitting. 3D ActionSLAM is also insensitive

to the motion model parameters for vertical displacement,

so that we fixed them to rh;0 ¼ 0:01 m; rh;gyro ¼ 0:08 m

and rh ¼ 0:1 m after an initial experimental evaluation with

recording H7. A sweep of the particle number Np ¼
100; . . .; 5;000 confirmed previous work (see [24]), indi-

cating that Np ¼ 1;000 provides a good trade-off between

robustness and computational costs.

We continued to use the settings in Table 4 as a general

parameter set throughout the performance analysis. Simi-

larly, we used the standard ZUPT-PDR parameters from

[18] with all setups, although we expect slightly better

results for ZUPT-PDR parameters that are optimized to the

choice of foot-mounted IMU.

4.4 Performance analysis

Figure 7 shows example 3D ActionSLAM maps for H1–H8

and O1–O2, and Table 5 summarizes the performance

Table 2 Characteristics and settings for the foot-mounted IMUs used

in the experiments of Table 3

Sensor ETHOS EXLs1 EXLs3

Size (mm) 46 
 24 
 14 45 
 32 
 5 54 
 33 
 15

fs (Hz) 127.5 100 200

Acc. range (g) 6 6 16

Gyr. range (�/s) 2,000 2,000 2,000

Fig. 6 Illustration of the sensor setups referenced in Table 3

10 http://www.mathworks.ch/ch/products/optimization/.
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analysis outcomes with Np ¼ 1;000 and 100 repeated runs.

For all experiments in Table 5, the robustness r was

between 84 and 99, and 93 % in average. The mean

landmark positioning accuracy �dH was 0.59 m, and never

above 0.66 m. Figure 8 illustrates the convergence of r and
�dH with additional observations for the recordings H1–4.

For the recordings R1–6, the robustness was 100 %, and

the mean landmark positioning error �dH ¼ 0:47� 0:11 m.

In the single-floor scenarios, 3D ActionSLAM results

are similar to the outcomes of previous implementations

(see [24]), which confirms that adding the vertical dis-

placement h to landmarks does not affect the algorithm’s

performance. The novel motion model introduced in

Sect. 3.3.2 overcomes some issues regarding long phases

without stance observation that we discussed in [24]: There

we had to manually remove two long no-stance phases in

H4 for convergence. This is not necessary anymore with

the new motion model.

We only visually analyzed the 3D ActionSLAM per-

formance in the multi-floor scenarios, by comparing the

tracks �st with the corresponding building floor plans. For

the experiments H7–H9, the 3D ActionSLAM paths with

standard settings as in Table 4 well correspond to the actual

building layouts. Figure 7 presents exemplary maps and

tracks for the multi-floor recordings H7 and H8. Videos on

http://vimeo.com/search?q=actionslam demonstrate the

mapping procedure: ActionSLAM with Synchronized Video

(H4) shows a video of the experiment participant walking

around at his together with the ActionSLAM position

estimate, ActionSLAM Tracking in Office Scenario plots

the person’s path into the video of ceiling-attached cam-

eras, and ActionSLAM Convergence in At-Home Tracking

Scenarios presents the iterative mapping for the recordings

H1–H5.

4.5 Real-time performance

While the evaluations above were done offline, we also

developed SmartActionSLAM, an android application that

collects data from a foot-mounted IMU and runs ZUPT-

PDR, action recognition and the SLAM updating in real

time on two of the phone’s processors [22]. The current

implementation runs a previous iteration of ActionSLAM,

but the modifications for 3D ActionSLAM will only add

minor complexity. Critical for real-time SmartAction-

SLAM execution is that the computation times per motion

and observation update are smaller than the duration

between two subsequent updates. Otherwise, delays in the

location estimation will accumulate.

A profiling of the SmartActionSLAM app running on a

Samsung Galaxy S4 phone showed that the computationally

most costly functions are the observation update, and the

resampling. In comparison, the execution times for ZUPT-

PDR, action recognition and motion updates are negligible

(\10 % of total computation time). The computation times

Table 3 Summary of the evaluation datasets with walking distances estimated from 3D ActionSLAM output tracks

Name Foot sensor Hip sensor # Floors Duration (min) Distance (m) Description

R1 EXLs1 Galaxy S4 1 3 57 Walk between 2 markers

R2 EXLs1 Galaxy S4 1 3 40 Walk between 3 markers

R3 EXLs1 Galaxy S4 1 4 127 Walk between 3 markers

R4 EXLs1 Galaxy S4 1 2 54 Walk between 3 markers

R5 EXLs1 Galaxy S4 1 3 100 Walk between 4 markers

R6 EXLs1 Galaxy S4 1 7 291 Walk between 7 markers

H1 ETHOS ETHOS 1 101 675 Evening at home

H2 ETHOS ETHOS 1 143 198 Evening at home

H3 ETHOS ETHOS 1 74 353 Evening at home

H4 ETHOS ETHOS 1 103 586 Evening at home

H5 EXLs1 Galaxy S4 1 44 168 Evening at home

H6a–b EXLs1 Galaxy SII 1 197/195 141/151 2 People in flat cooking, having dinner,

chatting on couch; synchronized

H7 EXLs1 Galaxy S4 3 113 722 Morning activities (breakfast, garden

and basement work) in 3-floor house

H8a–c EXLs1 Galaxy SII 2/2/3 152/111/88 381/213/260 3 People in shared flat at different evenings

H9a–d EXLs3 Galaxy SII 2/1/2/3 116/96/67/104 500/228/194/402 4 People in shared flat (same as H8),

morning activities; synchronized

O1 ETHOS ETHOS – 100 516 Office activities

O2 EXLs1 Galaxy S4 – 90 132 Office activities
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per observation update Tobs and resampling Tres are both

linear functions of the number of landmarks Nl in the par-

ticle maps, and the number of particles Np. For Nl ¼ 5 and

Np ¼ 1;000, the mean Tobs was 0.5 s and Tres ¼ 0:69 s. The

total time per SLAM update if also taking the time per

motion update Tmot ¼ 0:04 s into account was

Ttot ¼ Tobs þ Tres þ Tmot ¼ 1:23 s. As the time between two

subsequent actions in our recordings was never below 5 s,

SmartActionSLAM would not accumulate delays with this

Nl and Np. An extrapolation with fixed Np ¼ 1;000 indicates

that the maximum number of landmarks with Ttot\5 s is

Nl ¼ 22 (see Fig. 9), which is higher than the final number

of landmarks in all our experiments, except for H7

(Nl ¼ 33). Further code optimization and the use of the

graphical processing unit will improve this performance. In

addition, we may fix well-known landmarks, i.e., only use

them for localization and no longer adapt their position in

the observation update.

5 Discussion

Figure 7 illustrates that 3D ActionSLAM maps and paths are

geometrically accurate and they well reflect the topology of

building layouts: Rooms and the different areas within

rooms are clearly distinguishable, in particular the position

of sitting opportunities. The 3D ActionSLAM paths �st

connect landmarks without crossing walls, except when

sometimes missing a door by up to 1 m. Complementary

modalities such as Wifi may further improve the algorithm’s

robustness and reduce the number of required particles.

The deployment of 3D ActionSLAM is straightforward.

However, the following considerations should be taken into

account when using the system in real-world scenarios:

5.1 Accelerometer dynamic range

In particular, during stair descent, we often observed

accelerations above 6 g, which exceeds the accelerometer

dynamic range of our ETHOS and EXLs1 IMUs. This

added large errors to the ZUPT-PDR estimate of vertical

displacement d̂ht, typically underestimating the descent

altitude change by 20–30 %. In the recordings H7 and H8,

3D ActionSLAM could compensate for this issue, but in

two further experiments not presented here, we had to

manually correct the ZUPT-PDR path estimates for con-

vergence. We therefore discarded these recordings from

further analyses. In the latest experiment (H9), we used

EXLs3 IMUs with a dynamic range of 16 g, which solved

the issue. We furthermore observed that the accelerations

during stair descent were smaller when people were

wearing shoes, rather than walking in socks. This is

probably due to damping effects of shoe soles.

5.2 Missing stance phases

An important requirement for ZUPT-PDR to provide reli-

able odometry estimates ŝt to the 3D ActionSLAM update

phase is the regularity of stance observations, i.e., that the

time Tt between subsequent stances remains small. During

the swing phase of a step, the error of ZUPT-PDR grows

exponentially, and therefore also the position uncertainty in

pðstjst�1; utÞ modeled with the 3D ActionSLAM particle

cloud. There were incidents with Tt [ 3 s in all the at-home

and office experiments, typically when the person walked

fast or swung his legs back and forth while sitting. Previous

versions of ActionSLAM could already handle most of

these incidents, for example by softening the stance

detection criterion [24]. However, in H4, there are two

phases of leg swinging with Tt [ 10 s, which only the

novel 3D ActionSLAM motion model can handle. This

new model also works in the challenging multi-floor

experiments, where phases of Tt [ 6 s are frequent during

fast stair descent. Nevertheless, long phases without stance

remain a major source of errors and decrease the 3D Ac-

tionSLAM robustness r. An alternative approach would be

to increase Np when Np ¼ 1;000 particles can no longer

adequately represent the probability distribution

pðstjst�1; utÞ. KLD-resampling [19] is one technique sup-

porting adaptive Np that we will investigate in future.

5.3 User behavior

A requirement of 3D ActionSLAM is that the person sits

and stands still repeatedly at the same locations. In the

experiments we conducted, this was the case: People

walked mostly between a set of specific places in their

home, such as sofas, chairs, kitchen facilities, drawers,

water taps, windows and light switches and they stood still

or sat down at these locations. The few landmarks that 3D

ActionSLAM inserted because participants stood still at

random spots did not affect the overall convergence of the

algorithm. Map maintenance automatically removed most

of these landmarks. However, for some specific daily life

Table 4 ActionSLAM

parameter configuration used in

performance analysis

Parameter r/;0 k/;gyro rx;0 kx;gyro r0 r1 p0 rh;0 rh;gyro rh Np

Value 0:25� 1:5� 0.01 m 0.01 m 0.25 m 0.25 m 0.02 0.01 m 0.08 m 0.1 m 1,000
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activities such as hovering and cleaning, the ActionSLAM

assumption regarding human behavior at home does not

hold, as people are likely to stand still often and at non-

specific places. It may be necessary to detect that the user is

performing such an activity, and assign a state unknown to

the observations during the activity, indicating that the

current user behavior should not affect the mapping pro-

cedure. Liao et al. [30] proposed such an approach to

Fig. 7 Exemplary 3D ActionSLAM outputs, with the building layouts as background
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account for unexpected user behavior when inferring

transportation routines from GPS traces.

5.4 Battery lifetime

In Bluetooth streaming mode and with a sampling rate

fs ¼ 100 Hz, the life time of our EXLs1 IMUs is about 4 h,

which is sufficient for tracking during one evening. The

ETHOS and EXLs3 sensors have similar lifetimes. How-

ever, for long-term deployment, people may not be willing

to recharge batteries every 4 h. To solve this issue, we

recently developed a new in-sole IMU with external bat-

tery, which runs for � 20 h.

5.5 Real-time feedback

A still open issue for real-time execution of 3D Action-

SLAM is the recognition of false runs. For offline execu-

tion, robustness r [ 80 % is sufficient: To find the true map

and path, we simply run 3D ActionSLAM multiple times

and apply a majority vote, or let the user choose the best

outcome track. In a real-time system, we, however, need to

detect false maps automatically and restart the mapping

process in response.

To sum up, with appropriate IMUs, 3D ActionSLAM

can be deployed as it is to track people at home (and at

work, if the work includes revisiting locations in a con-

strained area), except during some special activities such as

hovering of the house. A typical use-case would be the

monitoring of one or multiple house inhabitants during an

evening at home. In the subsequent section, we introduce

complementary techniques for visualizing and interpreting

3D ActionSLAM tracks.

6 Interpretation of 3D ActionSLAM tracks

3D ActionSLAM is a novel approach to collect location

data of one or multiple home inhabitants with low deploy-

ment effort, low computational effort, and with compara-

tively small privacy intrusion. However, the algorithm as

such only finds a path �st within a local coordinate system,

Table 5 Averaged performance results (see measures in Sect. 4.2) for 100 repeated 3D ActionSLAM runs with Np ¼ 1;000

Recording H1 H2 H3 H4 H5 O1 O2

r (%) 84 90 96 96 98 86 99

�c1 (%) 84 90 96 99 100 94 100

�c2 (%) 85 91 96 97 98 90 99

�dH in (m) 0:63� 0:11 0:61� 0:11 0:66� 0:08 0:44� 0:10 0:54� 0:11 0:79� 0:25 0:43� 0:09

�Nl 12:8� 1:7 13:1� 1:1 15:1� 1:2 16:9� 1:5 10:7� 1:1 15:7� 1:2 8:5� 0:7

Fig. 8 Convergence of 3D ActionSLAM for the experiments H1–4.

c1 is the percentage of landmarks within the boundaries of the ground

truth map, and c2 the percentage of ground truth landmarks that the

system observed. �dH is the map accuracy. In the beginning, c2 ¼ 0

because the 3D ActionSLAM map is empty

Fig. 9 Experimentally measured computation times per observation

update and resampling as a function of Nl (according to [22]
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and a list of landmarks �Ht that indicate where the person

stood still, climbed stairs or sat down. For practical appli-

cations in health and behavior monitoring (see e.g., [4, 10,

12]), this data is difficult to interpret, in particular since

paths and maps alone do not reveal any spatio-temporal

information such as the duration and sequence of visits to a

certain location. We therefore subsequently propose

SLAM-specific techniques to align, segment, and visualize

3D ActionSLAM paths before presenting the tracking data

to users. Figure 10 depicts the overall data flow for pro-

ducing these visualizations: First of all, if multiple people

are tracked, the individual paths �st
P of people P1; . . .;PM are

aligned into the same coordinate system. From a single path

or multiple aligned paths, heat maps Hv are generated,

which depict features such as the frequency of incidents

(e.g., falls). In Sect. 6.3 we describe a novel method for

deriving the building’s room layout Rv from a heat map Hv

that depicts the time spent at each location. Finally, given Rv

and the aligned paths �st
P of all inhabitants, we generate a

narrative chart NCv that projects the location of people to a

single dimension before plotting it against time.

6.1 Multi-track alignment

6.1.1 Motivation

Each 3D ActionSLAM path �st
Pi

represents the person’s

motions in a different coordinate system Ci. To compare

multiple paths and proceed with further analyses, the paths

should be rotated and translated into a single coordinate

system C1. People may only share a part of an indoor

environment, while other rooms are private and visited by a

subset of the inhabitants. Therefore, a simple least-squares

optimization of the distance between the visited coordi-

nates of each path will usually fail. For collaborative

exploration of large buildings, Puyol et al. [42] proposes to

search for an optimal overlay of path subsets. This method

requires that the participants share at least three joint cor-

ridor segments in the building.

6.1.2 Approach

We here present an alternative solution for tracks that start

at the same place (s0 ¼ f0; 0; 0;/0g). In a practical appli-

cation, this could be the place where users recharge their

sensors, or the entrance of the building. If s0 is equal for all

participants, there will only be a rotational offset d/Ci

between the coordinate systems Ci and C1. To find the

rotation difference between a path �st
P2;C2 and �st

P1;C1
, our

multi-track alignment solution counts for each possible

heading the frequency of its occurrence in the path. Given

the orthogonal layout of most buildings, the corresponding

histogram typically shows four peaks with 90� offset in

between. Except in square-shaped buildings, only two out

of these peaks have about the same height (at 180� angle

difference). By looking for the best fit between the heading

distribution of the walk by P1 and the walk by P2, we can

reduce the number of possible rotation differences to two

(d/Ci
, and d/Ci

þ 180�). If P1 and P2 furthermore start

facing in the approximately same direction /0, the rotation

offset between C1 and C2 is small and we can just take the

smaller of the two angles.

6.1.3 Results

Figure 7 shows overlays of the 3D ActionSLAM tracks

H6a–b and H8a–c as found with this procedure.

6.2 Heat maps

6.2.1 Motivation

Hotspots in tracking are places at which a certain incident

occurs particularly often. Some location-related incidents

Fig. 10 This figure demonstrates the data flow in generating

visualizations of 3D ActionSLAM outputs for a 2-person experiment

(P1 and P2). As the two paths �st
P1 ;C1

and �st
P2 ;C2

have different

coordinate systems C1 and C2, we first align them both in C1. Then,

we produce the heat map Hv and use it as input for room

segmentation. The resulting segments Rv and the aligned paths can

finally be combined to a narrative chart NCv
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of importance that wearable systems can detect are falling

[49], and freezing of gait in Parkinson’s disease [33]. 3D

ActionSLAM offers an easily deployed extension to such

systems for synchronized at-home position tracking,

enabling the efficient identification of hotspots.

6.2.2 Approach

We use Kernel density heat maps [32] with a Gaussian

kernel and bandwidth 0.4 m to visualize the frequency of

events in an environment.

6.2.3 Results

Figure 11 depicts two example heat maps for time spent at

location. The marked hotspots in this case correspond to

areas at which the experiment participants spent most of

their time (chairs and sofas).

6.3 Room segmentation

6.3.1 Motivation

For interpretation of a person’s location behavior, it is

often helpful to distinguish the rooms and semantic

subareas of a home. Automated segmentation of SLAM

paths to rooms can be achieved through synchronized

recognition of actions that indicate the entering in a new

space, e.g., door opening [21]. Recognizing door opening

however requires additional, wrist-worn sensors. Another

approach is to classify paths into room and corridor seg-

ments and then cluster these segments to find the room

center points [1]. This method was demonstrated for

simulated traces in an office building, but it requires that

corridors are straight and long compared to the size of

rooms.

6.3.2 Approach

Here, we propose a room segmentation algorithm inspired

by image processing that is better suited for typical home

floor plans. The first step of this method is to apply a

threshold to the location heat map Hv such that

Iv ¼ Hv [ H0. Iv is a binary image that shows all accessed

areas of the environment (see Fig. 11). Topological skel-

etonization with pruning of small side branches as in [6]

(Code from http://www.cs.smith.edu/*nhowe/research/

code/) then results in a skeleton Sv that highlights the major

connections between subspaces in the environment. Given

the extracted environment topology, the branches of Sv and

the closest nonzero pixels of Iv get a room label ri assigned.

6.3.3 Results

With this approach, we could derive accurate representa-

tions Rv of the room layouts in all recordings (H1-9, O1-2).

In multi-floor recordings, we applied the room segmenta-

tion to each floor separately.

6.4 Narrative charts

6.4.1 Motivation

Narrative charts visualize the interpersonal proximity

within a group as a function of time. Such charts were for

example used to visualize group performance parameters in

firefighting (see [16]). In at-home tracking, narrative charts

indicate in which room or subspace the inhabitants were at

each time, and to which other people in the same room they

were close at that moment. Therefore, narrative charts

capture and reveal the social dynamics in a group of people

sharing the same home.

Fig. 11 The heat maps Hv show the time spent at locations for H2

and H4 (logarithmic color scale). These heat maps are then used to

find the walking area skeletons Sv, and from them the room

segmentation Rv
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6.4.2 Approach

To generate the narrative chart NCv from aligned 3D Ac-

tionSLAM paths, the Euclidean distance di;j between the

people Pi and Pj is calculated for each combination of i and

j. If Pi and Pj are in different rooms, di;j is set to be large.

Single-linkage clustering applied to the matrix di;j with a

maximum distance dmax ¼ 3 m then groups the people such

that every person is within dmax of at least one other person

in the same cluster. Cluster changes lead to the addition of

nodes in the narrative chart and a regrouping of links in the

diagram.

6.4.3 Results

Figure 12 depicts the narrative chart for recording H9.

Different levels in NCv correspond to different rooms/floor

levels in Rv, and the lines nci correspond to the position of

person Pi with respect to the other people. The video http://

vimeo.com/90007230 aligns the chart evolution with the

walks of the four experiment participants. None of the steps

involved in the creation of this video from 3D Action-

SLAM tracks requires user input.

7 Conclusion

We showed experimentally that stand-alone tracking of

people in multi-floor homes is possible from a foot-

mounted IMU and a hip-worn smartphone. 3D Action-

SLAM is easy to deploy, unobtrusive, and nevertheless

capable of robust tracking and mapping, inserting land-

marks with a mean position error of 0.59 m. The addition

of a novel motion model improved the handling of long

phases without stance. Crucial to achieve reliable tracking

in multi-floor environments is that the foot-mounted IMU

has a sufficiently large accelerometer dynamic range to

capture all foot movements. We confirmed the potential

of the 3D ActionSLAM system in 23 individual record-

ings with a total walked distance of 6,489 m. Further-

more, we introduce multi-path alignment, kernel density

heat maps, room segmentation and narrative charts as

tools for visualization and interpretation of SLAM output

tracks.

3D ActionSLAM is easy to set up, which facilitates a

variety of location-aware applications in health care and

remote monitoring. For example, we are applying 3D Ac-

tionSLAM to investigate the location correspondence of

freezing of gait events in Parkinson’s disease [33]. In

future, 3D ActionSLAM may replace camera-based

tracking in behavior analysis studies such as [3], and pro-

vide location-awareness as an additional feature in activity

recognition tasks [53].
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Fig. 12 This extract of the narrative chart (left) for recording H9

indicates that H9a and H9d spent most of the time together in the

kitchen/living room, while H9b was in the bedroom (H9c started the

recording later)—this information is not visible from the aligned

tracks plotted on the right. The photograph depicts a situation where

two pairs of people (H9a, c and H9b, d) communicated in separate

groups, even though they were in the same room. The narrative chart

visualizes this information through forking nca and ncc from ncb and

ncd within the same room category
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(2013) ActionSLAM on a smartphone: at-home tracking with a

fully wearable system. In: 2013 International conference on

indoor positioning and indoor navigation (IPIN), pp 99–106

23. Hardegger M, Roggen D, Mazilu S, Tröster G (2012) Action-
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